
Cartesian genetic programming applied to pitch estimation of piano notes

Tiago Inácio∗, Rolando Miragaia∗, Gustavo Reis∗, Carlos Grilo∗ and Francisco Fernandéz†
∗School of Technology and Management
Polytechnic Institute of Leiria, Portugal
Email: firstname.lastname@ipleiria.pt

†University of Extremadura
Mérida, Spain

Email: fcofdez@unex.es

Abstract—Pitch Estimation, also known as Fundamental Fre-
quency (F0) estimation, has been a popular research topic for
many years, and is still investigated nowadays. This paper
presents a novel approach to the problem of Pitch Estimation,
using Cartesian Genetic Programming (CGP). We take advan-
tage of evolutionary algorithms, in particular CGP, to evolve
mathematical functions that act as classifiers. These classifiers
are used to identify piano notes’ pitches in an audio signal.
For a first approach, the obtained results are very promising:
our error rate outperforms two of three state-of-the-art pitch
estimators.

1. Introduction

Pitch estimation on sound signals, also known as F0
detection, is a very important task of Automatic Music Tran-
scription. This is a process in which a computer program
writes the instrument’s partitures of a given song or an audio
signal. Usually, only pitched musical instruments are con-
sidered. Music transcription is a very difficult problem from
both musical and computational points of view: although
there has been much research devoted to it, it still remains
an unsolved problem.

Given that Cartesian Genetic Programming (CGP) has
already demonstrated its capabilities for synthesizing com-
plex functions capable of extracting main features from
images and performing image segmentation [1], we wanted
to test its capabilities, when applied to audio processing,
specially on pitch estimation. To tackle the problem of Pitch
Estimation by using CGP, and future problems related to au-
dio signal processing, we created a CGP toolbox for Matlab.
CGP toolbox stands for Cartesian Gentic Programming for
Sound Processing. Then, by using this toolbox, we created a
CGP system to synthesize mathematical expressions which
act as classifiers capable of identifying the pitch of all piano
keys.

The rest of this section explains the related work. Section
2 presents the Cartesian Genetic Programming features,
Section 3 explains our approach and on Section 4 we show
our experiments and results. Finally on Section 5 we present
our conclusions and future work.

1.1. Related Work

Over the years, there has been a lot of research on Pitch
Estimation. However, to the best of our knowledge, there are
no Cartesian Genetic Programming approaches for address-
ing this problem. Yeh et al. [2] proposed an algorithm based
on the short-time Fourier transform (STFT) representation,
by applying an adaptive noise level estimation algorithm
and an harmonic matching technique. Klapuri [3], proposed
an iterative approach algorithm, based on harmonicity and
spectral smoothness. Reis et al. [4], used a genetic algorithm
approach which relies on an adaptive spectral envelope
modeling and dynamic noise level estimation. Marolt [5],
presented a connectionist approach where he uses a partial
tracking technique, based on an auditory model, which
converts the acoustic signal into time-frequency space, and
uses adaptive oscillators to detect periodicities in the output
of the auditory model. Benetos and Weyde [6], based on
probabilistic latent component analysis and supporting the
use of sound state spectral templates, proposed an efficient,
general-purpose model for multiple instrument polyphonic
music transcription.

2. Cartesian Genetic Programming

Evolutionary algorithms encode each possible solution
(called an individual) to the problem as a set of genes. Dur-
ing the evolutionary process, the genes of each individual, or
possible solution to the problem, are mutated and possibly
recombined, to create better and fitter individuals. At the
end of each iteration (generation) all the individuals are
evaluated and, according to their quality (fitness value) as
a solution to the problem, some pass to the next generation
and some are discarded.

Cartesian Genetic Programming is an increasingly pop-
ular and efficient form of Genetic Programming [7], [8]
proposed by Julian Miller in 2000 [9]. In its classic form, it
uses a very simple integer based genetic representation of a
program in the form of a directed graph.

