
Bigram Constrained Linear Chain Conditional
Random Fields

Emmanuel Liossis (emmanuel.liossis@gmail.com)

Abstract—It is known that Linear Chain Conditional
Random Fields have quadratic time and space complex-
ity in terms of the output tags set cardinality. This fact
poses a prohibitive performance penalty when the tag
set is large, such as in language applications where the
language has a rich set of morphosyntactic tags. How-
ever, knowledge of the allowed tag bigram combinations
can lead to significant speedup and memory savings,
often by several orders of magnitude, for both training
and inference. This theoretical exposition presents how
to exploit this knowledge by introducing steps and data
structures to the ordinary Linear Chain Conditional
Random Field implementation in order to achieve these
savings.

I. Introduction

Linear Chain Conditional Random Fields [1] have been
used successfully in many sequence classification tasks,
including language processing applications such as part-
of-speech tagging when the cardinality of the output tag
set is no more than a few dozen. However, certain highly
inflective languages have a rich set of morphosyntactic
tags where the cardinality exceeds one thousand. Bearing
in mind that Linear Chain Conditional Random Fields
have quadratic time and space complexity with respect
to this cardinality, application to such languages becomes
impractical.
This poses the need to exploit any convenient sparsity

pattern known about the data. We observe that, in the
graphical model of the Linear Chain Conditional Random
Field, adjacent elements of the output sequence have
pairwise connections. This pairwise connectivity drives
message passing and it is responsible for the quadratic
complexity of the operations. The above suggest that
knowldge about the possible tag bigrams is a good fit for
boosting message passing.
We will derive a Bigram Constrained Linear Chain

Conditional Random Field (BC-LCCRF) which will take
advantage of the allowed tag bigrams. It will be a general
approach which will contain the original “full” Linear
Chain Conditional Random Field (F-LCCRF) as a spe-
cial case, falling back to the original performance with
only a small amount of overhead. We proceed as fol-
lows: First we review relevant previous work. Then we
intruduce the data structures facilitating the formulation
and its implementation, and consequently we establish
the formulation. Finally, there is a theoretical comparison
against previous work and some notes on applications. An
implementation in C# can be found at https://github.
com/grammophone/Grammophone.CRF.

II. Previous work

The cardinality of the tag set of highly inflectional
languages has always been a concern when processed using
Conditional Random Fields. Waszczuk [2] has faced this
challenge for the Polish language which also presents a
tag set with cardinality of more than a thousand, and
produced a form called Constrained Conditional Random
Field, which accepts as an input the constraint r of the
possible tags per output sequence position:

r = (r1 ⊆ Y, . . . , rn ⊆ Y,) (1)

The above constraint specification favors languages and
domains in general where tags can be easily expressed as
position-dependent. However, this specification becomes
difficult with languages such as Ancient Greek, where the
various parts of speech can have many valid juxtapositons
in a sentence.

Expressing sparsity in terms of bigrams is a more
general, less domain-dependent approach which is better
suited for such languages. Bigram sparsity is proposed by
Sokolovska et al in [3]. They consider feature functions
falling into two special groups, unigram functions and
bigram sparse boolean functions, and they take advantage
of the sparsity of the “true” values of the latter in order to
achieve efficiency.

Moving towards the same direction of bigram sparsity
as [3], we will introduce a scheme which allows for general
feature functions but which also has the benefits of [2]
through implicit inference of the sequence of possible tags
(1).

III. Data structures prerequiesites

Before we describe the method, we introduce the neces-
sary data structures. Their simplified diagram is shown in
Figure 1.

A. Bigram: The Tuple<F, S> class

This is the class which represents a bigram, shown in
middle left of Figure 1. Its two components are held in
properties Item1 and Item2 having generic types F and
S correspondingly. The class provides implementations of
the Equals and GetHashCodemethods using the respective
implementations of its two components which are expected
to run in O(1) time, thus it is automatically ready for
equality comparison and for hashing algorithms.

https://github.com/grammophone/Grammophone.CRF
https://github.com/grammophone/Grammophone.CRF

Figure 1. The simplified UML diagram of the auxilliary data structures.

