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Abstract—Various recent events in the Mediterranean sea have
shown the enormous importance of maritime search-and-rescue
missions. By reducing the time to find floating victims, the num-
ber of casualties can be reduced. A major improvement can be
achieved by employing unmanned aerial systems for autonomous
search missions. In this context, the need for efficient search
trajectory planning methods arises. Existing approaches either
consider K-step-lookahead optimization without accounting for
kinematics of fixed-wing platforms or propose a suboptimal
myopic method. A few approaches consider both aspects, however
only applicable to stationary target search. The contribution of
this article consists of a novel method for Markovian target
search-trajectory optimization. This is a unified method for fixed-
wing and rotary-wing platforms, taking kinematical constraints
into account. It can be classified as K-step-lookahead planning
method, which allows for anticipation to the estimated future
position and motion of the target. The method consists of a mixed
integer linear program that optimizes the cumulative probability
of detection. We show the applicability and effectiveness in
computational experiments for three types of moving targets:
diffusing, conditionally deterministic, and Markovian. This ap-
proach is the first K-step-lookahead method for Markovian target
search under kinematical constraints.

I. INTRODUCTION

Recent events have shown the enormous importance of
search-and-rescue missions. In the spring of 2015, over 1.300
lifes were lost at sea in a single month after refugee ships
sunk in the Mediterranean sea [1]. Operational decisions for
a search mission by a fleet of aircraft are made by an as-
signed coordinator of a Maritime Rescue Coordination Center
(MRCC). He allocates the search effort by assigning searchers
to distinct subareas. This task is already supported by systems
based on search theoretical approaches. E.g. the search and
rescue optimal planning system [2], which is currently used
by the United States Coast Guard. Nevertheless, individual
pilots are expected to plan their optimal trajectory by hand,
which is tremendously complex; it is proven to be an NP-
complete optimization problem by [3] for a single platform
searching for a single stationary target. Life-rafts at sea are,
moreover, likely to drift due to wind and current. In this case,
it is not sufficient just to fully cover the search area, because
it is possible that the life-raft drifts into an already observed
area. Planning for moving target search is considerably more
complex in general, and moreover, the kinematical constraints
of the aircraft must also be taken into account. Pilots must be
ready for take off within the prescribed time to preparedness,

which is maximal 30 minutes by international agreement.
Executing such a complex task in a stressful situation is
susceptible to resulting in a sub-optimal search-trajectory and
rescue may come too late. We therefore aim to automatize
this task with the outlook towards autonomous search-missions
by unmanned aerial vehicles (UAVs). The method presented
in this article is applicable for aerial sensor platforms in
general, i.e. platforms that are either fixed-winged or rotary-
winged, either manned or unmanned and either autonomous
or non-autonomous. We refer to an aerial sensor platform by
platform for short in the remainder of this article. For a general
introduction to the method we refer to [4].

The contribution of this article consists of a novel model
for Markovian target search-trajectory optimization. This is a
unified model for fixed-wing and rotary-wing platforms, taking
kinematical constraints into account. It can be classified as K-
step-lookahead planning method, which allows for anticipation
to the estimated future position and motion of the target. The
individual considerations of these two aspects can be found
in the related works that we discuss in the literature review.
However, these approaches are inherently incompatible. There-
fore, a completely new model is required to incorporate both
aspects, which we present in the work at hand. Another novel
aspect of our approach is the heterogeneous state space for the
target and platform, whereas all published K-step-lookahead
methods so far consider both to move on a homogeneous grid.
This concept is shown in Figure 1 and holds two benefits; a
target specific grid allows for a more accurate estimation of
the target position, whereas a platform specific grid allows for
modeling more natural flight kinematics.

The remainder of this article is structured as follows:
Section II provides a review of the related literature. In Section
III, the search-trajectory problem is stated, followed by our
method for solving this problem in Section IV. Simulations
in Section V show the applicability and effectiveness of this
method. Finally, the conclusions are presented in Section VI.

