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Abstract—Acute Kidney injury (AKI) is characterised by a
rapid deterioration in kidney function, and can be identified by
examining the rate of change in a patient’s estimated glomerular
filtration rate (eGFR) signal. Due to the potentially irreversible
nature of the damage AKI episodes cause to renal function,
their detection plays a significant role in predicting a kidney’s
effectiveness. Although algorithms for the detection of AKI are
available for patients under constant monitoring, e.g. inpatients,
their applicability to primary care settings is less clear as
the eGFR signal often contains large lapses in time between
measurements. However, waiting for hospital admittance before
AKI is undesirable, as detecting AKI early can help to mitigate
the degradation of kidney function and the associated increase in
morbidity and mortality. Traditionally, a clinician in a primary
care setting would manually identify AKI episodes from direct
observation of eGFR signals. While this approach may work for
individual patients, the time consuming nature of it precludes
quick large-scale monitoring. We therefore present two alternative
automated approaches for detecting AKI: as the outlier points
when using Gaussian process regression and using a novel
technique we entitle Surrey AKI detection algorithm (SAKIDA).
Using SAKIDA, we can identify the number of AKI episodes a
patient experiences with an accuracy of 70%, when evaluated
against the performance of human experts.

I. INTRODUCTION

Estimated glomerular filtration rate (¢GFR) is a derived measure-
ment of kidney function. Notwithstanding its limitations [1] plays a
central role in both the management of people with chronic diseases
and epidemiology research involving longitudinal data [2], [3]. While
across a population eGFR signal will in general display a gentle
downward trend, for individuals it fluctuates considerably, as the
measure of renal function also reflects protein metabolism. Acute
kidney injuries (AKIs), is a substantial decline in kidney function
beyond normal variability and leads to a failure to maintain a normal
electrolyte balance, organ damage and increased mortality [4]-[6].
AKI can occur in any clinical setting, and costs the NHS in England
approximately 1 billion per year [7].

To facilitate chronic disease management in England, general
practices are electronically connected to laboratories and laboratory
test results [8], [9]. As a result, eGFR can be directly monitored
from these practices. However, for most of these patients, their eGFR
values are measured infrequently and often irregularly. In contrast, the
kidney function of inpatients is monitored more closely, in order to
avoid missing AKI, particularly on admission to hospital [10]. Given
this closer monitoring and the greater prevalence of AKI amongst
inpatients [11], algorithms have been developed that can accurately
identify AKI within this population in real-time [12], [13]. While
this will improve outcomes for inpatients, approximately two thirds
of AKI episodes are community acquired, i.e. occur outside hospitals,
and therefore while the patient is under primary care [14]. Given the

better short- and long-term outcomes, including reduced mortality, for
patients with community acquired AKI [14], [15], robust detection of
AKI within a primary care setting could substantially improve patient
outcomes.

Despite the clear benefits derived from identification of AKI in
the community, algorithms have not been developed to specifically
address this. At present, a clinician can only identify AKI, through
their interpretation of results as they review them case-by-case.
While this may work for individual patients, an automated expert
system triggering specialist review may be more reliable. Although
the algorithms developed for hospitalised patients can (and will) be
extended to primary care, their reliance on a baseline value estimated
from recent measurements makes identification of AKI harder in
primary care settings, where eGFR signals often contains large lapses
in time between measurements.

In this study, three methods for identifying AKI episodes from in-
drividual patient’s eGFR signal are evaluated against the performance
of clinical experts. The first method was developed by NHS England
to provide real-time detection and diagnosis of AKI in patients across
the National Health Service in England [12]. However, applying it to
primary care data can be problematic as it relies on calculating a
baseline eGFR value for a patient from their measurements over the
last 0-7 or 8-365 days. Given that a patient in primary care may only
have a few measurements in the last year, and likely none in the last
week, there may be too few measurements in the format required by
the algorithm available to determine a reliable baseline. Similarly, if
the patient had AKI in the last year, then the baseline calculation will
take into account this period of decreased eGFR, thereby reducing the
baseline below its true value and making it more difficult to identify
AKI episodes. Additionally, as the algorithm is intended to serve
as a real-time warning system, without alteration it is unsuitable
for retrospective analysis of an eGFR signal, for example when
attempting to identify all AKI episodes a patient has experienced,
which may require knowledge of their risk of susceptibility to further
decline in kidney function or kidney failure.

