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Abstract—Evolutionary approaches are metaheuristics that can
deal with the effect of noise and uncertainty in data using
different strategies. In this paper is depicted the method used
to cope with these elements in a dynamical location-allocation
problem. The use of Monte Carlo sampling and statistical
historical data that can be applied to a single and multi-objective
problems and within an online and offline scenario is tested and
evaluated.

I. INTRODUCTION

Evolutionary Algorithms (EAs) are biologically-inspired
algorithms for search and optimization that have received
much attention as a tool to be applied in a wide range
of problems. The technique requires to repetitively evaluate
a fitness function for evolving its population of solutions.
However, in real-world problems these evaluations can be
challenging due to different causes including technological
limitations, the presence of randomness, the existence of
unknown model parameters or when objectives are based on
estimations and combinatorial relationships that because of
their high level of complexity may be hard to be effectively
modelled analytically.

Furthermore, the nature of the fitness may be challenged
even for conventional fitness evaluations. This can be the case
when the fitness function is available but very expensive to
compute like in structural design optimisation problems [1].
The goal here is to use the real fitness function, whose
efficiency is maximised, along with an approximative fitness
function much simpler to solve than the original one. Built
from a small number of samples of the original function, the
combination of this model-based fitness is normally called evo-
lution control. In other cases, the explicit fitness function may
not exist like in art design or music composition. The approach
followed here is to focus on the use of interactive methods that
allow the collection of different human opinions [2].

In the concrete context of urban planning, uncertainties
presented in objective functions and constraints are very im-
portant factors to take into account specially when reliability of
predictions and robustness of solutions are considered. Hence,
if the application of EA techniques to solve urban planning
problems is considered, further mechanisms should be taken
into consideration in order to generate robust solutions.

However, not all types of uncertainties should be ap-
proached in the same way. Jin & Branke [3] differentiate
among four types of uncertainty that can affect the perfor-
mance of EA techniques. These variants are named noise,
robustness, fitness approximation and time varying fitness
function. In this paper, these concepts will be discussed. A
special focus will be done on important forms of noise and
uncertainty that affect the objective function evaluations within
an Agent-Based System scenario. From the multiple strate-
gies to cope with these factors, the developed approach will
uniquely analyse and apply an approximative fitness function
method which is the result of transforming a time varying
fitness function. This process is performed for simplification
purposes.

In this regard, an approach that makes use of a statistical
model of the agent-based system’s behaviour to collect this
missing data and inform a rapid approximation of the fitness
function is investigated. This approach requires a limited
number of prior simulations of the objective function that are
averaged and used as an estimate of the real objective value.
Then, this procedure allows the application of an evolutionary
algorithm to optimise urban growth policies, where the quality
of a policy is evaluated within a highly noisy and uncertain
environment.

The paper is organised as follows: Section II describes the
problem of applying an evolutionary approach to a problem
with noise and/or uncertainty in both versions single and multi-
objective. Section III is focused on different methodologies
that can be followed to calculate the fitness function within
an evolutionary algorithm scenario and, how it is applied to
the problem and a short study of the validity of the method.
The section is also devoted to illustrate the use of Monte Carlo
sampling techniques in offline learning and different strategies
that can be pursued to perform an efficient generation of
samples according to the particular characteristics of the
problem. Section IV explains the particular problem that the
EA algorithm has to cope with, how the unknown information
is generated and how the approach is tested. Finally, Section V
summarise the main elements included in the paper.
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II. EVOLUTIONARY ALGORITHMS UNDER NOISE
AND UNCERTAINTY

As it was previously mentioned, EA algorithms can face
some issues of applicability when they are confronted with
real-world problems. In the field of optimisation, this strategy
in both, single and multiple objective versions, can be char-
acterised as a significant robust method when it has to deal
with noisy environments [4], [5]. This advantage over other
methods is mainly caused by its intrinsic use of a population
of solutions to solve the problem under consideration that
acts as a filter for noise when the average performance is
computed [6].

Sources of noise can be varied. It can be caused by
aleatory uncertainty related to the representation of sensors
and actuators, by measurement limitations, due to the inherent
stochasticity of some techniques such as multiagent simula-
tions, by the propagation of the uncertainty resulted from the
input data or because of the aggregate behaviour of different
factors.

A. Single-objective Optimisation

In a noisy environment with a certain degree of random-
ness, typical of stochastic simulation models, predictability is
challenged by the fact that under the same initial conditions
and input parameters, results may vary every time they are
generated. In Fig. 1 this effect is graphically shown. In systems
where these variations are inherent and irreducible, data can
be represented as a probabilistic distribution.