The genotype is a list of integers (and possibly real
parameters) that represent the program primitives and how
they are connected together (see Figure 1). The programs



Figure 1. General form of a CGP graph (program). It is a grid of nodes
whose functions are chosen from a set of primitive functions. There are 2
inputs and 3 outputs. The grid has nc = 3 (columns) and nr = 2 (rows).

are represented as graphs in which there are non-coding
genes. The genes are addresses in data (connection genes),
addresses in a look up table of functions and additional
parameters. This representation is very simple, flexible and
convenient for many problems. Figure 1 shows the general
form of a CGP graph. Usually, all functions have as many
inputs as the maximum function arity and unused connec-
tions are ignored.

CGP is Cartesian because it considers a grid of nodes
that are addressed in a Cartesian coordinate system. Each
CGP graph node may contain additional genes for encoding
additional parameters that might be necessary for specific
functions (eg.: a threshold value). CGP uses a population of
individuals, being each one a candidate solution to the prob-
lem to be solved. A fitness function is used to quantitatively
evaluate individuals on each iteration (generation).

Algorithm 1 General CGP Algorithm
1: Generate initial population at random (subject to constraints)
2: while stopping criterion not reached do
3: Evaluate fitness of genotypes in population
4: Promote fittest genotype to new population
5: Fill remaining places in the population with mutated ver-

sions of the fittest
6: end while

CGP algorithm shown in Algorithm 1, begins with the
generation of the initial population, then it uses a fitness
function to evaluate the individuals of the population. The
evolutionary strategy chooses the fittest one (best individual)
and promote it directly the next generation. The remaining
places in the population are mutated versions of the fittest
individual. The algorithm stops when the stopping criterion
is reached.

3. CGP approach to Pitch Estimation

CGP in its general form is a grid of nodes whose
functions are chosen from a set of primitive functions. The
grid has nc (columns), nr (rows) and levels-back which
determines how many previous columns of cells may have
their outputs connected to a node in the current column.
The idea is illustrated in Figure 1. Depending on nr, nc and

5 2 3

4Node

Genotype 3 1 4

5

1 1 3

6

5

Output

Figure 2. CGP graph with multiple inputs, one row, one output and its
resulting genotype.

Figure 3. System architecture

levels-back, a wide range of graphs can be generated, when
nr = 1 and levels-back = nc, arbitrary directed graphs
can be created with a maximum depth. In general, choosing
these parameters imposes the least constraints, so, without
specialist knowledge, this is the best and most general choice
[10]. In our particular CGP approach, we have multiple
inputs, only one row of graph nodes, one output (the result
of the corresponding classifier), and levels-back = nc as
depicted in Figure 2. The resulting graph and genotype
codification is also shown.

To perform the pitch detection using CGP, we developed
a system where some important decisions and tasks were
made besides the CGP. We defined what kind of inputs to
use from the original piano audio signal, through a prepro-
cessing task. We also had to develop a process to reach a
binary output in order to perform our fitness function. The
block diagram of our proposed system is much more than a
simple CGP process and is depicted in Figure 3. Each step
of this system is described carefully throughout this section.

3.1. Preprocessing

The first task of the proposed system is the Preprocess-
ing. For this, we used the piano samples (audio signals) from
MAPS database [11]. This is a huge dataset with multiple
piano melodies in wave format. The piano sound signals are
vectors in time with a sample rate of 44.100 samples per
second.

For the preprocessing task, we split each piano sound
signal into frames of 4096 samples width, corresponding
to 96 milliseconds. To accomplish a good base for signal
processing common tasks, we transform the domain signals



23.25 31   46.5 92   

Time (ms)

-0.15

-0.1

-0.05

0

0.05

0.1

A
m

p
lit

u
d
e

(a)

23.25 31   46.5 92   

Time (ms)

0

0.2

0.4

0.6

0.8

1

A
m

p
lit

u
d
e

(b)

23.25 31   46.5 92   

Time (ms)

-0.15

-0.1

-0.05

0

0.05

0.1

A
m

p
lit

u
d
e

(c)

1076 2152 3228 4304 5380

Frequency (Hz)

0

0.2

0.4

0.6

0.8

1

A
m

p
lit

u
d
e

(d)

Figure 4. Preprocessing process: (a) input time signal piano note, (b)
Hanning window, (c) resulting windowed signal, (d) frequency domain
signal

from the time domain to the frequency domain, using the
Discrete Fourier Transform (DFT), shown in Equation 1. In
order to do so, each frame is windowed (see Equation 2)
using an Hanning window (see Equation 3) to avoid spectral
leakage. Then, the DFT is applied, obtaining signal frames
in the frequency domain.