The second and third methods evaluated here are the Gaussian
process regression (GPR) and the novel Surrey AKI detection algo-
rithm (SAKIDA). They are intended not only to be able to provide
real-time warnings, but also to be more applicable to a primary care
setting and be inherently suitable for retrospective analysis. Previously
we have used GPR to classify the overall trend in an eGFR signal [16].
In a similar manner, it can be used to identify AKI episodes by
modelling an eGFR signal without them, and then treating any
measurements less than the lower confidence limit as AKI episodes.
This approach also has the advantage of giving a global trend for a
patients eGFR signal, thereby obviating the need to calculate a time-
windowed baseline against which AKI episodes are identified. The
final method evaluated was the novel SAKIDA method. Similar to
the GPR-based approach, SAKIDA enables retrospective analysis of
an entire eGFR signal and can handle the irregularity of primary care
eGFR signals. An example of these algorithms applied to a patient’s



entire eGFR signal can be seen in Figure 1.
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Fig. 1.  An abrupt change in the eGFR signal can be flagged as an AKI
episode. AKI detection using (a) the Surrey AKI detection algorithm and (b)
Gaussian process regression. The eGFR measurements outside the confidence
bounds indicate the occurrence of AKI.

Given the need for algorithms that can identify AKI episodes
in primary care settings and tools to assist non-specialist clinicians
in identifying eGFR abnormalities, including AKI episodes, our
contributions can be summarised as follows:

1)  Proposal and evaluation of novel AKI detection algorithms
suitable for primary care data. While outlier detection using
GPR is not new, formulating AKI identification as an outlier
detection task is. Additionally, in order to generalise the
confidence intervals reliably in our application we tune the
GPR parameters in a supervised manner, something which
to the best of our knowledge has not been reported before.

2)  We introduce SAKIDA, a medically inspired algorithm
specifically designed to identify AKI episodes in eGFR
signals from primary care data.

3)  Improved understanding for GPs. Utilising the ability of
GPR to provide both predicted values and confidence inter-
val bounds means that GPs can visualise an eGFR signal
as stable or unstable [16], while also identifying outlier
measurements as potential AKI episodes. Alternatively, a
hybrid algorithm consisting of GPR and SAKIDA could
be used to visualise eGFR signal stability (GPR) and also
localise AKI episodes (SAKIDA).

The organisation of the paper is as follows: In section II, we
present and analyse our dataset and illustrate the demographics of the
data. In section III, we present the GPR and SAKIDA methodology
used in this paper. Experiments and results are discussed in section IV.
Finally, in section V, we draw conclusions and discuss their relevance.

II. THE ‘HANNAH’ DATASET

The dataset used in this work contains the eGFR time signal of
488 patients (275 (56.4%) male and 213 (43.6%) female) treated at
East Kent University Hospital, and was collected as part of a study
seeking to understand the characteristics of acute kidney injury and
its impact on chronic kidney disease. Each patient’s eGFR time signal
was labelled with the number of AKI episodes experienced: 0, 1, 2, 3
or 4. The distribution of the number of AKI episodes across the 488
patients is given in Table I and Figure 2(h). In total, there were 10,873
eGFR measurements across the 488 patients, with approximately 95%
between the values of 25 and 95 mL/min/ 1.73m?* and occurring in
patients between the ages of 60 and 90. Figure 2 summarises the
main characteristics of the dataset.

TABLE 1. COUNT OF AKI EPISODES IN THE DATASET
AKI Episodes | 0 1 2 3 4 Total
Percentage 55.7377 29.7131 10.2459 3.4836 0.8197 100
Count 272 145 50 17 4 488

III. METHODS
A. Gaussian Process Regression

A Gaussian process is a collection of random variables, any
finite collection of which has a joint Gaussian distribution [17]. GPs
characterise the probability distribution over functions by a specified

mean function d(x) and a covariance function k(x,x") [18].

To describe a real process f(x) as a GP, we write: f(x) ~
GP (d(x),k(x,x")). Here d(x) = E{d(x)} and k(x,x) =
E{(d(x) — d(x))(d(x") — d(x'))}, where E{g(x)} denotes the

expectation of a function g over the variable x.

Given a set of measurements D = {(x;, d(x;)}/_1, the goal is to
estimate the true output d(z™) at an arbitrary x* given the relation:

dips = d(xi) + €(x1);  e(xi) ~ N(0,02) )

The prior distribution of the observed target d(x) is given by:
d(x) ~ N (cf(x), k(X,X"))) 2)

where k(X, X’) is the covariance matrix between all pairs of training
points. A squared exponential kernel was used to determine the
covariance matrix, where the squared exponential kernel (Gaus-
N2

sian/RBF) is defined as: x(x,x’) = exp(%), with - the length
scale of the kernel.