B. Bigram container: The BiGramSet<Y> class

The BiGramSet<Y> class (bottom right in Figure 1)
is a collection of Tuple<Y, Y> bigram items, with the
additional capabilities:

• It can fetch all bigrams having a given first element
in approximate O(1) time (method GetByFirst).

• It can fetch all bigrams having a given second element
in approximate O(1) time (method GetBySecond).

• It can check whether a bigram is a member of the col-
lection in approximate O(1) time (method Contains).

The implementation of the bigram set relies partly on a
hash set for storing all bigrams and for member checking
in approximate O(1) time. This functionality is inherited
by the parent Bag<Tuple<Y, Y>>. Additionally, the class
contains two private hash multi-dictionaries (not shown),
allowing many items under the same key, in order to
support the GetByFirst and GetBySecond methods with
approximate O(1) performance.

C. Infinite sequence: The LazySequence<E> class

This is a thread-safe, lazily evaluated sequence of el-
ements of generic type E, in the style of the lists found
in functional languages. It differs though in having O(1)
indexed random access time for an element which has al-
ready been computed. When computing a missing element,

Figure 2. The LazySequence<E> diagram.

any previous missing elements are computed recursively
as necessary. The elements of the sequence are implicitly
defined by a function Func<Integer, E>, taking the index
as an argument and returning the corresponding element.

That function may access any previous element, as the
above recursive behavior guarantees that it will be present.

IV. Formulation

We can now describe the Bigram Constrained Condi-
tional Random Field. The previously reviewed data struc-
tures will facilitate the implementation of the scheme.

A. Definition

We establish some notation. Let Y be the set of tags,
Y+ = Y ∪ {S,E} be the tag set extended with the special
start and end tags. Let X be the set from where input x
takes its values. The input x is not constrained to be a
sequence, it can be anything. Let B ⊆ Y 2

+ be the set of
possible bigrams. Let f :

(
X,Y 2

+,N
)
→ Rd be d effective

feature functions packed as a single function returning a
vector with d dimensions. The probability of an output
sequence y ∈ Y n

+ given an input x ∈ X and model pa-
rameters vector w ∈ Rd according to Bigram Constrained
Linear Chain Conditional Random Field (BC-LCCRF)
follows:

p (y|x;w) =
exp

[
wT

n∑
i=0

f (x, yi−1, yi, i)

]
Z (x,w)

· I [y ∈ Y p] (2)

where

Z (x,w) =
∑
y∈Y p

exp

[
wT

n∑
i=0

f (x, yi−1, yi, i)

]
(3)

The output sequence y has n non-trivial elements and
has zero based indices, always implying the boundary
conditions y−1 = S and yn = E. The Y p is the set of
all possible tag sequences of length n, according to the set
of allowed bigrams B, which additionally satisfy:

• The previous boundary conditions y−1 = S and yn =
E.

• yi /∈ {S,E} when i = 0 . . . n− 1.

The Y p set, being constrained by bigrams in B, is what
discriminates the scheme from the ordinary Full Linear
Chain Conditional Random Field (F-LCCRF). But if we
specify as bigrams the complete cartesian product of tags,
the scheme falls back to F-LCCRF.
The feature functions are expressed as a vector function

f . Implementation-wise, this vector can be sparse in order
to speed up the inner product with the model parameters
vector w. We observe that we have no restriction upon
feature functions other than accessing only a pair of
neighboring output tags at a time. Feature functions don’t
need to be boolean functions of the input and the tags,
they don’t need to be boolean functions of the tag bigrams
either; they can return any real value and can make use of
the input and the tag pair in any way. The input doesn’t
need to be a sequence, and any part of it or all of it can
be considered during a feature function evaluation.