II. RELATED LITERATURE

Research initiated by Koopman [5] has led to the interesting
field of Search Theory. The standard reference Theory of
Optimal Search [6] was awarded the Lanchester Prize and
continues in [7].



Fig. 1: The heterogeneous state spaces for the target (square
grid) and the platform (hexagonal grid).

A problem that is closely related to the problem addressed
in the work at hand is the path-constrained search effort
allocation (SEA) problem [8]. Here, the search area is typically
divided into subareas to which search effort is allocated
over time. The search effort is expressed in a number of
platforms of a certain type and a duration. For solving the SEA
problem, the following exact algorithms have been proposed.
A depth-first branch and bound approach was presented in
[8], in which lower bound approximations on the probability
of non-detection are obtained by relaxing the searcher’s path
constraints. Most following approaches are also of the branch
and bound type [9], [10], [11], [12], where the aim is to
find a tightest true lower bound with low computational costs.
Computational experiences of several branch and bound pro-
cedures are summarized in [13]. Despite vast progression over
the years, computation remains intractable for larger instances.
This has led to the development of heuristic approaches such as
a receding horizon approach [14], cross entropy optimization
[15] and constraint programming [16]. This SEA problem
is, however, less suitable for autonomous search because the
trajectories of the platforms within a subarea are not provided
by the solution to this problem. For autonomous search, also
the kinematics of the aerial vehicle must be taken into account.
The first approach that explicitly considers these aerial vehicle
kinematics is presented by Bourgault et al. [17], [18]. They
showed the effectiveness of a myopic control implementation
by simulations. Search-path optimization is clearly a well
studied problem in literature. Nevertheless, an import step
towards employing fixed-wing platforms for moving target
search must be made, since no K-step-lookahead method
under kinematical constraints has been published so far. To
this aim, we propose a novel mixed integer linear program
(MILP).

III. THE SEARCH-TRAJECTORY PROBLEM

This section describes the search-trajectory problem as
introduced in [19]. It consists of the following aspects: the
probability map for the target position, the target model, the
sensor model, the platform model and, finally, the search
objective. We describe these aspects in the subsections below.

A. Probability Map

We consider the search for a moving target in discrete time
on the search area O ⊂ R2. The time allocated to a planning
stage is defined by a sequence K = (1, . . . ,K) of K time
steps. A grid based probability map partitions the search area
uniformly into a finite set of cells C. The target occupies one
unknown cell Ck ∈ C at time k ∈ K. For the duration of the
search mission, a probability map pck is maintained for each
k, where the probability of containment pck,c represents the
probability of the target occupying cell c at time k, without
being detected prior to time k. Although the initial position of
the target is unknown, it is characterized by a known initial
probability distribution pc1.

B. Target Model

The target trajectory is modeled by a stochastic process
(C0, ..., CK), which is assumed to be Markovian [20]. The
probability map evolves due to the target motion according to

pck+1,c =
∑
c′∈C

dc′,c pck,c′ , (1)

where the transition function dc′,c ∈ [0, 1] represents the
probability that the target moves from cell c′ to cell c and
is assumed to be known for each cell pair c′, c.

C. Sensor Model

We assume that the considered aerial sensor platform has a
stabilized sensor equipped to make observations. Two results
are defined for an observation Zk,c on cell c at time k:

Zk,c :=


1, if the platform detects the target in cell c

at time k,
0, otherwise.

(2)
The glimpse probability pgk,o,c represents the probability of
target detection, given target occupancy within cell c and
platform position ok ∈ O at time k, i.e.

pgk,o,c := P (Zk,c = 1 |Ck = c, ok). (3)

Let us emphasize that the glimpse probability can be positive
and variant for multiple cells at once as a result of the hetero-
geneous state spaces for targets and searchers, as visualized
in Figure 1.