The distribution of the estimated mean value d(x) can be
computed by conditioning on the training data to get p(d(x)|x", D).
The joint distribution over d(x) and the new datapoint x* is computed

using:
(568

|: dobs i| , |: K(va)"’_ail
Here, dyps = (A%, dY) 73 X = {x1,...,xn}, d(X); =

Ko™ e D

d(x*) k(x*,x")
obs * obs
d(x;), and K (X, X);; = k(x;,x;).

The conditional distribution of Equation 2 allows us to
get the distribution of d(x*) with the following mean and
covariance:

d(x*) ~ N (E{d(x*)},var{d(x*)}) 3)
where
Blax)} = dex) K X) KK X) + 021 (dose — d(X)
—
prior
var{d(x")} = K< x7) K, X) [K(X,X) +aif}’1 K(X,x")

W
prior
The GPstuff toolbox ' [19], was used for modelling the eGFR
time signals, with the hyperparameters for the squared expo-
nential kernel tuned using maximum a posteriori estimates.

1) Detecting AKIs as GPR outliers: Let G be the set
containing the eGFR signals from all 488 patients and
[GY, G, G2, G2, G*] denote the sets of eGFR signals containing
0, 1, 2, 3 and 4 AKI episodes as labelled by the human experts.
In order to obtain the right confidence intervals to detect the
AKI episodes as outliers, we trained the GPR using those
patients that have no AKI present in their eGFR signals. There-
fore, the dataset was partitioned into training and test sets as
follows: Girain = [Glo,] and Giest = [Gy0, G, G2, G2, GY).
The GPR was therefore trained using 10% of the 272 patients
without an AKI episode. We set the initial parameters U,

Thttp://research.cs.aalto.fi/pml/software/gpstuff/
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Fig. 2. Patients’ eGFR signals are observed at irregular time intervals and over different age ranges. Each colour represents a single patient (a) for a subset of
data and (b) the whole dataset. Dataset characteristics: distributions of the (c) ages over which patients had eGFR measurements recorded, (d) eGFR measurement
values, (e) duration of time over which all of a patient’s eGFR measurements were recorded, (f) number of eGFR measurements recorded per patient, (g) time
intervals between consecutive eGFR measurements, (h) number of AKI episodes per patient.

and trained the regressor to obtain the updated hyperparam-
eters U using maximum a posteriori estimates. Later, using
these updated hyper parameters U, we predict the number
of AKI episodes for each eGFR signal in G;.s;. The mean
E{x*} and variance var{x*} for each eGFR signal is then
calculated, and the 95% confidence intervals calculated as
E{d(x*)} £ 2 x y/var{d(x*)}. The eGFR datapoints lying
outside these confidence intervals are then determined to have
been measured during an AKI episode.

B. Surrey AKI Detection Algorithm (SAKIDA)

Let x = [r1,23,...,Zm,] be an eGFR signal of length
m. Since, we are interested in finding the local minima (i.e.,
the points where there is a sudden drop in eGFR signal),
we calculate the difference between adjacent elements, of the
signal. For this purpose, 1 and —1 are appended to the left and
right side of eGFR signal respectively.

x=[1,21,29,... (€]

y Tms __1]'

The differences between adjacent datapoints are then cal-
culated as:

im (—f[zqu] —i‘m, Vie{l,....,m+1}. ®))

Any index i in X can then be considered a local minima
if X;) is positive and X[;_1) negative. Let J = [j1, j2, .- -, jr]
be the indices of these local minima, i.e.

J = {i|5[i] < O/\f[i_,_l] > 0}, Vie{l,....,m+1}. (6)

In order to calculate the rate of change for the first local
minima, a 1 is prepended to J2. The rate of change r; at
a local minima X[z | is then calculated as the ratio of the
median value of the datapoints in [x[7, ;... X7, -1]] O
the value of x(7, 1.

r; = median(m[j[j_l]], . ,x[Jm,l])/x[jm], Vie{2,... ,(b)ﬂ}

where x| Jj) returns the value of x (the original sequence) at
index J;).

Finally, the indices Jax at which the rate of change is
greater than or equal to a threshold A are recorded as being
an AKI episode.

Tart = {T|r; = A} Vie{2,...,|T} ®)

The overall processing steps are shown in Algorithm 1.

C. Groundtruth & Evaluation Criteria

Each eGFR time-signal in the dataset was annotated by
a nephrologist to record whether it contained 0, 1, 2, 3 or 4
AKI episodes. Taking y to be the groundtruth and g the labels
predicted by an algorithm, we evaluated the performance of our
proposed algorithms against the experts in the following ways:
(i) percentage of correctly labelled eGFR signals (y = 9),
(ii) percentage of signals where the algorithm predicted fewer
AKI episodes than the experts (y > ), (iii) percentage of
signals where the algorithm predicted a greater number of AKI
episodes than the experts (y < y) and (iv) the accuracy with

2Note that 7 is an ordered list. Since we are describing an algorithm here,
we do not explicitly distinguish a list from a set.