X[k] =

N−1∑
n=0

xw[n]e
−j( 2π

N )nk, (k = 0, 1, ..., N − 1). (1)

xw[n] = w[n].x[n]. (2)

w[n] = 0.5

(
1− cos

(
2πn

N − 1

))
. (3)

Typically, the DFT is computed using the Fast Fourier
Transform algorithm (FFT), because it is faster, the differ-
ence in speed can be enormous. The resulting frequency
domain signal used in our system is obtained using Equation
1, where xw[n] is the time signal windowed and N is the
number of samples in the vector. Recall that any signal
cannot be uniquely represented for frequencies above fs

2
(also known as the Nyquist frequency), where fs is the
sampling frequency of the sequence. Above fs

2 all signal
energy is reflected back into the frequency range − fs2 .
Between fs

2 and fs, the reflection is in reverse order, which
gives rise to a DFT frequency domain period [0; fs].

Due to the DFT spectrum properties, the symmetry of
the real part and the antisymmetry of the imaginary part
relative to Nyquist frequency, fs

2 , we may only use half
of the resulting signal of the DFT, so only the first 2048
frequency bins were considered. The preprocessing process
is illustrated in Figure 4, from the input time signal of a
piano note to generated CGP input in frequency domain.

Figure 5. Node Genes(5): inputs, code function and real parameters

3.2. Individual Encoding

In general, when working with CGP, the genotype is
composed by input nodes, function nodes and the output
node. Our proposed algorithm contains 4 input nodes and
one single output node. We used a single row CGP con-
figuration with 100 function nodes. Each function node
contains 5 genes (see Figure 5): two inputs, corresponding
to the maximum function arity (the number of arguments or
operands that the function takes), one integer corresponding
to the function used from the function set and two function
parameters. All function nodes return a vector. However,
since our system is a classifier, the final output must return
a binary value. In order to transform the output vector
into a binary value, our system uses a threshold after a
comparison between the output and a base signal. This base
signal is a triangular signal centered on frequency bin of the
corresponding Fundamental Frequency of the note classifier.
This threshold function has a constraint to ensure it is the
last function before the binary output. This threshold is also
evolved: the parameter θ mutates from an initial configurable
value with an also configurable mutation probability.

3.2.1. Inputs. The algorithm inputs are obtained from the
preprocessing system (see Subsection 3.1). Each piano sam-
ple is split into time frames and transformed into frequency
domain using a DFT. By doing so, we get frames with 2048
samples with complex domain numbers, each one represent-
ing a time frame of a piano sample note with 96 milliseconds
duration. From this vector X[k] in the frequency domain we
may use two different representations of a complex number,
Cartesian and polar:

1) <{X[k]}
2) ={X[k]}
3) ]{X[k]}
4) ||X[k]||

This way, we have a pair of vectors each one with 2
components, making 4 usable inputs. By having redundant
information, regarding the 4 inputs, we ensure the CGP
system has a variety of representations of the same data, so
it can be able to choose the one which best fits the problem.

3.2.2. Function set. As depicted in Figure 5, each function
node has a gene that indicates which function of the function
set should be used on that node. Table 1 shows our current



function set or look-up table. Note that all the functions are
prepared to receive one or two vectors and all of them return
a vector; the maximum function arity is 2.

TABLE 1. FUNCTION SET LOOKUP TABLE

Index Function Description

1 SPAbs Absolute value
2 SPBPGaussFilter Band pass Gaussian filter
3 SPConvolution Convolution
4 SPCos Cosine
5 SPDivide Point to point Division
6 SPFFT Absolute value of the DFT
7 SPGaussfilter Gaussian filter
8 SPHighPassFilter High pass filter
9 SPIFFT Absolute value of Inverst DFT
10 SPLog Natural logarithm
11 SPLog10 Common logarithm
12 SPLowPassFilter Low pass filter
13 SPMedFilter Median filter
14 SPMod Remainder after division
15 SPMulConst Multiplication by constant
16 SPNormalizeMax Normalization maximum
17 SPNormalizeSum Normalization sum
18 SPPeaks Find peaks
19 SPSin Sine
20 SPSubtract Subtraction
21 SPSum Sum
22 SPSumConst Sum with a constant
23 SPThreshold Tresholding
24 SPTimes Multiplication

Our function set is basically composed by filtering
operations on vectors and by arithmetic operations with
constants and vectors. Each function may also have one or
two real parameters that are encoded as parameter genes,
these parameters also evolve during the training process.