Fig. 1: Illustration of the variation in fitness values due
to noise. For repeated measurements of the same specific
problem, the objective fitness function f changes. In this case,
these perturbations are considered to be ruled by a normal
distribution.

However, if this randomness can affect the system after
the evaluation is performed because the current solution is
disturbed, then this specific type of noise is denoted as
Robustness. This can be caused by manufacturing tolerances
and directly affects to structural design problems [7].

In scenarios where noise is present, the selection operator
within the EA can deliver unstable results and the convergence

of the solutions may be adversely affected propagating inferior
solutions [8]. In these cases it is convenient to quantify the
probability that the operator generates wrong decisions [5].
This fact occurs when the fitnesses of the solutions A and
B are f(A) < f(B) but their expected distribution values
are the contrary dv(B) < dv(A). These distributions can be
constructed by performing multiple evaluations for each chro-
mosome which is very expensive in terms of computational
costs. A less demanding approach would be to perform dif-
ferent evaluations in a single random chromosome to estimate
the entire distribution assuming that it can be extended for all
the population of solutions.

Another possible risk is the existence of epistemic uncer-
tainty in the system. Galbraith1973 [9] defines this type of
uncertainty in terms of the difference between the amount of
information necessary to perform a given task and the amount
of information already known. The sources of this type of
uncertainty come from scarcity in the amount of experimen-
tal data collected, lack of accuracy in the approximations
and assumptions selected to simplify the system, significant
missing factors not included into the model or even a poor
understanding of the processes involved in [10]. To avoid any
kind of confusion, from this point irreducible and random
uncertainty will be named as noise and epistemic uncertainty
will be denoted simply uncertainty.

In systems characterised by the presence of this type of
uncertainty, the definition of the problem under consideration
has a lack of accuracy in objectives values or in the parameters
that describe the system. Under these circumstances, a pair
of successive evaluations of the same individual solution will
retrieve the same objective values and not different ones
like in the previous case. However, these values may not be
totally accurate. The complexity in this case arises when two
chromosomes are compared. Due to the inaccurate evaluations
caused by the uncertainty, solutions can be also misclassified.
Generally this uncertainty can be reduced by increasing the
knowledge within the system.

Apart from the problem of prioritising the best solutions,
the presence of noise or uncertainty in the objectives causes a
slower rhythm in the evolution of the population of solutions.
Hence, taking into account all of these circumstances, for a
classical implementation of the evolutionary algorithm, its use
and performance have been questioned [11], [12]. From a
computational point of view, it is important to mention that
epistemic uncertainty is more challenging to cope with than
random noise [10].

In order to capacitate EA to solve this kind of problems
it is necessary to include external tools and mechanisms
to support the process. Existing methods that can be ap-
plied to evolutionary systems which work in uncertain and
noisy environments include approximation techniques such
as fully and simplified computational simulations and meta-
models [13]. However, even if these techniques can aid the
EA to be considered suitable for this purpose, the number
of studies focused on applying EA techniques to Dynamical
Planning (DP) or to a Sequential Decision Making (SDM)



problem under uncertainty is almost insignificant. Instead they
have been approached generally using decision trees [14],
[15], influence diagrams [16] and Partially Observable Markov
Decision Processes (POMDPs) [17], [18]. However, such
strategies cannot be generally scaled to large problems, since
to properly represent these kind of problems, the number of
required states grows exponentially [17], [19].

B. Multi-objective Optimisation

In many practical applications where noise is present, a
multi-objective algorithm requires not only to be able to cope
with multiple optimisation objectives that can be complex and
non-linear, but also with the stochastic noise that is generated
as a consequence of uncontrollable variations in the system [3].

Concretely in a multi-objective scenario, the system no
longer generates two possible outcomes from the comparison
between two solutions. Instead there is a triple possible com-
position that is, f(A) < f(B) and f(A) > f(B) and a non-
dominate option f(A) ≡ f(B) where any of the solutions can
be considered better than the other. This extension makes the
filtering of noise a harder task. One reason of this increment of
the complexity is that uncertainty and noise in multi-objective
systems change the nature of the solutions within the Pareto
front which are transformed from points in the search space
to hypercubes, see Fig. 2.

Noise may alter the dominance relationship between differ-
ent solutions in such a way that it could be possible that domi-
nated solutions may become non-dominated or vice-versa [20].
Consequently, the application of the selection operator may be
also misled, eliminating good solutions or reproducing inferior
ones. This effect may produce a reduction in the convergence
rate and a poor quality set of final solutions [21]–[23].

