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Abstract— Hypertension is an illness that often leads to 
severe and life threatening diseases such as heart failure, 
thickening of the heart muscle, coronary artery disease, and 
other severe conditions if left untreated. An artificial neural 
network is a powerful machine learning technique that allows 
prediction of the presence of the disease in susceptible 
populations while removing the potential for human error. In 
this paper, we identify the important risk factors based on 
patients’ current health conditions, medical records, and 
demographics. These factors are then used to predict the 
presence of hypertension in an individual. These risk factors are 
also indicative of the probability of a person developing 
hypertension in the future and can, therefore, be used as an early 
warning system. We present a neural network model for 
predicting hypertension with about 82% accuracy. This is good 
performance given our chosen risk factors as inputs and the large 
integrated data used for the study. Our network model utilizes 
very large sample sizes (185,371 patients and 193,656 controls) 
from the Canadian Primary Care Sentinel Surveillance Network 
(CPCSSN) data set. Finally, we present a literature study to show 
the use of these risk factors in other works along with 
experimental results obtained from our model.  

Keywords — Artificial neural network; hypertension; 
backpropagation network; medical decision support systems. 

 

I. INTRODUCTION 
Hypertension is a common health condition in the modern 

world that can lead to a number of severe illnesses such as 
stroke, heart disease, and renal failure [10]. Fig. 1 shows the 
prevalence of hypertension compared to seven other chronic 
diseases based on a sample of Canadian Primary Care Sentinel 
Surveillance Network (CPCSSN) data set [28]. We describe 
the data set later in the paper and use it in this study. A 
diagnosis of hypertension is made when the diastolic or 
systolic blood pressure readings exceed 90 mm Hg or 120 mm 
Hg, respectively for at least two subsequent visits [10]. Risk 
assessment of the disease is significantly more complicated and 
depends on a multitude of factors and transient environmental 
conditions that can artificially raise blood pressure readings 
[15]. Commonly identified risk factors include age, gender, 
body mass index (BMI), obesity, stress, triglycerides, uric acid, 
lipoproteins, cholesterol, history of smoking habits, and family 
history of the disease [1][12][15][21][23][25]. Due to the 
complexity associated with disease prediction, evaluations by 

clinicians are prone to error especially in cases where the data 
is incomplete or noisy [15].  

Fig. 1 Distribution of patients having one of the eight chronic 
diseases in a sample of the CPCSSN data set used in our study 
(COPD- chronic obstructive pulmonary disease). 

 

Artificial Neural Networks (ANNs) are currently resurging 
in popularity across a variety of domains [3]. For example, 
ANNs are used to predict the stock market [17], detect objects 
and perceive scenes [22], or compress images [13]. Within the 
field of medicine in particular, ANNs are popular due to their 
ability to analyze medical imagery, design medications, and act 
as diagnostic systems [3][11]. Medical oriented systems must 
also achieve a high degree of efficiency, accuracy, and 
reliability in order to minimize harm to patients [3]. Machine 
learning serves as a viable option that allows clinicians to 
better identify patterns in data that are otherwise prone to 
human error and improve upon vital performance measures in 
medicine [2][9][21]. Therefore, medical decision support 
systems can integrate machine learning in order to provide 
efficient and accurate results that a doctor can then use to better 
diagnose and treat illnesses. Such technologies are also capable 
of providing timely interventions if coupled with data obtained 
early in a patient’s treatment cycle. This is a priority for 
healthcare providers if they are to provide preventative care to 
these patients and reduce the overall costs. Neural networks are 
capable of meeting the high demands of medicine and serve as 
a powerful invaluable tool in the field. 