3.2.3. Function parameters. As previously mentioned, the
functions of the instruction set may have up to two parame-
ters. In fact, most functions need real parameters to perform
their tasks. In order to evolve those parameters as well, we
encoded them in the genotype as genes, so they can also
mutate. We used two real parameters for each function node.
This way, each function has its particular parameters with a
particular meaning. Each parameter r1, r2 of each function
has its own range. Those intervals are normalized into [0, 1]:
all intervals are transformed from [a, b] to a normalized
one [0, 1]. By using this technique, the actual value of any
parameter can bee seen as a number between 0 and 1 or a
percentage of the interval.

3.3. Mutation

In Cartesian Genetic Programming, mutation plays a
major role on the evolution process. Here, each gene may be
subject to mutation according to a configurable parameter:
the mutation probability. This parameter represents the prob-
ability of each gene to be mutated. For instance, p = 0.01
means that each gene will mutate with a 1% probability. In
our case, different mutation processes are used according to

the gene type and domain: if a function gene happens to be
mutated, then a valid value must be chosen for selecting a
new function in the function set lookup table; if a mutation
occurs in a gene node input, then a valid value is the output
of any previous node in the genotype or any system input;
the valid values for the system output genes are the output
of any node in the genotype or the address of a system
input. All these mutations happen according to the uniform
probability distribution function for integers. Two additional
genes can also mutate: the real parameters used by the
functions of the function set. These are important parameters
used by those functions to perform specific tasks. According
to each function, each parameter has a specific meaning
and also has its own domain range. In this case, we take
any value in the normalized interval [0, 1] and transform it
into the real interval [a, b]. The mutation of the real genes
(function parameters) is done using the normal distribution
in order to address the entire range:

f(x) =
e−(x−µ)2/(2σ2)

σ
√
2π

, (4)

where f(x) represents the density function of x variable,
with a normal distribution. This function is also represented
as N(µ, σ), where µ is the mean and σ is the standard
deviation. To perform the mutation of a function parameter,
rold, we generate a new random rmutate using the normal
distribution N(µ = rold, σ), with σ being configurable in
our system. This way, we ensure that when a mutation
occurs in a real parameter, all the parameter interval is
reachable, but with higher probability to mutate to closer
values.

As previously described in Section 3.2, the output of the
system is obtained by using a threshold value in order to
have a binary output. This threshold mutates independently
from the genotype genes, with a different configurable prob-
ability.

3.4. Evolutionary Strategy

Our evolutionary strategy is a variant of a simple evolu-
tionary algorithm known as 1+λ [12], which is widely used
for CGP: the new offspring is obtained promoting the fittest
individual and generate λ new individuals trough mutation.
Also, an offspring can replace a parent when it has the
same fitness as its parent and there is no other population
member with a better fitness (see Algorithm 2). According
to Goldman [13], an empirical value for λ is 4, which was
the value we used.

During the evolutionary process, there is a reasonable
percentage of inactive genes. Such inactive genes have a
neutral effect on the genotype fitness [14]. However, the
influence of neutrality in CGP has been investigated in detail
by Vassilev and Miller [15] and was shown to be extremely
beneficial to the efficiency of the evolutionary process. For
better computing performance, we also took in account the
similarity between individuals: when an individual has the
same active genes than the offspring parent, there is no need
to compute its fitness.