Apart from this aspect, the noise in the fitness calculation
may produce outlier solutions whose values are placed at an
abnormal distance from the rest of solutions in the search
space. In this case, the optimization algorithm might get
stuck in one of the solutions which dominates all present
solutions [24]. The appearance of outliers can be caused by
insufficient sampling or by the disparity in the distance to the
Pareto front among objectives [25].

Different approaches have been investigated for such multi-
objective scenarios. In this regard, a modified Pareto ranking
scheme adapted from Goldberg [26] has been proposed to
deal with the presence of noise. There are two major ranking
scheme versions that have been studied: one which focuses
on probability techniques and another based on clustering
methods. The probability-based Pareto ranking schema of
Hughes2001 [5] uses a probabilistic ranking process to take
noise into consideration by defining probabilities of dominance
between noisy solutions [27]. The standard deviation of each
evaluation for the entire population of solutions can be used
to correct the noise. In this technique, the probabilistic rank
of an individual is calculated by the sum of the probabilities
of those solutions that this chromosome dominates. Finally,
in the clustering variant [25], the Pareto front is formed
by the best found solutions plus solutions that belong to

Fig. 2: Graphical representation of the difference between the
representation of a solution within the Pareto front in scenarios
with and without noise. The normal point representation in a
standard search space (solutions A, B and C) is transformed
in an uncertain environment into a hypercube which is repre-
sented by grey areas surrounding the point solutions.

their neighbourhood. The neighbourhood calculation takes
into account a user-defined restriction factor and the standard
deviation for each objective.

Additionally Büche et al. [24] proposed a modification of
the (µ, κ, λ) algorithm [28] to minimise the effect of noise and
outliers. The called Domination Dependent Lifetime (DDL)
assigns a maximal lifetime κ to each individual based on
the number of solutions it dominates, in such a way that the
lifetime value k will be shorter if the number of chromosomes
in the population is large. This feature contrasts with the effect
of elitism which may preserve solutions for an infinite amount
of time by limiting the impact of inferior new individual solu-
tions. However, to prevent the elimination of good solutions,
the approach is complemented with a mechanism that allows
the re-evaluation of the lifetime of the expired solutions. If
these solutions are good enough they will be added again to
the pool of solutions with new objective values resulted from
a new reevaluation. This will change previous good solutions
with other noisy samples.

III. FITNESS APPROXIMATION

In an uncertain and noisy context the fitness function, which
is evaluated by means of statistical, conceptual or physical
simulations, is normally the most computationally intensive
element of the given application [29]. This high computational
requirement has caused the development of approximative
alternatives to alleviate the corresponding cost. This is the
case of the use of Artificial Neural Networks (ANN) as a
modelling tool for function approximation [30], [31], which
can be aimed at replacing computationally intensive models.
The critical issue in this approach is to find a good quality
approximative strategy in such a way that the behaviour of
this approximation is similar enough to the original model.



Otherwise the final system could experience a severe negative
impact when errors are evaluated [32].

The manner noise influences the fitness value is varied. In
additive noise, additional values are randomly added to or
subtracted from the real fitness value. This type of additive
fitness function can be defined as such: if ρi is the fitness
function that is defined based on a determined configuration
of the problem for a determined chromosome i, then the noisy
fitness function ρ′i can be formalised as follows:

ρ′i = ρi + rnd[N(0, σ2)] (1)

where ρ is the noisefree fitness function and rnd[N(0, σ2)]
denotes the assumption that the noise can be approximated to a
normal distributed noise component added in each evaluation.
The uncertainty set can be defined as:

U(ρ) = {ξ ∈ Rn : ρ−4 ≤ ξ ≤ ρ+4} (2)

where 4 = (41,42 · 4n)T ∈ Rn is the aggregate
uncertainty and n is the dimension of the decision space.

To reduce the level of noise within the function, a sampling
process can be used based on the central limit theorem, solving
n times the fitness function and averaging these values:

ρ∗i,n =
1

n

n∑
j=1

ρ′i,j (3)

where ρ′i,j is the sampling evaluation number j of the
individual i and ρ∗i,n is the distribution of ρ inferred from the
mean of n samples of ρ′. As a larger value of n is defined,
the standard deviation is decreased.