To date, there has been little research on investigating the 
practicality of predicting hypertension risk using large datasets. 
The majority of studies from this area typically have quite low 
sample sizes. Our study focuses on the analysis data with an n 
> 100,000 per subject group [15]. Since our network is trained 
on a much broader range of subjects, we argue that the overall 
applicability of our network will be substantially more robust 
for use in the field. In this paper, we apply machine learning 
and data integration techniques to classify hypertension/non-
hypertension patients given the anonymous electronic health 
records of the patients in the CPCSSN data set [28]. A three-
layer ANN is developed as our predictive model which uses 
the backpropagation learning algorithm. Data is extracted from 
the CPCSSN data set for training and testing. Matlab was used 
as an analytic tool to develop the networks. We obtained an 
accuracy of about 82% which is quite good given the use of the 
integrated CPCSSN data set for the study. 

The rest of this paper is organized as follows. In Section 2, 
we discuss related works. Section 3 describes the CPCSSN 
data set and the metrics used as the interesting input factors for 
our network. In Section 4, we first present the neural network 
approach in general and then explain our specific ANN model, 
the data preprocessing steps and the implementation details 
using the Matlab neural network toolbox. We discuss the 
results obtained in Matlab in Section 5. Finally, Section 6 
concludes the paper and lists some ideas for the future work.  

 

II. RELATED WORK 
The existing literature in the area of predicting 

hypertension within patient populations focus on several 
techniques such as statistical models [14], neural networks 
[20][21][24][25] and fuzzy models [1].  

Echouffo-Tcheugui et al. [14] provide a comparative study 
and a summary of performances of the various statistical 
approaches that present risk models of hypertension. The paper 
presents 15 different hypertension prediction risk models from 
11 studies which report on the development, validation, and 
impact analysis of hypertension risk prediction models. Some 
of the key comparison criteria include design and 
characteristics, predictors, model discrimination, calibration 
and reclassification ability, validation, and impact analysis. The 
common predictor variables used in most of the models are 
age, sex, body mass index (BMI), status of diabetes, and blood 
pressure. Some of the other variables used are smoking, family 
history, and physical inactivity. Most risk models have 
acceptable-to-good discriminatory ability (C-statistic 0.7 to 
0.8). Some of these works focus on specific gender, age or 
racial group and use different sources of data to develop the 
models. None of these models, however, apply a neural 
network approach which has proven promising in many data 
domains. To better relate with our ANN approach presented in 
this paper, some of the existing ANN approaches are discussed 
below. 

One of the earliest works in the area is by Poli et al. [20] 
which uses an ANN called Hypernet to diagnose and treat 
hypertensive patients. The network is split into multiple 

specialized feed-forward network modules of differing 
complexity in order to mimic the reasoning of physicians. The 
network takes anamnestic data as well as a time series of blood 
pressure monitoring data as inputs in order to arrive at outputs 
specifying the quantity of antihypertensive drugs to administer 
to each patient. An absence of output indicates that a patient is 
not hypertensive.  

Samant and Rao [21] developed a Levenberg-Marquardt 
backpropagation neural network in Matlab consisting of 13 
input nodes and 1 output node with multiple hidden layers to 
predict hypertension. Input factors consisted of blood pressure, 
serum proteins, albumin, hematocrit, cholesterol, triglycerides, 
and hemorheological parameters. The authors also evaluated 
differences in performance based on the number of hidden 
nodes and layers to determine optimal performance. They 
concluded that a deep network with 20 nodes in the first hidden 
layer and 5 nodes in the second hidden layer result in the best 
accuracy. The authors report to have achieved an accuracy of 
92.85% with their approach using a rich data set collected over 
10 years at the Hemorheology Laboratory of the Indian 
Institute of Technology Bombay (IITB) hospital in Mumbai, 
India. The data set consisted of 13 clinical, biochemical, and 
hemorheological data metrics of hypertensive and non-
hypertensive patients.  

Ture et al. [25] compare the performances of three decision 
tree models, four statistical algorithmic models and two ANN 
models, all of which predict the risk of essential hypertension 
disease. Predictor variables used in the models include age, 
sex, family history, smoking habits, lipoproteins, triglycerides, 
uric acid, cholesterol, and BMI. Based on the sensitivity and 
specificity analysis of the models, the study infers that the 
metrics used are good predictor variables for diagnosing 
hypertension and the ANNs are the best models which also 
have the incremental learning capability to complement the 
existing statistical models.  