Algorithm 2 Algorithm ((µ+ λ)EA)

1: t← 0;
2: Initialize P0 with µ individuals chosen uniformly at random;
3: while a stop condition is not fulfilled, do
4: for i = 1 to λ do
5: choose xi ∈ Pt uniformly at random;
6: mutate each gene xi with probability p;
7: end for
8: Create the new population Pt+1 by choosing the best µ

individuals out of Pt ∪ {x1, . . . , xλ};
9: t← t+ 1;

10: end while

3.5. Fitness Function

The main goal of the proposed system is to evolve a
classifier for each piano note. The output of each classifier
is binary: when the corresponding note is detected the output
is 1, otherwise it is 0. During the evolutionary process, we
used as inputs an amount of piano samples with the desired
pitch (fundamental frequency) and the same amount of piano
samples with different pitches. Thus, for each classifier, we
used 50 true positive piano samples and 50 piano samples
with different pitches. During the evolutionary process, the
evaluation of each individual (classifier) is done using F-
measure (Equation 5).

Fmeasure = 2× recall × precision
recall + precision

, (5)

where:

precision =
tp

tp+ fp
, recall =

tp

tp+ fn
. (6)

One of our system peculiar characteristics is the bina-
ritazion process, since the CGP output is a signal vector
processed and filtered. In order to accomplish a binary
output, where 1 means the presence of the corresponding
pitch in the analyzed frame and 0 means the opposite, we
used a comparison process between the CGP ouput vector
normalized in amplitude OCGP (n) and a base signal with
the frequency corresponding to the pitch of the estimator,
BF0(n). The first step is the normalization of the output
vector in amplitude. This way all the elements of the vector
fall in the interval [0;1]. The base signal is obtained with a
triangular mask on frequency domain around the F0 of the
estimator. We used a triangular mask with 3 configurable
points in both size and amplitude. We then generate the
following scalar:

x =

N∑
n=0

OCGP (n) ∗BF0(n), (7)

where x measures the interception between the two discrete
time signals. If we approximate these signals to continuous
time we could see x as the intersected area between the two

signals. Finally, we used a threshold function to accomplish
the binary result:

T (x) =

{
1, if x > θ

0, if x <= θ
(8)

where θ is the threshold value. Since both signals are
normalized, the max value for x is:

x =

N∑
n=0

BF0(n). (9)

0 500 1000

bins

0

0.2

0.4

0.6

0.8

a
m
p
lit
u
d
e

Output Node

20 30 40 50

bins

0

0.2

0.4

0.6

0.8

1

a
m
p
lit
u
d
e

Triangular Signal

0 100 200 300 400 500

bins

0

0.2

0.4

0.6

0.8

1

a
m
p
lit
u
d
e

Intersection of output vector with triangular signal

(a) (b)

(c)

triangular signal
output vector

Figure 6. (a) CGP output signal, (b) base triangular signal (c) computing
intersection for threshold.

All the fitness process including the sum and the thresh-
olding is illustrated in Figure 6.

4. Experiments and Results

Since this is our first approach to the problem of Pitch
Estimation of piano notes using Cartesian Genetic Program-
ming, our main goal is to show the applicability of CGP
on this problem. We evolved one classifier for each piano
note. Each piano key is represented by the corresponding
MIDI note number, being 60 the MIDI note number cor-
responding to the C4 musical note (the middle C). The
piano sounds used for training and testing are those from
the MAPS database [11]. Table 2 shows the values of the
configurable parameters for our system. The evolutionary
process consisted of 30 runs with 5000 generations each,
using 50 positive and 50 negative cases. The classifiers were
evaluated using F-measure (Equation 5).

Figure 7 shows the individual results of each run (i.e.
evolved pitch estimator) for classifying the note 60. The
best generated classifier was chosen as the pitch estimator
for note 60. Figure 8 depicts the resulting program of this



TABLE 2. EXPERIMENTS PARAMETERS

Parameter Value

Frame Size 4096
Fitness Threshold 0.5
Positive Test Cases 50
Negative Test Cases 50
Outputs 1
Rows 1
Columns 100
Levels Back 100
Population Size 4
Mutation Probability 5%
Runs 30
Generations 5000

5 10 15 20 25 30

Run

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

F
-m

e
a

s
u

re

Training fitness results classifier 60

F-measure classifier 60 (mean = 0.945)

Figure 7. Training results obtained during 30 runs for pitch 60. Fitness
values using F-measure

classifier. It shows the functions used in each node as well as
the inputs of each node. For instance: the node 101 contains
the Gaussian filter function and the function’s arguments
(inputs) are the outputs of the nodes 36 and 87. The resulting
program is a set of mathematical functions over vectors -
our phenotype.