The use of a normal distribution is very common in the
literature, however the nature of the source of noise can
be characterised by other types of distributions [4] that, in
general, are largely unexplored. In this regard, Beyer et al. [33]
transformed a non-Gaussian noise distribution in a nearly
Gaussian type in order to deal with this type of problems.
However, this procedure cannot be generalised for all situ-
ations. There are numerous cases where this transformation
is only possible at a disproportionate error cost. Sendhoff et
al. [34] introduced another approach where multiple types
of functions beyond the simple additive noise model were
analysed.

A. Types of fitness by approximation

In order to generate the analytical values required to define
the fitness by approximation, four basic strategies have been
introduced namely explicit averaging, implicit averaging, fit-
ness inheritance and selection modification [3]. All methods
assume that the search space is characterised by a known and
homogeneous noise distribution most commonly a uniform
or a normal distribution type. It is also considered that an
estimation of its magnitude is possible to calculate [35].
However, these assumptions limit the effectiveness of the
selected approach due to the fact that, in general, the effect of
noise is not spread homogeneously over the search space and

the absence of knowledge regarding the level of noise are the
most common characteristics of real-world problems.

The explicit averaging, also called static resampling, was
introduced by Miller [36] and it is the most commonly
used method for coping with noise. The strategy consists of
generating a determined number of times the sampling of
the objectives, followed by the averaging of the generated
values [37]. In a sample size of n, this operation allows a
proportional reduction of the variance by a factor of

√
n.

Additionally it also implies the increment in the computational
effort used by a factor of n [3]. To avoid extra evaluations,
the fitness from the neighbourhood can be used [38], [39].

Another possible approach is to apply a statistical model
constructed beforehand with historical data to model the fitness
using techniques such as local regression and adaptation [40].
If the approximate model is generated by an offline training
process before the optimisation is run, it is common the use of
Monte Carlo techniques to generate these samples. Sampling
is a popular method to reduce noise and estimate unknown
information.

In the implicit averaging, on the other hand, sample size
is defined as an inverse function of the population size [37].
The idea behind this interpretation consists of the fact that in
systems defined with a large population of solutions, it is very
common the existence of numerous chromosomes that are very
similar to each other. The frequent evaluation of these related
areas of the search space reduces the noise.

Bui et al. [35] introduced a technique to solve this problem
based on the idea of fitness inheritance. They proposed that
the offspring created in each generation additionally inherits
two variables from its parents: µ that represents the mean of
the objective value and σ that corresponds to the standard
deviation. These variables will control whether a new resam-
pling is required or not. The resampling operation consists of
calculating the new fitness by performing a predefined number
of evaluations where the final values µ and σ correspond to the
mean and the standard deviation of these evaluations. When
a new child is evaluated, a resampling is only required if its
objective values fall outside the confidence interval. Otherwise,
the inherited fitness is assigned. Consequently the evaluation
of solutions characterised with higher noise will result in
larger standard deviation values which facilitate the fitness
acceptance in its children.

Finally, the modification of the selection operator is another
method investigated to cope with the noise when the fitness
reevaluation is too costly. Teich [27] defined a selection and
ranking procedure that take into account some conditions
like the probability of dominance to compensate the noise.
Another similar strategy uses a threshold value when finesses
are evaluated to overtake the effect of the hypercubes in a
multi-objective scenario [41]. Refer to Jin & Branke [3] for
more information about this topic and also to Qian et al. [42]
for a brief update on the state-of-the-art.



B. Monte Carlo

Monte Carlo simulation is a technique that was developed
in the 40’s by Metropolis & Ulam [43]. Since then it became
a widely used and effective tool for those problems whose
analytic solutions do not exist or have a high level of com-
plexity to be easily obtained. By means of random sampling,
the strategy allows the study of the properties of random-
nature systems when analytic solutions are not easily available.
To recreate properly the desired dynamics and patterns of
the studied system into the model, it is normally used real
information gathered from this objective system. However,
in some cases the information collected in this way has not
enough quality or cannot be easily measured and structured as
a probabilistic distribution. It can be also possible that even
if, in fact this information exists, its application in a large
stochastic model could be a very challenge task [44]–[46].

The number of draws used within the sampling should be
defined according to the level of noise and uncertainty which
characterises the search space of the problem. In general,
very noisy scenarios will require extra samples to come up
with the same level of robustness than in more deterministic
search spaces [8]. However, each new sample will increase
the computational effort required for generating a single
evaluation. If Monte Carlo techniques are used along with an
EA approach, an alternative option to manage the noise is to
increase the number of individuals that forms the population
of solutions [36], [47]. However, it could be hard to know a
priori, the most efficient size for the population, because this
aspect depends on several factors including the level of noise,
formulation and problem-specific parameters [36], [47]. At this
point, there is controversy surrounding the trade-off created
between the role that these two factors plays in decreasing
the level of noise [48]. Fitzpatrick & Grefenstette [37] and
Arnold & Beyer [49] highlighted the size of the population
to increase the robustness against uncertainty over the sample
size, meanwhile Beyer [50] and Hammel & Bäck [51] favoured
the sample size instead. However, these conclusions strongly
depend on the definition of the problem. In this regard these
authors state that for the µ/µ, λ-ES an increment in the
population of solutions is preferable when the parameter called
truncate ratio µ/λ is calibrated appropriately. However for
(1, µ)-ES averaging over multiple samples is the best option.