B. Inference

The most likely output sequence ŷ ∈ Y p given an input
x and the model parameters w is the one which maximizes
the numerator of (2), as the denominator is not dependent
on the output:

ŷ = argmax
y∈Y p

[
wT

n∑
i=0

f (x, yi−1, yi, i)

]

= argmax
y∈Y p

n∑
i=0

gi (yi−1, yi) (4)

where

gi (yi−1, yi) = wT f (x, yi−1, yi, i) (5)

The gi (yi−1, yi) can be implemented as an array of n+1
hash dictionaries having as key the bigram and storing nu-
meric values, ie Dictionary<Tuple<Y, Y>, Double>[*].
Thus the access time in terms of a bigram is approximately
O(1).

Before we move on to sequence definitions, let us define
the functions prev and next, which return the possible tags
preceding or following a given tag according to B:

prev (v) = {u| (u, v) ∈ B}
next (u) = {v| (u, v) ∈ B}

We now define the forward open sequence of possible
tags, which is infinite and unique in terms of B. This is the
sequence of possible tags per position, assuming that they
stem from {S} according to B, but making no assumption
about the end of the sequence:

t = (t−1 ⊆ Y+, t0 ⊆ Y+, t1 ⊆ Y+, . . . , ti ⊆ Y+, . . .)

t−1 = {S}
ti = {ys| ∃yf ∈ ti−1 : ys ∈ next (yf)}

Similarly, we define the backward open sequence of
possible tags, which is the reverse infinite sequence of
possible tags ending to {E} according to B:

q = (q0 ⊆ Y+, q1 ⊆ Y+, . . . , qi ⊆ Y+, . . .)

q0 = {E}
qi = {yf | ∃ys ∈ qi−1 : yf ∈ prev (ys)}

These infinite sequences can be readily implemented
as LazySequence<Y[*]>. The function for creating an
element of either sequence takes advantage of set B being
implemented as a BiGramSet<Y>, and uses its GetByFirst
and GetBySecond methods to compute next and prev
functions correspondingly.

The allowed tags for a sequence of length n can now be
defined:

r = (r−1, r0, . . . , rn)

ri = ti ∩ qn−i

The above sequence depends only on B, which is con-
stant for a given domain, and n. Its computation can thus
be effectively cached. We could also further restrict the ri
sets if we have prior positional knowledge as in [2].
Resuming the inference computation in (4), we proceed

in a Viterbi-like fashion normally as in F-LCCRF by
defining the maximum score of sequences ending with tag
v ∈ rk at position k:

Uk (v) = max
y0,...,yk−1

k−1∑
i=0

gi (yi−1, yi) + gk (yk−1, v)

= max
yk−1∈prev(v)
yk−1∈rk−1

max
y0,...,yk−2

k−2∑
i=0

gi (yi−1, yi)

+ gk−1 (yk−2, yk−1) + gk (yk−1, v)

= max
yk−1∈prev(v)
yk−1∈rk−1

Uk−1 (yk−1) + gk (yk−1, v) (6)

The base of the above recursion is

U0 (v) = g0 (S, v)

These observations allow us to achieve fast computation
of the expression (6). For each stage k of the recursion, we
only iterate over v ∈ rk instead of all tags. Then, for each
tag v, we only maximize over u ∈ prev (v) ∩ rk−1 instead
of all tags.
Implementation-wise, these steps imply which values to

store for each gk function: For every k we only store values
for bigrams (yk−1, yk) by selecting all yk ∈ rk, then for
each yk selecting all yk−1 ∈ prev (yk) ∩ rk−1. For every
element in prev (yk), the intersection test with rk−1 can
execute in approximate O (1) time if the collections of
tags returned by each element of r are based on hash
sets. Thus formally, g would be realized as an array of
dictionaries having bigrams as keys and scalar values,
Dictionary<Tuple<Y, Y>, Double>[*]. Similarly to g,
we can realize U as an array of dictionaries having tags
as keys and scalar values, Dictionary<Y, Double>[*].
In order to infer the best sequence of tags, we set ŷn = E

and move backwards recursively:

ŷk−1 = argmax
u∈prev(ŷk)∩rk−1

Uk−1 (u) + gk (u, ŷk)

If the above domain prev (ŷk) ∩ rk−1 of the argmax
operator is found empty, it means that there is no bigram
leading to the tag E at ŷn+1, thus we report that a
sequence of the given length is infeasible according the
the bigrams specified in B.