After the training process, each classifier was tested with
a different test set. Each test set consisted in 144 negative
notes (48 × 3) and 5 positive notes, comprising a total of
149 piano sound samples. Table 3 shows our results. As a
first approach, these results are very encouraging, since for
almost all notes we achieved a classifier with F-Measure
values greater than 70%.

In order to compare our results with the ones by other
researchers we generated the graph depicted in Figure 9,
where besides F-measure we can see the error rate in per-
centage, for the data-set test, with 96ms frames. According
to Emiya [16], the three main monophonic pitch estimators
are: Parametric F0 estimator, the Nonparametric F0 estima-
tor and the YIN estimator [17] and those estimators have
mean error rates of 2.4%, 3.0% and 11.0% respectively. Our
CGP approach to F0 estimation reaches the mean error rate
of 2.5%, a very encouraging result.

Node 1 = input (1)
Node 2 = input (2)
Node 3 = input (3)
Node 4 = input (4)
Node 5 = SPConvolution ( 1 , 1 ) 
Node 6 = SPFFT ( 1 , 4 )  
Node 7 = SPConvolution ( 4 , 4 )  
Node 8 = SPTimes ( 5 , 7 )  
Node 10 = SPSum ( 2 , 1 )  
Node 11 = SPIFFT ( 10 , 4 )  
Node 12 = SPPeaks ( 8 , 11 )  
Node 13 = SPPeaks ( 11 , 10 )  
Node 14 = SPSum ( 3 , 10 )  
Node 15 = SPSubtract ( 1 , 13 )  
Node 16 = SPAbs ( 13 , 12 )  
Node 17 = SPLog10 ( 16 , 10 ) 
Node 18 = SPThreshold ( 5 , 16 )  
Node 19 = SPCos ( 17 , 18 )  
Node 20 = SPLog ( 8 , 2 )  
Node 23 = SPNormalizeSum ( 6 , 14 )  
Node 24 = SPAbs ( 13 , 13 )  
Node 33 = SPDivide ( 12 , 23 )  
Node 36 = SPHighPassFilter ( 19 , 20 )  
Node 87 = SPSum ( 15 , 33 )  
Node 101 = SPGaussfilter ( 36 , 87 )  
Node 104 = SPIFFT ( 24 , 101 )

Figure 8. Evolved classifier code for pitch 60

TABLE 3. TEST RESULTS FOR 19 CLASSIFIERS

classifier tp tn fp fn f-measure

48 5 135 9 0 0.53
50 5 140 4 0 0.71
52 5 138 6 0 0.63
53 5 142 2 0 0.83
55 5 138 6 0 0.63
57 5 139 5 0 0.67
60 5 142 2 0 0.83
61 4 142 2 1 0.73
62 4 144 0 1 0.88
63 4 144 0 1 0.88
64 5 138 6 0 0.63
65 5 141 3 0 0.77
66 5 139 5 0 0.67
67 5 141 3 0 0.77
68 5 141 3 0 0.77
69 5 141 3 0 0.77
70 5 142 2 0 0.83
71 5 142 2 0 0.83
72 5 142 2 0 0.83

5. Conclusions and Future Work

This paper describes the Cartesian Genetic Programing
strategy applied to pitch recognition on piano notes. This is a
completely new approach to the mentioned problem: With
our work and experiments, we have shown the feasibility
of this technique to the problem of pitch estimation. The
results are encouraging and it can bee considered a good
starting point. Without a complex parameters tuning process
we obtained a 2.5% error rate for our experiments with
a standard sound database. The results accomplished with
the CGP technique are in line or even better than the most
popular algorithms for pitch recognition on piano notes.