Under these circumstances, it is challenging to exactly know
before the algorithm is empirically tested, the reliability or
level of robustness of a determined formulation. For single
objective problems, Miller & Goldberg [52] inferred a lower
bound of the optimal sample size and suggested that, in
a system with uncertain parameters, the EA solutions only
require the generation of a small number of samples. They
stated that a limited number of Monte Carlo draws, that
can range from 5 to 20 per population member, should be
enough to compute their average fitness. This assumption
is based on the idea that in EA new samples are included
into the population in each generation by the application of
elitist operators that highlight good solutions. As a direct

consequence of this mechanism, this process will have the
side effect of implicitly increasing the number of Monte Carlo
realizations.

A proposed extensions of this approach is the introduction
of an operator that limits the age of the solution, which control
the survival of fit members. By the use of this element it is
possible to further reduce the number of Monte Carlo draws
in the fitness evaluation [12], [53], [54].

IV. DESCRIPTION OF THE PROBLEM

In a dynamical location-allocation problem where a set of
urban green areas have to be allocated during a determined
period of time subject to some constraints, the major objective
to achieve can be defined by the fulfilment of the population
satisfaction. This satisfaction can be depicted in terms of the
distance to the household to these areas. The availability of
parks at a close distance provides a varied types of services
and amenities that these green facilities offer to the population
from different perspectives such as aesthetic, physical, social
and environmental [55]–[57]. The search can be extended
to cover other objectives like environmental protectionism,
level of connection between areas and profitability among
others. This conflictive set of goals, more typical of real-world
problems needs multi-objective techniques to be appropriately
solved.

A ‘policy’, in this context, amounts to the city authorities’
planned schedule for protection of a specific set of green
spaces maximising the objectives selected in both, short and
long-term. However due to the fact that governmental purchase
decisions are subject to a budget that normally limits its
capacity of giving a full and continuous provision of green
spaces during the construction of new urban developments in
cities, a careful planning should be carried out in advance.
Computational optimisation techniques can be applied to the
search of this maximum. Noteworthy to mention is that this
budget may normally quantitatively much lower than current
prices of the patches of land that are significant for the
new areas under construction. Additionally since land prices
generally increase with the time because of multiple factors
including the rise in the demand of these spaces, scarcity of
available land and other related economical factors, current
acquisition policies should take into consideration not only
the present status of the objective system but also a reliable
projection of future necessities. However, dealing with future
conditions implies irrevocably to cope with epistemic uncer-
tainty due to a lack of knowledge that this future entails.

In this regard, there is much active research in design-
ing long-term feasible public open space plans, whereby
researchers interested in urban planning and sustainability
have investigated a range of agent-based systems and similar
mechanisms to explore the consequences of different green-
space allocation strategies [58]–[60].

In general, the application of modelling techniques is an-
other element that aggregates epistemic uncertainty, mostly
inherited from the selection of the model and the subsequent
structural changes required to adequate the system to the



considered problem. Apart from that, due to the use of a
Cellular Automata and an Agent-Based framework that this
work applies as a modelling technique, it should be added the
fact that these concrete technologies implicitly add noise to
the system into consideration. Consequently, the applied EA
algorithm should be robust enough to be able to cope with
both factors at the same time that provide significant results.

In such a context a method that effectively obtains a model-
driven approximation of the simulation to lead the evolutionary
algorithm towards policies that yield vastly better satisfaction
levels than unoptimised policies is investigated. By wrapping
the optimisation over the agent-based simulation process, it
can be used a rapidly accelerated model of the agent-based
simulation in place of the real knowledge. This requires a
limited number of prior simulations of the agent-based urban
growth system, and then allows the use of an evolutionary
algorithm to optimise urban growth policies. This strategy
is based on the fact that even if approximative models do
not have the capability of creating new information, they can
gather useful information from the history of the optimisation
and prevent its lost [61].