Algorithm 1: SAKIDA

Input : An eGFR signal x & threshold A
Qutput: The indices of AKI episodes Jaxr

begin
/* Append 1 and —1 to the input x */
X= [1,581,:62, <oy Iy 71]
/% Calculate adjacent differences x/
X[] € Zli+1] — Tl Vie{l,....m+1}
/* Obtain indices of local minima x/

J = {i|Zy < OATpq) >0}, Vie {1,...,m+1}
/* Add index of the first eGFR datapoint */

J =117
/* Calculate the rates of change */
for j € {2,...,|TJ]|} do
rj < medzan(x[j[j_l]], e ,x[j[j]_l])/z[J[j]]
/+ Update rates of change > A */
Takr1 < Jaxi U{T|r; > A}
end
/* Return rates of change > A x/

return Jai7
end

which the algorithm was able to label signals subdivided by
the number of AKI episodes (y;;) = ;1. Vi € {0, 1,2,3,4}).

IV. EXPERIMENTS AND RESULTS

e Performance of GPR on the training set: Prior
to performing outlier detection for identifying AKI
episodes, the performance of the GPR algorithm when
detecting no AKI episodes was evaluated. For this
purpose, only those patients without an AKI episodes
in their eGFR signal were considered. The GPR al-
gorithm was trained on 10% of these patients, and
evaluated on the remainder.

o [Effect of the threshold on SAKIDA performance:
According to the NICE guidelines, an AKI episode
occurs when the ratio of the reference value calculated
from prior measurements to the current measurement
is > 1.5. However, this threshold is designed for
serum creatinine levels, not the eGFR values derived
from them. In order to determine how this threshold
influences the algorithms within the eGFR space,
thresholds within the set {1.1,1.2,...,2.0} were eval-
uated, with the expectation that a threshold around 1.5
will perform best.

e Comparison of SAKIDA with GPR and NHS
England: In order to determine the algorithm most
suitable for detecting AKI episodes within a patient’s
entire eGFR signal, the performance of SAKIDA was
compared to that of GPR and the NHS England algo-
rithm in terms of their ability to mimic the labelling
of the expert nephrologists.

A. Performance of GPR on the training set

As the detection of AKI episodes via GPR is reliant on
AKI episodes being outliers, and the confidence intervals for
determining this are dependent on the model learnt using

patients with no AKI episodes, it is worth first assessing the
performance of GPR on these patients. Since 10% of the
patients with no AKI episodes were to be used for training the
final GPR AKI detection model, the same set of patients was
used when evaluating the ability of GPR to identify patients
without AKI episodes. The models trained via 5-fold cross
validation using this set of patients achieved a mean accuracy
of 89% +1.2.

B. Effect of the threshold on SAKIDA performance

The results of varying the value of the A parameter to
take on values in the set {1.1,1.2,...,2.0} can be seen in
Table II. The conjecture that a threshold of A > 1.5 should
perform well is borne out by the results, as it results in the
algorithm predicting the number of AKI events most accurately
(69.67%). However, it can be seen from Figure 3 that whereas
SAKIDA’s performance when evaluated for y = ¢ peaks at
a threshold of 1.5, the performance of the NHS England
algorithm continues to rise even when the threshold reaches
2.0.

TABLE II. TUNING OF THRESHOLD ON SAKIDA
A> ly=49g y>49 y<y
1.1 19.4672 0.6148 79.9180
1.2 42.4180 2.6639 54.9180
1.3 61.4754 8.4016 30.1230
1.4 69.4672 16.3934 14.1393
1.5 69.6721 22.1311 8.1967
1.6 69.0574 26.2295 47131
1.7 66.1885 30.5328 3.2787
1.8 65.7787 32.1721 2.0492
1.9 63.5246 35.0410 1.4344
2.0 63.1148 35.8607 1.0246
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Fig. 3. Threshold A parameter tuning for SAKIDA and NHS England.