When observations are made, the probability map evolves
according to the motion model as in Equation (1) and, in
addition, evolves according to the observation results as in
Equation (2) by the glimpse probability as in Equation (3).
Therefore, Equation (1) is extended to account for observation
results as follows:

pck+1,c = B
∑
c′∈C

dc′,c pck,c′ (1− pgk,o,c′) , (4)

where the normalization coefficient B is given by

B =

(∑
c∈C

pck,c (1− pgk,o,c)

)−1
. (5)



D. Platform Model

The object to control in this problem is an aerial platform.
Its motion model, adopted from [19], is given by

xk+1 = xk + sk · cos(θk + αk)

yk+1 = yk + sk · sin(θk + αk)

θk+1 = θk + αk,
(6)

where parameter sk is the speed of the platform, parameter
θk is its heading angle and αk is its change of heading
at time k, which are obviously restricted by the laws of
physics. Variables xk and yk represent the coordinates of
the platform on the plane above the search area, i.e. position
ok = [xk, yk] ∈ O.

E. Objective

The objective is to determine a search-trajectory o =
(o1, ..., oK) maximizing the cumulative probability of detec-
tion over time period K, i.e.

max
o

K∑
k=1

∑
c∈C

pdk,o,c, (7)

where pdk,o,c is the probability of detecting the target at time
k in cell c and is calculated by

pdk,o,c = pck,c pgk,o,c. (8)

The probability of containment pck,c is calculated through
Equation (4), but with B = 1. The normalization from
Equation (5) is omitted, so that the probability map is not nor-
malized. Consequently, the probability of containment pck,c
does not represent an actual probability anymore, since it does
not sum to unity over the grid cells. It does, however, sum to
the probability that the target has not been found up until time
k despite the search effort. Therefore, the objective function
in Equation (7) yields the cumulative probability of detection
over time period K.

IV. METHOD

In this section, we introduce our K-step-lookahead planning
method for search-trajectory optimization. First, in Subsection
IV-A, we use the platform model to construct a discretized and
finite platform state space. We then construct a reduced graph
in Subsection IV-B. In Subsection IV-C, we define the search-
trajectory problem on the reduced graph. Finally, we formulate
this problem as mixed integer linear program in Subsection
IV-D.

A. Platform State Space

The platform motion model in (6) results in an infinite and
continuous platform state space. We discretize this state space
in the following for efficiency purposes. First, we assume
a constant speed s in meters per second and, second, we
limit the change of heading α to a predefined set of options.
For fixed-wing platforms we chose {−γ, 0, γ} and for rotary-
wing platforms we chose {−2γ,−γ, 0, γ, 2γ, 3γ}. Here, we
use γ = π

3 (in radians), such that the resulting platform

state space, referred to by V ′, is discretized and finite. The
Voronoi diagram induced by this platform state space forms a
hexagonal grid. Fig. 2 and 3 show a segment of this grid,
supplemented by the three fixed-wing (resp. seven rotary-
wing) platform options to observe in the next time step.
Euclidean distance l = ‖ok − ok+1‖ represents the covered
distance in one time step, when moving with speed s and
the minimum radius of a turn as well. It can be derived
from the rate one turn (ROT) and the search speed s. The
ROT is a standard rate used to express the time needed for a
fixed-wing platform to make a 360 degree turn, which is two
minutes. Using basic geometry, it is straightforward to derive
the following formula for the radius of a turn l in meters:
l = 60s

π .

Fig. 2: Three fixed-wing plat-
form control options on the
hexagonal grid.

Fig. 3: Seven rotary-wing
platform control options on
the hexagonal grid.

B. Reduced Graph

The complexity of the search trajectory problem increases
exponentially with the number of nodes, so a reduced graph is
beneficial to decrease computational costs. We therefore aim
to reduce the graph, such that it exclusively contains a fixed
number of nodes which are most likely to be contained in the
optimal search-trajectory, i.e. the set of connected nodes that
yields the highest potential probability of detection. Selecting
this subset is equivalent to the maximum weight connected
subgraph problem [21], however, a greedy heuristic can be
used to approximate this subgraph. The resulting reduced
graph G = (V, A,R) is used for search-trajectory planning
and is defined by its nodes V , adjacency matrix A, and
reachability matrix R. These elements are described next.