A. Problem Definition

The general objective of the problem consists of designing
an offline planning process which leads us to find the optimal
subset of green spaces out to a set V = {1...n} of locations
along with the corresponding time schedule of each of the
purchase decisions. The offline nature of the selected planning
approach means that the policy construction step will be done
entirely before the plan is executed.

Each element within the set of different purchasing plans P
includes a set of parcels of land T ⊂ V located within a given
geographic area close to or within a city that are intended to be
acquired for conservation and/or social purposes. For the sake
of simplicity each patch of land has a homogeneous size and
shape. Each of them is considered an independent unit and no
clustering techniques to group them are implemented in the
model. We also assume that once an open area is selected and
transformed into a park, it remains protected from urbanisation
until the end of the planning horizon.

Formally a certain purchasing plan p ∈ P is depicted by a
set of parcels of land τ ∈ T and a purchase schedule ψ ∈ Ψ
which can be defined as a mapping from the parcels contained
in T to a series of purchase times in ψ = {0, 1, · · · , H}, where
H is the maximum time horizon considered in the plan.

Commonly each candidate patch of land τi has associated
its own cost ct(τi) which covers the acquisition and the
restoring/transforming process from a rural patch of land into
a green space. This cost is calculated in time t which is the
moment when the area is purchased and it is defined for
this specific problem as a monetary cost. The value of this
cost, which is always strictly positive, is not static and could
vary over the time. After that step, no further maintenance
costs over the area are considered. Under these circumstances,
every purchase schedule included in Ψ is linked with a
corresponding non-decreasing cost function CΨ for the entire

conservation plan. This tuple describes the purchase history
in relation to the accumulated cost of the land in such a way
that:

CΨ(H) =

H∑
t=0

ct(τ) (4)

where t0 is the starting point in time in which acquisitions
can be done and H is the maximum time covered in the
planning process. Since budgets that can cope with single
purchasing transactions involving large extensions of land are
normally rather unlikely in real-world scenarios, to afford
these purchasing investments, financial resources in terms of
individual budgets bi ∈ B are available periodically. As a
result, the acquisition process is restricted by this financial
constraint that has to be respected always on the total cost.

In summary, the goal of an individual static acquisition
problem is to select an optimal plan p̂ at the same time that
the budget constraint is respected on the total cost CΨ(H).
This could formally be expressed as:

p̂ = argmax
p∈P

{F (pi), CΨ(H) 6 B} (5)

Since a plan is comprised by a schedule and a subset of
cells, the final goal can be also defined as the finding of a
schedule ψ ∈ Ψ and a subset of green areas τ ∈ T ⊆ V
that effectively use the budget b ∈ B in order to maximise a
predefined objective function F () which assesses the utility
of the corresponding plan pi. This function F () quantifies
in which way the pursued goal is accomplished after the
completion of the prediction horizon H .

From the provision of green services perspective this func-
tion can be aimed at solving a covering problem also called
Maximum Service Distance (MSD) [62], where a set of
elements needs to be covered with a minimum number of
subsets, subject to some constraints. An element is considered
covered if it is located within a specified distance from one of
these subsets. In this regard, a given scenario can be configured
by the set of facilities of a certain type, concretely green areas
located at a given distance to a central point. This central loca-
tion is represented in this case by the CBD that attracts most
of the dwellers since typically in an urban scenario population
decays with distance. The final goal consists of maximising
the number of inhabitants who are located relatively close to
this type of service, in this case green areas.

Regarding the level of complexity of this type of problem
it can be stated that by applying a reduction of the MCP [63],
even for a unique time step of the problem, selecting the set
of patches of land that maximise the acquisition probability is
an NP-hard optimisation problem [64].

Furthermore, due to the fact that the consideration of
a single optimisation step can hardly accomplish the final
long-time objectives of such plans, the problem should be
formulated instead by a sequential set of the previously defined
static problems. The management of the financial resources
between time steps can be defined in a way that the unused



budget assigned in a given time step t− 1, denoted by br, is
added over the following period t to the corresponding budget
b0 as b(t) = b0(t) + br(t− 1).

Apart from that, since land acquisition costs may change
over time and additionally urban dynamics could transform
areas in the fringe of the city into new developments, which
made them inappropriate to be included within any acquisition
plan, different patches of land can be available in each time
step t. Consequently this problem cannot be solved statically in
advance without basing the new decisions on previous actions
and the forecast of future tendencies.