Planning ahead, we aim to test and tune all the CGP



2 4 6 8 10 12 14 16 18

evolved classifiers

0

10

20

30

40

50

60

70

80

90

p
e
rc

e
n
ta

g
e
 (

%
)

Classifiers evaluation error rate and F-measure

error rate (mean 2.5%)

F-measure (mean 74.9%)

Figure 9. Graph with 19 classifiers’ evaluation results in error rate and
F-measure

parameters in order to obtain even better results. We are
also considering taking into account additional inputs for
our system, such as the generated Cepstrum of each audio
frame. Another important aspect that we are planning to take
into account is the use of the harmonic information during
the comparison process.

References

[1] S. Harding, J. Leitner, and J. Schmidhuber, “Cartesian genetic pro-
gramming for image processing,” in Genetic Programming Theory
and Practice X. Springer, 2013, pp. 31–44.

[2] C. Yeh, A. Roebel, and X. Rodet, “Multiple fundamental
frequency estimation and polyphony inference of polyphonic
music signals,” Trans. Audio, Speech and Lang. Proc.,
vol. 18, no. 6, pp. 1116–1126, Aug. 2010. [Online]. Available:
http://dx.doi.org/10.1109/TASL.2009.2030006

[3] A. P. Klapuri, “Multiple fundamental frequency estimation based on
harmonicity and spectral smoothness,” IEEE Transactions on Speech
and Audio Processing, vol. 11, no. 6, pp. 804–816, Nov 2003.

[4] G. Reis, F. Fernandéz de Vega, and A. Ferreira, “Audio analysis and
synthesis-automatic transcription of polyphonic piano music using
genetic algorithms, adaptive spectral envelope modeling, and dynamic
noise level estimation,” IEEE Transactions on Audio Speech and
LanguageProcessing, vol. 20, no. 8, p. 2313, 2012.

[5] M. Marolt, “A connectionist approach to automatic transcription of
polyphonic piano music,” IEEE Transactions on Multimedia, vol. 6,
no. 3, pp. 439–449, June 2004.

[6] M. Mueller and F. Wiering, Eds., An efficient temporally-constrained
probabilistic model for multiple-instrument music transcription.
Malaga, Spain: ISMIR, October 2015.

[7] J. R. Koza, Genetic programming: on the programming of computers
by means of natural selection. MIT press, 1992, vol. 1.

[8] ——, “Genetic programming ii: Automatic discovery of reusable
subprograms,” Cambridge, MA, USA, 1994.

[9] J. F. Miller and P. Thomson, “Cartesian genetic programming,” in
Genetic Programming. Springer, 2000, pp. 121–132.

[10] J. F. Miller, “Gecco 2013 tutorial: cartesian genetic programming,”
in Proceedings of the 15th annual conference companion on Genetic
and evolutionary computation. ACM, 2013, pp. 715–740.

[11] V. Emiya, N. Bertin, B. David, and R. Badeau, “Maps-a piano
database for multipitch estimation and automatic transcription of
music,” 2010.

[12] M. Eigen, Ingo Rechenberg Evolutionsstrategie Optimierung technis-
cher Systeme nach Prinzipien der biologishen Evolution. mit einem
Nachwort von Manfred Eigen, Friedrich Frommann Verlag, Struttgart-
Bad Cannstatt, 1973.

[13] B. W. Goldman and W. F. Punch, “Analysis of cartesian genetic
programmings evolutionary mechanisms,” IEEE Transactions on Evo-
lutionary Computation, vol. 19, no. 3, pp. 359–373, 2015.

[14] J. F. Miller and S. L. Smith, “Redundancy and computational effi-
ciency in cartesian genetic programming,” IEEE Trans. Evolutionary
Computation, vol. 10, no. 2, pp. 167–174, 2006.

[15] V. K. Vassilev and J. F. Miller, “The advantages of landscape neutral-
ity in digital circuit evolution,” in Evolvable systems: from biology to
hardware. Springer, 2000, pp. 252–263.

[16] V. Emiya, B. David, and R. Badeau, “A parametric method for pitch
estimation of piano tones,” in 2007 IEEE International Conference on
Acoustics, Speech and Signal Processing-ICASSP’07, vol. 1. IEEE,
2007, pp. I–249.

[17] A. De Cheveigné and H. Kawahara, “Yin, a fundamental frequency
estimator for speech and music,” The Journal of the Acoustical Society
of America, vol. 111, no. 4, pp. 1917–1930, 2002.