Srivastava et al. [23] demonstrate a fuzzy soft computing 
approach to classify five different grades of hypertension 
namely very low, low, moderate, high, very high. The input 
variables used in the study consist of age, systolic blood 
pressure (SBP), diastolic blood pressure (DBP), BMI, heart 
rate, low density lipoprotein (LDL), high density lipoprotein 
(HDL), triglyceride, smoking, and exercise. The approach is 
unable to learn as ANNs do and depends on the definition of 
the fuzzy utilities. 

Sumathi and Santhakumaran [24] demonstrate that their 
feed-forward backpropagation network consisting of eight 
input variables, four hidden variables, and two output 
variables achieve results comparable to physicians. Accuracy 
and subject counts were not included in the study.  

The comparison of the performances of our approach with 
some of these related works are summarized in TABLE II.  

III. CPCSSN DATA SET 
We used the Canadian Primary Care Sentinel Surveillance 

Network (CPCSSN) data set [28] for our study which contains 
anonymous Electronic Medical Record (EMR) data of patients 
seeking aid from their primary health care providers. Patients 



in this set are further classified into eight chronic disease 
groups based on clinician-developed CPCSSN diagnostic 
algorithms [7][16][26]. The hypertensive group consisted of 
185,371 individuals identified as having hypertension [26]. The 
control group consisted of 193,656 patients not belonging to 
any of the eight chronic disease categories but still seeking 
medical aid for other reasons. We used this labelled data in our 
study for training and testing our machine learning model. 

A. Factors of Interest 
Based on the study of the related work and the available 

CPCSSN data set, we defined 11 factors of interest as input 
variables in our ANN model as described in Table 1. These 
included age, gender, BMI, systolic and diastolic blood 
pressure, high and low density lipoproteins, triglycerides, 
cholesterol, microalbumin, and urine albumin creatinine ratio. 
Patients were not excluded if they had missing data. We 
considered missing data for the above factors as an indicator 
that hypertension was not present because the relevant lab tests 
were not ordered by the physician. Some of these factors are 
described below. 

1) Body Mass Index (BMI) 

BMI refers to a height/weight ratio and is calculated as 
weight in kilograms divided by height in meters squared [27]. 
BMI values are classified into one the following four classes 
based on the BMI of the corresponding individual [27]. 

Underweight: BMI < 18.5 
Normal: 18.5 >= BMI >=24.99 
Overweight:  BMI > 25  
Obese: BMI >30 

2) Systolic and Diastolic Blood Pressure 

Systolic blood pressure refers to pressure in the arteries 
when the heart beats (heart muscle contracts) which is the 
higher number, and diastolic blood pressure is the pressure 
between heart-beats (muscles relaxed) which is the lower 
number of a blood pressure reading [6]. Blood pressure 
measures are classified as follows [6] (S: systolic, D: diastolic). 

Normal: S < 120,  D< 80  
Prehypertension:  120= < S < 139,  80 =< D < 89 
Hypertension stage 1:  140= < S < 159,  90= < D < 99  
Hypertension stage 2: S >=160,  D > =100  
Hypertensive crisis: S >= 180, D > =110   

3) Lipoproteins, Triglycerides and Cholesterol 

Cholesterol is transported in the blood by both high and 
low density lipoproteins [5]. An individual’s total cholesterol 
count is made up of one fifth of their triglyceride level along 
with their HDL and LDL cholesterols [5]. HDL and LDL 
cholesterols differ in that HDL is considered “good 
cholesterol” and removes the bad LDL cholesterol that 
contributes to arterial plaque deposits from the body [5].  

4) Albumin 

Albumin is a protein made from the liver that prevents fluid 
from leaking from blood vessels [4]. It’s often used to measure 

a patient’s overall health status or their nutritional status [4]. A 
micro-albumin level higher than 30mg indicates an early 
kidney disease and a level higher than 300mg indicates a more 
advanced kidney disease [18].  