Under these circumstances, let Pt ⊆ V be the set of patches
of land that is available to be purchased in a given time step
t. For each new time step t′ the amount of available resources
both new b0(t′) and old br(t′− 1), the cost dynamics and the
amount of non-urbanised areas refine the set Pt′ taking also
into account the areas already selected, in such a way that
Pt′ = Pt′−1 ∩ V .

B. Statistical Data Generation for Sampling

The developed EA algorithm requires to receive as input
parameters the concrete information that characterised the
scenario where the algorithm has to work on. However, if some
of these elements are totally or partially unknown, external
mechanisms should generate this information. The way in
which this process is performed, will have a significant impact
on the feasibility of the proposed solution.

In this concrete problem, this lack of knowledge is due
to the complex interactions generated among the different
processes involved in the stochastic growth of the urban model.
These dynamics cannot be foreseen beforehand, since different
relationships can lead to the development of a significant and
varied range of future scenarios.

In this regard, to assign values to these uncertain parameters,
a Monte Carlo sampling strategy is implemented to generate a
sample set that captures the spatial dynamics of these factors
over the time [65]. The source of these realisations is a sur-
rogate model based on a the same urban model. This external
model keeps most of the characteristics of the actual site
without including green externalities. This implies to eliminate
possible non-linearities resulted from the relationship between
urban prices and green areas [66] and residential preferences
and parks [67]. These perturbations are particular of each
individual realisation.

The same gathering method was successfully applied in
dialogue systems [68], environmental studies [69] or emulators
for managing uncertainty in urban climate models, such as
the Multilayer Urban Canocopy Model (MUCM) [70], [71].
By means of such a method, these systems are capable of
gathering the required data by an offline sampling mechanism.

Data sampling techniques could be applied in both online
and offline planning. In an online approach, the system collects
information of the environment during the entire optimisation
process, meanwhile in an offline scenario, the optimisation
algorithm needs to perform a training process beforehand,
incorporating prior knowledge. One of the advantages of

using offline techniques is that, since sample size describes
a function that is pareto-optimal [72] in relation with the size
of the sampling and its accuracy, the offline procedure permits
the system to perform the desirable amount of sampling
beforehand, focusing then only on the accuracy factor.

If the sample set is generated by an offline process, the
number of samples collected will be decided in advance
and will remain constant for the entire optimisation process.
Other approaches consider a variable number of samples for
different individuals or for different phases of the optimisation
process. Aizawa & Wah [73] focus on minimising the expected
estimation error, sampling using the best individuals of the
population and Branke & Schmidt [23] take samples only
from individuals included in the mating pool selected using
a Tournament Selection technique.

After that, the required information that the EA will use
is sampled 20 times, each for every factor analysed (prices
of the land, population distribution and urbanisation cells), to
form an initial estimate of the amount of noise in each of
them. The size of the sample was decided based on empirical
observations of the amount of new information added to the
distribution in each new realisation. Afterwards, the mean and
standard deviation were calculated in single and multiple-
objective scenarios. In this case, the difference is the total
number of variables sampled, since in the multi-objective
version, the ecological value of the land is also taken into
consideration.

The sample technique aids the EA to generate reliable
solutions with a reduced number of samples [52], which is
a computational advantage compared to other approaches that
require the generation of a much larger number of realisations
to achieve good results [74].

C. Model Application

In the model data generation can fulfil two different roles:
as a gathering method to inform about constraints and as part
of the calculation of the fitness. A graphical representation of
this is shown in Figure 3.

As it was previously mentioned, the selection of future green
location is performed sequentially for a predefined period of
time. This allocation process is normally limited by different
constraints, two of them are studied in this work. Firstly, the
configuration of the area into consideration, its land-use type,
in the precise moment the acquisition is made is an important
factor to analyse. The transformation of a patch of land into
a park is not permitted in areas that are already urbanised.
Secondly, the subset of affordable areas that can be acquired
with the current financial resources and the subset of available
land generally have different cardinality. These values are
linked with the fact that purchasing budgets are significant
lower than the prices of the land. In an online planning, this
information is available at any time. However, if the learning
process is done offline, the generation of a probable evolution
of these factors, budget and prices, is required to be able to
take the correct decisions beforehand.



Fig. 3: Different sources of data collected to support the EA
optimisation process. The data can be divided into two groups
according to the role they play that within the model. As
such sampling can be collected to underpin the generation
of constraints or be involved in the calculation of the fitness.
These sources of data are related to data needed to calculate
the fitness of different objectives like the population density
and its distribution or the environmental value of a patch of
land. Prices of the non-urban areas that are available for being
purchased and the urbanisation spread over the grid are two
factors that could be used to constraint the problem.