C. Training

Training methods may consist of maximizing the log
conditional likelihood of the training data. These methods
typically require an expression of the gradient of the log
conditional likelihood. Considering the outputs as condi-
tionally independent with respect to the inputs, this is
reduced to the sum of the logarithms of the conditional

probabilities defined in (2) for each input/output pair. Let
us define:

F (x, y) =

n∑
i=0

f (x, yi−1, yi, i)

We proceed similarly as in F-LCCRF by finding the
gradient of the log of the conditional probability (2),
assuming y ∈ Y p:

∇w log p (y|x;w) = F (x, y)−∇w log Z (x,w)

= F (x, y)− 1

Z (x,w)
∇wZ (x,w) (7)

We elaborate on the the last term, the gradient of the
partition function, ∇wZ (x,w), using its definition in (3):

∇wZ (x,w) = ∇w

∑
y′∈Y p

exp
[
wTF (x, y′)

]
=

∑
y′∈Y p

∇w exp
[
wTF (x, y′)

]
=

∑
y′∈Y p

exp
[
wTF (x, y′)

]
F (x, y′)

Replacing the above in (7) we get:

∇w log p (y|x;w) = F (x, y)

−
∑

y′∈Y p

exp
[
wTF (x, y′)

]
Z (x,w)

F (x, y′) (8)

= F (x, y)− Ey′∼p(y′|x;w) [F (x, y′)]

We will focus on computing the second term of (8)
efficiently. The numerator in (8) is the unnormalized prob-
ability of output y′ given an input x and model parameters
w. In order to compute it, we define αk (yk) to be the
unnormalized probability of an output sequence ending at
position k with a tag yk ∈ rk, always implying y−1 = S.
This is the forward vector:

αk (yk) =
∑

y0...yk−1

exp

[
wT

k∑
i=0

f (x, yi−1, yi, i)

]
Using the definition in (5), we can rewrite the above

αk (yk) =
∑

y0...yk−1

exp

[
k∑

i=0

gi (yi−1, yi)

]

=
∑

y0...yk−1

exp

[
k−1∑
i=0

gi (yi−1, yi) + gk (yk−1, yk)

]

=
∑
yk−1

∑
y0...yk−2

exp
k−1∑
i=0

gi (yi−1, yi)

· exp gk (yk−1, yk)

=
∑

yk−1∈prev(yk)
yk−1∈rk−1

αk−1 (yk−1) exp gk (yk−1, yk) (9)

This recursion has the following basis:

α0 (y0) = exp g0 (S, y0)

In a similar manner, we define the unnormalized proba-
bility of an output sequence having tag yk ∈ rk at position
k and ending with tag yn = E as the backward vector:

βk (yk) =
∑

yk+1∈next(yk)
yk+1∈rk+1

βk+1 (yk+1) exp gk+1 (yk, yk+1)

(10)

The basis for the recursion of the backward vector is:

βn−1 (yn−1) = exp gn (yn−1, E)

We could move on defining the partition function
Z (x,w) and the output probabilities in terms of (9) and
(10). These equations though suffer from arithmetic error
propagation leading to underflow and overflow risk. Some
implementations come around this difficulty by keeping
the logarithm of αk and βk and re-exponiantiating for each
addition in the formulae using the identity:

log (exp q + exp r) = q + log (1 + exp (r − q))

This incurs a performance hit because of the train of log-
exp calls. We will resort to a different approach instead.
The contents of both α and β vectors are unnormalized
probabilities, which means that we can scale them as
we deem fit; they will be normalized anyway. We will
adopt the scaling proposed by Rabiner for Hidden Markov
Models in [4], incorporating the corrections pointed out by
Rahimi [5].
We will produce a scaled version α̂ of the forward vector

α such that:

α̂k (u) =
1∑

v∈rk
αk (v)

αk (u) = Ckαk (u) (11)

This is achieved by setting:

ᾱ0 (y0) = α0 (y0) = exp g0 (S, y0)

ck =
1∑

yk∈rk
ᾱk (yk)