Adjacency Matrix: The binary adjacency matrix A holds
information on the adjacency of the nodes. An entry av,v′

is 1 if node v is adjacent to node v′ and 0 otherwise. The
parameter ãv,v′ is its negation and is mentioned here, because
it will be used in the linear programming formulation of the
search-trajectory problem.

Reachability Matrix: The binary reachability matrix R is
used to direct the platform towards a node on the reduced
graph. First, recall ot ∈ O to be the platform position at
time t and let sreloc ≥ s be the relocation speed used to
cover a relocation arc. Furthermore, let k′ be the minimal
number of time steps that the platforms requires to reach



any node in V . The goal for the current planning stage
is to optimize the search-trajectory over the K time steps
{t+ k′, t+ k′ + 1, . . . , t+ k′ +K − 1}. Relocation arcs are
added between ot and each node in V for each time k ∈ K
by which it can be reached. The set of relocation arcs is
represented by the binary reachability matrix R of size |V|×K,
where entry rk,v is 1 if node v is reachable in k′ + k time
steps and 0 otherwise. The parameter r̃k,v is its negation. Note
that the planning horizon recedes by k′ + K time steps per
planning stage.

This solution has three major benefits. First, it significantly
reduces one of the dimensions of the model and thereby
its complexity. Second, a drifting uncertainty area can be
intercepted by a linear flight approach, due to the ability of an-
ticipation of the predicted target movements. The advantage of
this aspect, when compared with a myopic one-step-lookahead
method, is emphasized in a simulation shown in Fig. 4. Third,
this overcomes a typical problem faced by approaches with a
static lookahead horizon of Kstatic; if all feasible trajectories of
length Kstatic yield zero reward, no decision on the preceding
flight trajectory can be made. By using these relocation arcs,
there is at least one feasible search-trajectory yielding positive
reward.

Fig. 4: The K-step-lookahead aspect of the proposed method
(a) allows for anticipation to the target movement and finds
a direct (shorter) approach towards the east moving target.
On the other side, the myopic method used in (b) acts greedy,
resulting in a suboptimal detour. As a result, the platform in (a)
has a higher probability of detecting the target in K time steps.
This aspect intensifies as the approach distance increases.

C. The Search-Trajectory Problem on the Reduced Graph

The search-trajectory problem on the reduced graph G is
formulated in the following. It consists of finding a physically
feasible trajectory on graph G, such that the cumulative
probability of detection is maximized. For a simple graph
(which does not have multiple arcs), a trajectory may be
specified completely by a sequence of nodes [22]. Formally:

Definition 1 (Trajectory): A trajectory is a sequence of
nodes (vk)k∈K, where consecutive nodes in the sequence are
adjacent nodes in the graph, i.e. node vk+1 is in set V(vk),
for all k ∈ K.
The physical feasibility of a trajectory is inherent for a
rotary-wing platform. However, a fixed-wing platform can not

hover, make sharp turns, or fly backwards. Therefore, for the
latter platform type, additional constraints are required for a
trajectory to be physically feasible.

Definition 2 (Physically Feasible Trajectory): A trajectory
(vk)k∈K is physically feasible for fixed-wing platforms if and
only if node vk+1 is in set V(vk) \ V(vk−1) for all k ∈ K.
The sets V(vk) and V(vk) \V(vk−1) are shown schematically
in Fig. 5 and Fig. 6 respectively.

Fig. 5: Kinematical con-
straints on the trajectory for
rotary-wing platforms. The
nodes in set V(vk) are ad-
jacent to node vk. A trajec-
tory (vk−1, vk, vk+1) is phys-
ically feasible for a rotary-
wing platform if and only if
node vk+1 ∈ V(vk).