The value of the fitness function will assess the suitability
of transforming a given area according to a determine crite-
rion/a, depending on the number of factors taken into account.
Regarding its calculation, independently of the number of
objectives defined within the problem, if the satisfaction of the
population is included in its valuation, its expected distribution
needs to be inferred for the entire period covered by the
planning process. Considering that it is impossible to know
exactly this spatial distribution since a city is a system with
complex spatial and temporal dynamics [75] then, if the
fitness measures the distance from each agent to the closest
green area, external tools are necessary to incorporate into the
system. This process can be done in different ways: if only the
current necessities of the population are taken into account,
the information related to the satisfaction can be collected
identically than it was defined for the constraints. However,
if future long-term conditions are factors to include in the
development of the present policy, a different approach should
be followed.

This process can be seen as a way of generating an offline
sampling fitness function [76]. As such, the fitness function is
estimated for each considered time step in our discrete system
by Monte Carlo sampling and the noise of each chromosome
X∗ is reduced by calculating the fitness function of individuals
which belong to a similar search space which was previously
evaluated in an offline process.

A graphical representation of the fitness in two different

time-steps of the simulation is depicted in Figures 4a and 4b.

(a) Lattice with the fitness approximation
values for the time step 300.

(b) Lattice with the fitness approximation
values for the time step 600.

Fig. 4: Visual representation of the approximative fitness
function for two different time-steps of the simulation. The
fitness function is represented in a range of red colours where
darker tones represent the most crowded areas of the system
in relative terms.

D. Significance of Results

To assess the robustness of the use of this type of surrogate
model, one aspect of the model is considered and analysed.
As such, the generated population distribution was compared
with the real one which was gathered once the optimisation
terminated. The process was repeated 20 times and finally
the values were averaged. These results mainly depend on
the intrinsic effects of the random noise within the system
and on the variability of the factors considered in the study.
To measure this variability, the degree of similarity between
distributions is analysed by the use of correlation techniques.
By means of canonical correlation strategies, it is possible to
estimate a symmetric measurement of the congruence of two
matrices [77]. In this concrete case, it is analysed the Pearson’s
linear correlation matrix resulted from comparing the Monte
Carlo pregenerated matrix M ′ with the matrix composed by
the real population distribution M . Both matrices are identical
in dimensions (600×2500), resulting from vectorising the grid
of (50 × 50) values that depicts the population distribution
within the city in each time step (from 0 to T = 600). The
values of the linear dependency of the final correlation matrix
are shown in the following table:

M M’
M 1 0.7634
M’ 0.7634 1

TABLE I: Correlation matrix calculated from the real popula-
tion distribution (M) and the simulated sampling distribution
(M’).

These values show a strong correlation between both
sources of data. To validate this conclusion, the matrix of p-
values for testing the hypothesis of no correlation from the
Pearson correlation coefficients was calculated.



M M’
M 1 0
M’ 0 1

TABLE II: p-values results from testing the hypothesis of no
correlation between both matrices.

From these p-values, it can be rejected the assumption that
the correlation is due to random sampling. Hence, the use
of this type of approximative fitness function within the EA
algorithm is reasonable robust. However, this is based on
the general assumption that the method is supported by a
consistent urban model, where the generated surrogate system
has enough power of mimic the reality.

V. CONCLUSIONS

In this paper, a review of varied types of problems that EA
techniques may face when it is used in real-world problems
under noise and epistemic uncertainty is performed. The
multiple types of mechanisms and tools along with their
concrete uses with single and multiple objective variants are
also commented. Afterwards the problem of estimating data
within a dynamical location-allocation problem is introduced
along with the selected method applied to cope with the
uncertainty of the model. By means of Monte Carlo sampling,
the EA optimisation process is able to calculate the fitness and
generate the necessary information related to the constraints
presented in the system under consideration and avoid that the
selection process may become unstable.

The proposed gathering technique can be applied and tested
using along with different configurations of the EA on a typical
urban growth simulation. In its single version, in which the
overall goal is to find policies that maximise the ‘satisfaction’
of the residents, an offline EA methodology was applied within
a set of different scenarios where multiple levels of complexity
are considered [78]. The application of the same techniques
using an online planning and an offline/online multi-objective
version of the problem, where other conflicting objectives are
included, can be also considered.
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[47] G. Harik, E. Cantú-Paz, D. E. Goldberg, and B. L. Miller, “The gam-
bler’s ruin problem, genetic algorithms, and the sizing of populations,”
Evolutionary Computation, vol. 7, no. 3, pp. 231–253, 1999.
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