5) Albumin/creatinine ratio (ACR) 

The Albumin/Creatinine Ratio is used to screen people 
with chronic conditions, such as diabetes and high blood 
pressure and is, therefore, used as a factor in our model. 
Virtually no albumin is present in the urine when the kidneys 
are functioning properly. However, albumin may be detected in 
the urine even in the early stages of kidney disease. Creatinine 
is a byproduct of muscle metabolism which is normally 
released into the urine at a constant rate and indicates the urine 
concentration. A higher value of ACR, therefore, indicates 
deteriorating health condition for patients having diabetes, 
blood pressure and kidney disease. 

TABLE I.  NETWORK INPUT  FACTORS 

# Variable (unit of measure) Type (mean ± standard 
deviation) 

1  Birth Year Numeric (56.59±14.65) 

2  Gender Categorical (0,1) 

3  Body Mass Index (kg/m2) Numeric (28.57±5.29) 

4  Systolic Blood Pressure (mmHg) Numeric (127.22±14.81) 

5  Diastolic Blood Pressure (mmHg) Numeric (78.39±9.08) 

6  High Density Lipoprotein 
(mmol/L) 

Numeric (1.40±0.33) 

7  Low Density Lipoprotein 
(mmol/L) 

Numeric (2.96±0.72) 

8  Triglycerides (mmol/L) Numeric (1.44±0.64) 

9  Cholesterol (mmol/L) Numeric (4.99±0.83) 

10  Micro-albumin (mg/L) Numeric (29.46±31.68) 

11  Urine Albumin-Creatinine Ratio 
(mg/mmol) 

Numeric (4.14±4.87) 

 

IV. OUR APPROACH: A NEURAL NETWORK MODEL 
Artificial Neural Networks (ANNs) have gained much 

success as incremental learners and predictors that mimic 
human intelligence. They can have different layouts and use 
many different learning algorithms. A commonly used ANN is 
the feedforward backpropagation neural network as shown in 
Fig. 2, which consists of nodes arranged into multiple layers 
(numbered 0 to N, where N ≥ 2) [19]. These nodes are the 
basic processing units that roughly mimic the function of brain 
neurons. Layer 0 represents the input layer, layer N represents 
the output layer, and layers 1 to N-1 represent the hidden 
layer(s) [19]. Nodes in the neighbouring layers are connected 
by forward links through which information flows from the 
input towards the output layer. Each connection has an 
associated weight that is changed by the learning algorithm 
during the network training phase. A 3 layer 11-7-2 network 
with 11 input, 7 hidden and 2 output nodes would thus have a 
total of 91 weight values ((11*7) + (7*2)).  



Fig. 2 ANN architecture. Information flows from the 11 input 
nodes (and 1 bias node) to the 7 hidden nodes, and finally to the 2 
output nodes. wll’

ji is the weight to node j in layer l from ith input in 
layer l’. 

As the training progresses using labeled data which has a 
set of input and the desired output values (d), network weights 
are adjusted in multiple iterations to align the outputs (y) more 
and more each time to the expected values until the error is 
reduced to an acceptable level or a threshold number of 
iterations is reached. So, in each iteration for the input vector p, 
the error (e) is calculated from the difference between the 
desired (dp) and obtained (yp) output values. 

 e = (dp –  yp) (1) 

The backpropagation algorithm tries to minimize the error 
by following the downward slope of the error curve of the sum-
squared error value, which is called the gradient descent 
approach as given below.  

 ∑p(dp –  yp)2  (2) 

The sigmoid function is commonly used as the transfer 
function to generate node outputs. 

 S = 1 / (1 + e(-m * net))  (3) 

where net is the total input signal of the node and m is the 
slope of the sigmoid function. For our network, we use m = 1.  

A. ANN Architecture  
 We developed a backpropagation neural network composed 
of 11 input nodes, 7 hidden nodes, and 2 output nodes in order 
to classify the hypertensive and control patients as shown in 
Fig. 2. The 11 input nodes were used to represent the 11 factors 
of interest. The number of nodes in each layer is indicative of 
the overall complexity of the system and affects the required 
processing time [3]. More hidden nodes enable better mapping 
of the input to the output and often better accuracy of the 
results which also comes with the adverse effects of increased 

processing time and overfitting of the data. Overfitting makes 
the model less efficient for varying input data. Designing a 
model thus involves taking the above factors into consideration 
and achieving a balance of complexity, accuracy, flexibility 
and performance.  