α̂k (yk) = ckᾱk (yk)

ᾱk+1 (yk+1) =
∑

yk∈prev(yk+1)
yk∈rk

α̂k (yk) exp gk+1 (yk, yk+1)

(12)

If at any k we find that rk = ⊘, we stop as there is no
possible output sequence having k+1 elements under the
bigram constraints B.
The above scaling verifies (11) by induction. Indeed, the

base case is satisfied, resulting to C0 = c0:

ᾱ (y0) = α0 (y0)

α̂0 (y0) = c0α0 (y0)

=
1∑

u∈r0
α0 (u)

α0 (y0)

= C0α0 (y0)

If we assume α̂k (yk) = Ckαk (yk), then we complete the
induction:

ᾱk+1 (yk+1) = Ck

∑
yk∈prev(yk+1)∩rk

αk (yk) exp (yk, yk+1)

= Ckαk+1 (yk+1)

ck+1 =
1∑

u∈rk+1
ᾱk+1 (u)

=
1

Ck

∑
u∈rk+1

αk+1 (u)
(13)

α̂k+1 (yk+1) = ck+1ᾱk+1 (yk+1)

=
Ckαk+1 (yk+1)

Ck

∑
u∈rk+1

αk+1 (u)

= Ck+1αk+1 (yk+1)

From (13) and the definition in (11), we obtain a useful
relationship for the scaling coefficients:

Ck =
1

ck+1

∑
u∈rk+1

αk+1 (u)

=
Ck+1

ck+1
⇒

⇒ Ck = Ck−1ck =

k∏
i=0

ci

We also define the term Dk, which will be used to scale
the backward vector β:

Dk =
n−1∏
i=k

ci (14)

CkDk+1 =
k∏

i=0

ci

n−1∏
i=k+1

ci = Cn−1 (15)

Thus the scaled backward vector is set to be:

β̂k (yk) = Dkβk (yk) (16)

The required scaling is achieved as follows:

β̄n−1 (yn−1) = βn−1 (yn−1)

β̂k (yk) = ckβ̄k (yk)

β̄k (yk) =
∑

yk+1∈next(yk)
yk+1∈rk+1

β̂k+1 (yk+1) exp gk+1 (yk, yk+1)

(17)

Again, we can show by induction that, by the above
scaling, (16) is enforced. The basis of the induction is
satisfied as Dn−1 = cn−1. Assuming β̂k+1 (yk+1) =
Dk+1βk+1 (yk+1), we complete the induction:

β̄k (yk) = Dk+1

∑
yk+1∈next(yk)
yk+1∈rk+1

βk+1 (yk+1) exp gk+1 (yk, yk+1)

= Dk+1βk (yk)

β̂k (yk) = ckβ̄k (yk)

= ckDk+1βk (yk)

= Dkβk (yk)

We proceed now with expressing the probability of a
bigram at a position in a feasible output sequence. Starting
from the definition in (2) and substituting the gi quantities
introduced in (5), this probability is:

p (Yk = u, Yk+1 = v|x;w) =

∑
y′∈Y p

yk=u
yk+1=v

exp
∑n

i=0 gi
(
y′i−1, y

′
i

)
Z (x;w)

(18)

Initially, we use the unscaled forward and backward
vectors described in (9) and (10) to rewrite the above
expression. For 0 ≤ k ≤ n− 2, the numerator becomes:

p (Yk = u, Yk+1 = v|x;w) = αk (u) exp gk+1 (u, v)βk+1 (v)

Z (x;w)
(19)

In order to cover the extreme cases k = −1 and k = n−1
under the same formulae, we define:

α−1 (S) = 1 βn (E) = 1

The denominator is Z (x;w) defined in (3). We substi-
tute gi in it as well and we proceed:

Z (x;w) =
∑

y′∈Y p

exp
n∑

i=0

gi
(
y′i−1, y

′
i

)
=

∑
y′
k∈rk

αk (y
′
k)βk (y

′
k)

=
∑
y′
0∈r0

β0 (y
′
0) exp g0 (S, y

′
0)