C. Visual comparison of SAKIDA & GPR

Figure 4 shows example eGFR signals with 1, 2, 3 and
4 AKI episodes, as identified by nephrologists, along with
the AKI detection performed using GPR and SAKIDA. In
all four cases the abrupt decrease in eGFR that indicates
an AKI episode results in measurements that lie outside the
confidence interval bounds of the fitted GPR model, indicating
the GPR model has accurately identified the time periods over
which the AKI episodes occurred. However, in the case of
the signal with 3 and 4 AKI episodes, the patients have had
multiple measurements taken during the period in which the
AKI episode is influencing the eGFR values, either as they are
decreasing or before they have fully recovered, and therefore
simply counting the number of outliers does not accurately
indicate the number of AKI episodes.
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Fig. 4. Exemplar eGFR signals with 0, 1, 2, 3 and 4 AKI episodes, top to
bottom, along with the results of the AKI detection performed using (a) GPR
and (b) SAKIDA

D. Performance comparison of SAKIDA, NHS England &
GPR

SAKIDA was able to identify eGFR signal with no AKI
episodes with an accuracy of 90.44%, while GPR achieved
83.82% and NHS England 73.53%. SAKIDA also detected
no more than 4 AKI episodes per signal, in agreement with
the expert’s classifications, while GPR and NHS England
detected more in 67 and 99 patients respectively (Figure 5).
Interestingly, despite performing worst when detecting O, 1,
2 and 4 AKI episodes, NHS England method detected eGFR
signals with 3 AKI episodes with a greater accuracy than that
of the other methods tested (17.64%).

TABLE III. PERFORMANCE OF SAKIDA, NHS ENGLAND & GPR IN

DETECTING THE NUMBER OF AKI EPISODES.

AKI episodes detection accuracy in %

Algorithms 0 1 ) 3 3
NHS 73.53 | 22.07 | 16.00 | 17.65 | 0.00
GPR 83.82 | 28.97 | 20.00 | 5.88 0.00
SAKIDA 90.44 | 53.10 | 30.00 | 5.88 25.00
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Fig. 5. AKI episodes: Historgrams for the groundtruth and the AKI episode
predictions using SAKIDA, GPR and NHS England algorithms.

E. Hybrid visualisation of SAKIDA & GPR

A hybrid system consisting of GPR and SAKIDA could
improve clinicians’ understanding of the eGFR signal. As GPR
is able to provide both predicted values and confidence interval
bounds, GPs can help to visualise and classify an eGFR signal
as stable or unstable, thereby enabling clinicians to identify
patients who are likely to need further monitoring (those with
unstable eGFR signals). Additionally, the outliers can be used
to identify regions of time where an AKI episode is likely to
be occurring or have occurred, while SAKIDA can be used to
localise the AKI episodes as shown in Figure 6.
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Fig. 6. Hybrid visualisation of SAKIDA and GPR algorithms. (a) unstable

and (b) stable eGFR signal trends with GPR model outliers that include AKI
episodes. SAKIDA localises the AKI episodes in both signals.

V. CONCLUSIONS & DISCUSSIONS

Considering the severity of the complications arising from
it, and the benefits of pre-hospital diagnosis, little attention
has been given to improving the detection of AKI within the
primary care setting. As most patients will have their health



managed in their general practices for the majority of their
lives, with hospital admittance possibly not occurring until
long after an AKI episode, robust algorithms for real-time
warning and retrospective identification of AKI episodes in
primary care data are needed. However, primary care data
presents a unique challenge, especially when compared with
data collected in hospitals. Unlike the constant monitoring of
an inpatient, patients in primary care will likely have less
frequent and more irregular eGFR measurements along with
a greater variability in eGFR values due to weaker controls
over pre-test conditions. As demonstrated here, this can prove
problematic for algorithms, such as the NHS England algo-
rithm, that rely on the underlying biomedical condition being
accurately captured via repeated and frequent measurements.
Alternatively, algorithms that treat the AKI episode detection
problem as one of signal processing, such as SAKIDA and
GPR, fare better.

The main conclusion that can be drawn from the results
is that SAKIDA performs better than both GPR and the NHS
England algorithms, not only due to the greater accuracy with
which it identifies patients with no AKI episodes, but also
because it better matches the expert’s classifications overall.
This indicates that GPR and the NHS England algorithms
are likely to be unsuitable for retrospective identification of
AKI episodes in eGFR signals from primary care, and are
instead more suitable as real-time alert systems. However,
while a medical alert system that errs on the side of caution is
likely preferable to one that fails to identify risks, our results
indicate that both GPR and the NHS England algorithms
simultaneously over and under predict the number of AKI
episodes. Both methods identify more patients than the experts
did as having no AKI episodes, while for 67 patients in
the case of GPR and 99 in the case of NHS England too
many AKI episodes are detected. Given that SAKIDA closely
matches the expert’s predictions and can be used for both
retrospective analysis and real-time alerts, we believe it should
be the method of choice when identifying AKI episodes within
primary care data.
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