B. Data Preprocessing 
We did a substantial amount of cleaning and preprocessing 

of the CPCSSN data prior to feeding it into our network. The 
data processing flow is shown in Fig. 3 below. 

 
Fig. 3 Data processing flow of the project. 

We began with the labeled CPCSSN data where patients 
are labeled with the detected types of chronic diseases if 
applicable. The data was anonymized and each patient was 
identified with a patient ID. Patients may be suffering from one 
or more of the eight chronic diseases of interest to the CPCSSN 
researchers. These eight diseases include: hypertension, 
diabetes, chronic obstructive pulmonary disease (COPD), 
dementia, depression, epilepsy, osteoarthritis, and Parkinson’s 
disease. We considered the control patients as individuals who 
are not suffering from any of the aforementioned conditions 
but still seek medical treatments for other reasons. We then 
extracted the factors of interest from multiple tables within the 
CPCSSN database (Microsoft SQL Server) for both 
hypertensive and control patients for analytics. 

First we selected the data items for analytics from the 
multiple set of tables and data items in the CPCSSN data which 
included patients’ encounters with the physicians, doctors’ 
comments, billing information etc. These data items were 
selected based on a comprehensive overview of the literature in 
order to ensure that all network variables were evidence-based.  

Next we selected the period of data to include in the data 
extraction process because an individual may undergo a large 
number of tests and physical exams throughout their lifetime. 
For hypertensive patients, we selected the tests occurring 
within a close temporal proximity to the date of diagnosis. In 
order to do this, the total amount of days was calculated 
between each lab test and the date of diagnosis of each patient. 
The minimum value then determined selection of the lab test 
for extraction. For control patients, we selected the test closest 
to their date of registration in the CPCSSN data set since they 
lacked any identifying diagnosis dates.  



We initially extracted diagnosis codes and medication data 
along with the demographic, lab and physical exam data from 
multiple CPCSSN tables into a master table for analytics. We 
got almost 100% accuracy as both the medication data and 
diagnosis codes are deterministic factors of a disease and incur 
target leaks during network training. Target leaks are any 
pieces of information hinting at patterns in the data. These 
factors also required a large number of input nodes to represent 
which also substantially reduces generalizability.  

Our final data set included the 11 factors listed in Table I 
from the demographic, lab, and physical examination data. We 
aggregated the data into a master table for cleaning and 
preprocessing such as assigning class values as described in 
Section 3. The master table was then exported as a .csv file 
which was used as an input to our custom java application for 
further processing of the data. Our application took columns of 
interest from the .csv file and converted the data into a format 
that our ANN could process. 

At this point we used the following criteria to clean the 
data.  

a. Any patient missing all nine lab and physical exam tests 
as listed in Table I is removed from the data.  

b. Patients born prior to 1940 are removed.  
c. Remaining missing values in the data are then converted 

to 0’s since the absence of a particular lab test may be 
indicative of the absence of hypertension. 

The numerical data, which basically included all factors 
except the gender, was then converted into z-scores using Eq. 4 
as given below. Here X represents each of the data items or 
factors, µ  represents the mean of all the data values and s 
represents the standard deviation.  

 z-score = (X - µ / s) (4) 

Traditionally max-min scores are used to convert this data 
into 0-1 ranges. However, we used Z-scores in order to identify 
outliers and also because we reasoned that extreme values 
could be considered important for a medical based network 
(i.e.: very high values typically indicate more severe 
symptomology). Gender, the only categorical variable, was 
encoded into 1-of-N vectors (where N = the number of unique 
values this factor can take). For example, [0,1] = male whereas 
[1,0] = female. 1-of-N vectors are important to ensure that the 
network can distinguish unique variables and prevent network 
bias [19].  