Fig. 6: Kinematical
constraints on the trajectory
for fixed-wing platforms. A
trajectory (vk−1, vk, vk+1)
is physically feasible for
a fixed-wing platform
if and only if node
vk+1 ∈ V(vk) \ V(vk−1).

D. Mixed Integer Linear Programming Formulation

The search-trajectory problem on the reduced graph can now
be formulated as a mixed integer linear program (MILP). Solv-
ing the MILP yields the physically feasible search-trajectory
that maximizes the cumulative probability of detection.

Decision Variables: Three types of decision variables are
necessary. Let B = {0, 1}. The decision variable zk,v ∈ B is 1
if the platform is at node v at time k and 0 otherwise. These
are the main decision variables, since they yield a search-
trajectory on the reduced graph. For the accurate calculation of
the objective function two types of auxiliary decision variables
are used. Auxiliary decision variable pdk,c ∈ [0, 1] represents
the probability of detection in cell c at time k and auxiliary
decision variable pck,c ∈ [0, 1] represents the probability of
containment in cell c at time k. In the remainder of this section,
decision variables are written in italic font, whereas variables
for input data are written in normal font.

Objective: Recall the objective from Subsection III-E. We
aim to maximize the cumulative probability of detection by
summing over each cell c ∈ C and each time step k ∈ K.
Hence the objective is

max

K∑
k=1

∑
c∈C

pdk,c (9)

subject to Constraints (10)-(22).



Objective Constraints: To assure calculation of auxiliary de-
cision variables pdk,c according to Equation (8) we introduce
the following objective constraints:

∀c ∈ C,∀v ∈ V,∀k ∈ K :

pdk,c − pgk,v,cpck,c ≤ 1− zk,v (10)

This set of constraints only restrict auxiliary decision variables
pdk,c sufficiently when node v is selected for time k. The
following set of constraint ensure pdk,c to be at most equal
to the glimpse probability from the visited node (this is at
most one each time), which is less restrictive compared to
the constraints (10). But more importantly, it restricts from
obtaining search rewards from non-visited nodes, and thereby
complementing the constraints (10).

∀c ∈ C,∀k ∈ K :
∑
v∈V

zk,vpgk,v,c ≥ pdk,c (11)

The combination of constraints (10) and (11) ensure accurate
calculation of auxiliary decision variables pdk,c.

Update Constraints: Auxiliary decision variables pck,c must
evolve over time according to Equation (4), as prescribed by
the transition function dc′,c. This is ensured by the following
constraints:

∀c ∈ C,∀k ∈ {2, ...,K} :∑
c′∈C

dc′,cpck−1,c′ −
∑
c′∈C

dc′,cpdk−1,c′ = pck,c (12)

Trajectory Constraints: The following constraints are intro-
duced to ensure the necessary structure of a trajectory. First
of all, the trajectory must be a sequence of nodes. So for any
time k a maximum of one node can be selected, i.e.

∀k ∈ K :
∑
v∈V

zk,v ≤ 1. (13)

This sum may be zero, because it is possible for a platform
to relocate during a number of time steps, say k′, before the
search starts. In this case, no nodes are selected for time steps
k < k′. If the platform is at a node at time k ≥ k′, it also has
to be at a node at time k + 1, i.e.

∀k ∈ {1, ...,K − 1} :
∑
v∈V

zk,v −
∑
v′∈V

zk+1,v′ ≤ 0. (14)

The next constraint ensures the adjacency of direct suc-
cessive nodes. When node v is not adjacent to node v′, i.e.
ãv,v′ = 1, the platform can either be at node v at time k or at
a non-adjacent node v′ at time k + 1 or at neither of the two
nodes, i.e.