=
∑

y′
n−1∈rn−1

αn−1

(
y′n−1

)
exp gn

(
y′n−1, E

)
(20)

Looking at the definition of scaling coefficients Ck in
(11), Dk in (16) and using (15), we substitute in the above
expression(20) for Z (x;w):

Z (x;w) =
∑

y′
k∈rk

αk (y
′
k)βk (y

′
k)

=
1

CkDk

∑
y′
k∈rk

α̂k (y
′
k) β̂k (y

′
k)

=
1

Ck−1ckDk

∑
y′
k∈rk

α̂k (y
′
k) β̂k (y

′
k)

=
1

ckCn−1

∑
y′
k∈rk

α̂k (y
′
k) β̂k (y

′
k)

We define the rescaled partition function Ẑ (x;w):

Ẑ (x;w) = Cn−1Z (x;w)

=
1

ck

∑
y′
k∈rk

α̂k (y
′
k) β̂k (y

′
k) (21)

Moving on to the bigram probability (19), assuming 0 ≤
k ≤ n− 2 and using (12), (17) and (21), we get:

p (Yk = u, Yk+1 = v|x;w) = αk (u) exp gk+1 (u, v)βk+1 (v)

Z (x;w)

=
α̂k (u) exp gk+1 (u, v) β̂k+1 (v)

CkDk+1Z (x;w)

=
α̂k (u) exp gk+1 (u, v) β̂k+1 (v)

Cn−1Z (x;w)

=
α̂k (u) exp gk+1 (u, v) β̂k+1 (v)

Ẑ (x;w)
(22)

Again, in order to extend the validity of the above
relationship for k = −1 and k = n − 1, we make the
following assumptions:

c−1 = 1 cn = 1

Cn = Cn−1 Dn = 1

These assumptions lead to:

α̂−1 (S) = 1 β̂n (E) = 1

Now that we have the probability of a bigram
at a position in a feasible output sequence
p (Yk = u, Yk+1 = v|x;w) given by (22), we can compute
the gradient of the log of the conditional probability
∇w log p (y|x;w) displayed in (8), focusing on its
Ey′∼p(y|x;w) [F (x, y′)] term:

Ey∼p(y|x;w) [F (x, y)] = Ey∼p(y|x;w)

[
n∑

i=0

f (x, yi−1, yi, i)

]

=

n∑
i=0

Ey∼p(y|x;w) [f (x, yi−1, yi, i)]

=

n∑
i=0

Eyi−1,yi [f (x, yi−1, yi, i)]

=
n∑

i=0

∑
u∈ri−1

∑
v∈ri

v∈next(u)

p (Yi−1 = u, Yi = v) f (x, u, v, i)

=
1

Ẑ (x;w)

n∑
i=0

∑
u∈ri−1

∑
v∈ri

v∈next(u)

α̂k−1 (u) exp gk (u, v) β̂k (v)

· f (x, u, v, i) (23)

From the implementation standpoint, the forward and
backward vectors can be realized as arrays of dictionaries
of real numbers by tags, Dictionary<Y, Double>[*].
Their computation is analogous to the one for Uk (v) in
(6).

By obtaining the gradient of the log of the conditional
probability with respect to w in (8) through (21) and
(23), we can perform training using an on-line method
such as Stochastic Gradient Ascent or, since the log of
(2) is concave with respect to parameters vector w, we
can form the gradient of the joint conditional probability
of all training samples and use any standard concave
optimization technique.

V. Theoretical comparison

The standard F-LCCRF has O
(
n |Y |2

)
time and space

complexity for both training and inference, neglecting
the effect of the feature functions computation. For BC-
LCCRF, observing (6), (12), (17) and (23), we conclude
that all of them perform n steps, in each step k they
enumerate the tags in rk, and for each tag u ∈ rk they
enumerate the previous or the next tags to u accoding
to the bigram set B. If we could estimate m = Ei [ri]
the expected number of possible output tags in a posi-
tion, b = max (Ei [|prev (ri)|] , Ei [|next (ri)|]) the expected
number of bigrams stemming from a possible tag in a
position, then we could sketch a rough estimate of the
complexity as O (nmb). In sparse domains, we expect
b ≪ |Y | and, especially for shorter sequences, m < |Y |.
Thus the performance gain is expected from replacing the
cardinality of the full cartesian product

∣∣Y 2
∣∣ with mb.