We processed and stored the converted data into another 
.csv file to use as the input for the ANN. Records with a z-
score higher than 5 or lower than -5 were excluded from the 
data set because they were considered to be extreme outliers 
and the results of miscoding of the data.  

C. Implementation using Matlab 
The pattern recognition tool in the neural network toolbox 

in Matlab was used to build our predictive diagnostic model to 
distinguish the hypertensive from the control patients. This tool 
utilizes a scaled conjugate gradient algorithm by default. We 
used the preprocessed consolidated data from the CPCSSN 

data set and split the data into 70% for training, 15% for 
validation, and 15% for testing samples as shown in Fig. 4. 
Network training is terminated when either the magnitude of 
the gradient falls below 1e-5 or the validation performance 
fails to decrease for a total of 6 iterations. Validation 
performance is based on cross-entropy error.   

 
Fig. 4 Data split (70%, 15%, 15%) for training, validation, and 

testing phases. Also shows the total number of patients in each 
classification group. 

V. RESULTS 

Performance of the ANN model is measured in terms of the 
number of patients correctly identified as hypertensive patients 
in Matlab. Patients who do not have hypertension but are 
incorrectly classified as hypertensive patients constitute the 
false positive group and patients who have hypertension but are 
wrongly classified as non-hypertensive form the false negative 
group. Patients correctly classified as hypertensive patients are 
in the true positive group while those correctly classified as 
non-hypertensive patients are in the true negative group. A 
Confusion Matrix is commonly used to express the accuracy of 
classification in terms of the above four groups, and their sizes 
are compared to the total data. The other commonly used 
measure is the Receiver Operating Characteristic (ROC) curve 
which graphically illustrates the performance of a binary 
classifier system. The curve is created by plotting the true 
positive rate (TPR) against the false positive rate (FPR) at 
various threshold settings. The true-positive rate, also known 
as sensitivity or recall in machine learning, is the ratio of the 
number of true positives to the total number of data items in 
that class. The false-positive rate, also known as the fall-out, is 
calculated as (1–specificity), where specificity indicates the 
ratio of the number of true negatives to the total number of data 
items in that class. Each prediction result or instance of a 
confusion matrix represents one point in the ROC space. We 
discuss our results in this section using confusion matrix and 
ROC. 

Fig. 5 shows the confusion matrix generated by Matlab 
where output class 1 represents the hypertensive patients and 
output class 0 represents the control patients. The green vertical 
striped blocks demonstrate correct classifications (42.4% true 
positives and 39.9% true negatives) and the red horizontal 
striped blocks show incorrect classifications (9% false 
positives or Type I error, and 8.7% false negatives or Type II 
error). In these four blocks, the numbers on the top denote the 
total number of patients in each class and the numbers on the 
bottom denote the same in percentage. Finally, the black box 
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on the bottom right corner shows overall classification 
accuracy of the network. Our network achieves 82.2%, 82.3%, 
and 82.5% accuracies in training, validation, and test phases, 
respectively. The confusion matrix only shows the combined 
overall accuracy of 82.3% at the bottom right corner. 
Therefore, the confusion matrix demonstrates that our network 
can predict both the presence and absence of hypertension 
across patient population with about 82% accuracy. 

 
Fig. 5 Confusion matrix demonstrating 82.3% overall accuracy.  

 
Fig. 6 ROC Curves from Matlab for training, test, and validation 

phases as well as the combined result (all ROC). 

The ROC curves in Fig. 6 show smooth plots for the 
training, validation and test phases and the sharp rises of the 
curves depict a good TPR/FPR ratio. Points above the straight 
line, called the line of no-discrimination, implies good 
predictive outcomes and the upper left corner of the ROC 
space indicates the best possible prediction representing 100% 
sensitivity (no false negatives) and 100% specificity (no false 
positives). ROC curves are good for comparing the 
performances of multiple models. 

A. Discussion 
The typical performance for hypertension diagnosis ranges 

from about 80-90% accuracy depending on the data and the 
model. Table II compares our approach to two other 
approaches that achieve good accuracy using ANN models. 