∀k ∈ {1, ...,K − 1},∀v ∈ V :∑
v′∈V

ãv,v′zk+1,v′ + zk,v ≤ 1. (15)

Kinematical Constraints: The flight kinematic constraints
ensure that the trajectory contains no sharp turn, no loop and
no cycle of length two for fixed-wing platforms. To this end,
we introduce the parameter ψ ∈ B, which assumes the value
zero if the platform is fixed-winged. In this case, the right-
hand-side value equals one. When the platform was at node v
at time k−1 and node v is adjacent to node v′, i.e. av,v′ = 1,
the platform cannot be at node v′ at time k + 1, i.e.

∀k ∈ {2, ...,K − 1},∀v ∈ V :∑
v′∈V

av,v′zk+1,v′ + zk−1,v ≤ 1 + ψ. (16)

A rotary-wing platform, however, is able to make sharp turns,
hover and fly backwards. Therefore, such platforms should not
be restricted by this constraint. The parameter ψ assumes the
value one if the platform is rotary-winged. In this case, the
right-hand-side value equals two. This constraint is thereby
relaxed for rotary-wing platforms.
At the start of a planning stage, the platform either relocates or
keeps searching. These scenarios require different constraints;
either the relocation constraint or the connecting constraint.

Relocation Constraint: The relocation constraint ensures the
reachability of an assigned node. It prevents the assignment of
the platform to a node at a time k, when it is physically out of
reach. This is achieved by restricting the sum of non-reachable
nodes to be zero over the entire planning horizon, i.e.

∑
v∈V

K∑
k=1

zk,v r̃k,v = 0. (17)

Recall from Subsection IV-B that the parameter r̃k,v is 1 if
node v is not reachable in k time steps and 0 otherwise.

Connecting Constraints: The connecting constraints ensure
the physical feasibility over the entire duration of the search
mission by connecting the walks of the consecutive planning
stages. The connection requires an overlap of two nodes, since
the first newly assigned node is restricted by the second to last
node (denoted by v−1) and by the last node (denoted by v0).
These nodes have been selected in the previous planning stage
and are therefore mandatory at the start of the next trajectory,
i.e.

z0,v0 = 1 and z−1,v−1
= 1. (18)

The trajectory constraints (13), (14), and (15) for time k = 0
and kinematical constraints (16) for times k = −1 and k = 0
are furthermore included to ensure the physical feasibility of
the connection between the walks.

To be able to fix the last two nodes v−1 and v0 in the
next planning stage, at least two nodes are to be selected in
the current planning stage. This is ensured by the following
constraint: ∑

v∈V

K∑
k=1

zk,v ≥ 2. (19)



Initialization constraints: The following constraint specifies
the initial probability of containment.

∀c ∈ C : pc1,c = pc1,c. (20)

Binary constraints: The binary constraints for the main
decision variables are

∀k ∈ K,∀v ∈ V : zk,v ∈ B. (21)

Probability constraints: The last constraints restrict the aux-
iliary variables. These represent probabilities and are therefore
restricted to the unit interval. For the probability of detection
and for the probability of containment we have

∀k ∈ K,∀c ∈ C : 0 ≤ pdk,c, pck,c ≤ 1. (22)

The total number of decision variables, including the auxiliary
decision variables, is of order O(K|V||C|).

V. SIMULATIONS

In this section, we present the simulation environment and
results. The novel MILP is benchmarked against an established
method for autonomous UAV trajectory-planning. First, we
describe the benchmark method in Subsection V-A, followed
by the experimental set-up in Subsection V-B. Finally, we
present the results in Subsection V-C.

All simulations were performed on an Intel(R) CoreTM i7-
4810MQ CPU processor with 2.80 GHz and a usable memory
of 15.6 GB. The simulation platform is written in Matlab,
using Gurobi with optimized parameter settings to solve the
MILPs.