In comparison, the domain-specific approach in [2],
taking advantage of the constraint of the possible output
tags only, seems to yield an O (nm |Y |) complexity. On
the other hand, the bigram approach in [3] exploits only
bigram sparsity directly, yielding an O (n |Y | b) complex-
ity. The proposed scheme combines both speedups while
remaining a general approach supporting the most generic
possible feature functions. The price we pay is that, in
contrast to [3] which in theory can infer outputs having
bigrams outside the specified bigram set when unigram
feature functions return a sufficiently strong signal, the
proposed approach can never yield a bigram outside the
specified set B. This may be a desirable behavior in
some contexts, but in others it may pose a generalization
penalty.

VI. Applications

The presented methodology was developed for part-of-
speech tagging of ancient Greek texts, where the number
of possible tags is 1400. The ordinary “full” Conditional
Random Field simply didn’t even complete processing a
single sentence in reasonable time. Using the described
method, training over 32000 sentences takes 6 hours on a
standard PC running on an Intel i7 processor, despite hav-
ing expensive feature functions relying, among others, on
the dense scalar outputs of 12000 support vector machines
(SVMs) per word, all running on complex generalized
string kernels. Inference for an average sentence takes
about half a second, which is an acceptable performance
for interactive applications.

Despite having this specific mission though, the method-
ology is generic and not bound to a particular prob-
lem. For example, it can be used in speech recogni-
tion over larger vocabularies, special cases in bioinfor-
matics or any sequence labeling task requiring a large
number of output tags. For this reason, the C# imple-
mentation offered at https://github.com/grammophone/
Grammophone.CRF relies heavily on language generics,
working with any type of input (not just sequences), any
type of output tags and arbitrary unigram and bigram
feature functions.

References

[1] J. D. Lafferty, A. McCallum, and F. C. N. Pereira, “Conditional
random fields: Probabilistic models for segmenting and labeling
sequence data,” in Proceedings of the Eighteenth International
Conference on Machine Learning, ser. ICML ’01. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2001, pp. 282–289.
[Online]. Available: http://dl.acm.org/citation.cfm?id=645530.
655813

[2] J. Waszczuk, “Harnessing the CRF complexity with domain-
specific constraints. the case of morphosyntactic tagging of a
highly inflected language,” in Proceedings of COLING 2012.
Mumbai, India: The COLING 2012 Organizing Committee,
December 2012, pp. 2789–2804. [Online]. Available: http:
//www.aclweb.org/anthology/C12-1170

[3] N. Sokolovska, T. Lavergne, O. Cappé, and F. Yvon, “Efficient
learning of sparse conditional random fields for supervised se-
quence labelling,”CoRR, vol. abs/0909.1308, 2009.

[4] L. Rabiner, “A tutorial on hidden markov models and selected
applications in speech recognition,” Proceedings of the IEEE,
vol. 77, no. 2, pp. 257–286, Feb 1989.

[5] A. Rahimi. An erratum for ”a tutorial on hidden markov
models and selected applications in speech recognition”.
[Online]. Available: http://alumni.media.mit.edu/˜{}rahimi/
rabiner/rabiner-errata/rabiner-errata.html

https://github.com/grammophone/Grammophone.CRF
https://github.com/grammophone/Grammophone.CRF
http://dl.acm.org/citation.cfm?id=645530.655813
http://dl.acm.org/citation.cfm?id=645530.655813
http://www.aclweb.org/anthology/C12-1170
http://www.aclweb.org/anthology/C12-1170
http://alumni.media.mit.edu/~{}rahimi/rabiner/rabiner-errata/rabiner-errata.html
http://alumni.media.mit.edu/~{}rahimi/rabiner/rabiner-errata/rabiner-errata.html