TABLE II.  COMPARISON OF ANNS 

 Ture et al. developed a network that achieves greater than 
90% of sensitivity, greater than 66% of specificity, and 81.48% 
accuracy during testing using only 452 patients and 252 
controls. Samant and Rao achieved a 92.85% accuracy using a 
deep learning network with 2 hidden layers and a total of 981 
subjects (the number of patients and controls was not reported). 
Both the above studies used data collected at a single medical 
facility unlike our data which is collected from many different 
EMR systems and from the offices of many different 
physicians. Also we use a much larger data sample compared 
to the other works. Sumathi and Santhakumaran [24] also 
developed a neural network model and reported that it has 
reliable performance when compared to a physician but did not 
report the accuracy or number of patients used in their study.  

We achieve about 82% accuracy which is quite high 
considering the data used in the study and the varying health 
factors that influence the results. The versatility of the EMR 
systems from which the data is collected in the CPCSSN data 
bank and the large number of patient records in the data 
suggest a high degree of confidence in the results obtained and 
ensure that the model is more generalizable. However, the 
preprocessing of the lab and exam data may be improved 
further. Currently the missing diagnosis date for the control 
group (no disease) makes it difficult to select the lab results to 
compare with the hypertensive group. One option may be to 
either take an average of all the lab results or use a wide time 
window to select from for each patient. For example, it may be 
better to select up to three lab tests per patient. However, such 
adjustments come with the obvious disadvantages of increased 
inputs nodes (three times more), decreased generalizability, 
and increased processing time.   

The network accuracy may also be further improved by 
including a wider range of evidence-based factors found in the 
literature. Several key demographic factors are currently 
unavailable within the CPCSSN database in a standardized 
format which limited the number of valuable factors that could 
be used for training the network. Access to information such as 
smoking history, family history of hypertension, alcohol 
consumption, and stress factors would be beneficial. The 
network must also be tried out in practice or real life to 
determine its usefulness in a healthcare setting.  

VI. CONCLUSION 
Real time predictive systems based on EMR data can assist 

preliminary diagnosis and eventually reduce hospital 
readmissions, cost, and prevalence of more severe illness. In 

Paper Patients/ 
Control 

Input 
factors 

Hidden 
nodes 

Output 
nodes 

Accuracy 

LaFreniere 
et al. 

185,371/ 
193,656 11 8 2 82.3% 

Ture et al. 452/242 9 Unknown 2 81.48%   

Samant et al. 981, split 
unknown  13 20 (L-1), 

5 (L-2) 2 92.85% 



this paper, we propose a predictive ANN model to diagnose 
hypertension using the large integrated CPCSSN data which 
achieves an impressive 82% accuracy. Existing works use very 
small data samples collected at specialized centres which 
provide high accuracy but are impractical considering the 
many EMR systems in use by the physicians these days. Other 
approaches using statistical techniques do not support 
incremental learning as the neural networks do.  

Apart from assisting physicians as a decision support tool, 
such predictive diagnostic tools can have a wide range of 
applications. These systems can be used in triage section in the 
hospitals to assist the nurse practitioners. Patients themselves 
can use these systems at home in the future instead of a simple 
blood pressure monitor to prevent critical situations. Wearable 
technology is gaining a lot of attention recently given the 
relatively simple means by which personal vitals can be 
monitored more frequently and continuously [8]. Home 
devices such as a Bluetooth enabled blood-pressure monitor 
can easily feed important information to a predictive system 
such as our ANN, which would provide real-time assessments 
to patients about their health conditions so that they can get 
medical help at the right time [8]. The data thus collected over 
a period can also be extremely useful for the physicians and 
researchers.  

A. Future Work 
As a future work, we would like to extend the ANN model 

to deep learning networks with multiple hidden layers to study 
more influencing factors and complex disease patterns [21]. 
According to the literature, family history and risk factors such 
as smoking and alcohol use are linked directly to hypertension. 
We need to collect this data and incorporate it in our network. 
We also like to categorize medications and include it as 
another input factor in the network.  
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