A. Benchmark Method

We compared the MILP method with the artificial potential
field (APF) method [23]. We chose this well established
method, because it is often used in control applications includ-
ing scenarios for autonomous UAV trajectory-planning and,
in particular, UAV search for moving targets [24]. The APF
method is a myopic method, where the next node v for time
k + 1 is decided on by maximizing the potential f(v, k + 1),
as follows:

max
v∈V(vk)\V(vk−1)

f(v, k + 1) =
∑
c∈C

pck+1,c√
‖v − c‖

, (23)

where ‖v − c‖ is the Euclidean distance between node v and
cell c. Another reason to use the APF method is its robustness
to the challenge of relocation which we would face with other
myopic methods.

B. Experimental Set-Up

We describe the set-up for the comparative simulations in
the following, starting with the used platform characteristics.
For a fair comparison between our anticipatory method and
the myopic APF method, we used sreloc = M as the
relocation speed, where M is some large value such that
each node is reachable within one time step. This way, the
disadvantageous greedy character of the APF is canceled out
during relocation. The start position [0, 0] is irrelevant due

to the large M and the homogeneous environment. We used
s = 2 as the search speed, resulting in a distance between
nodes of l = 2. Consequently, the inradius of the hexagons
is one. For sensor characteristics, we used the typical glimpse
probability function [10]:

pgk,o,c = 1− exp−ω(k,o,c), (24)

with ω(k, o, c) ≥ 0 being a measure of search effectiveness for
cell c. The search effectiveness decreases with the Euclidean
distance ||o−c|| between cell c and the platform at o and with
the effect of disturbances δk at time k, as follows:

ω(k, o, c) =W (||o− c||+ δk)
−1
,

where W is some sensor quality indicator, drawn from the
uniform distribution, i.e. W ∼ U(0.25, 1.25). Disturbances δk
were fixed at zero for all k ∈ K. The simulated search missions
take place on a square grid of size 80 × 80. In all tests, the
initial target location C0 was bivariate normally distributed
(C0 ∼ N (µ,Σ)), with µ = ( 4040 ) and Σ =

(
σ2
1 0

0 σ2
2

)
, with

σ2
1 , σ

2
2 ∼ U(3, 7).

Three types of target movement models have been considered:
• Diffusing: The target moves in either north, east, south,

or west direction with equal probability (See Fig. 7);
• Conditionally Deterministic: The target moves in east

direction with probability one (See Fig. 8);
• Markovian: The target moves in either north or east

direction with equal probability (See Fig. 9).

Fig. 7: Snapshots of a simulation of one fixed-wing platform
searching for a single target with a diffusing motion model.

For each of the three motion models, we ran a total of 60
test instances on randomized initial probability maps, resulting
in 20 for each of the time periods K ∈ {4, 6, 8}. Success was
measured by the achieved cumulative probability of detection.



Fig. 8: Snapshots of a simulation of one fixed-wing platform
searching for a target with a conditionally deterministic motion
model.

Fig. 9: Snapshots of a simulation of one fixed-wing platform
searching for a single target with a Markovian motion model.

C. Results

The performance results are presented in Fig. 10. Here,
the improved probability of detection is plotted relative to
the results of the APF method. Fig. 10a shows the results
of tests concerning a target with a diffusing motion model.
Fig. 10b and Fig. 10c show the results of tests concerning
a conditionally deterministic motion model and a Markovian
motion model respectively. The results show that the MILP
method yields better results when compared to the APF in each
test instance. The MILP method shows especially powerful at
maximizing the probability of detection in the conditionally
deterministic target case. Here, improvements of up to 16.8%
are achieved.

Besides the achieved cumulative probability of detection, we
furthermore recorded the computation time. The computation
time is effected by K, by the number of nodes |V|, and by

(a) Diffusing motion model

(b) Conditionally deterministic motion model

(c) Markovian motion model

Fig. 10: Simulation results in improved probability of detection
relative to the results of the APF method.

Fig. 11: Runtime plotted as a function of the number of
decision variables in the MILP.

the number of cells |C|. Recall from Subsection IV-D, that the
number of decision variables is of order O(K|V||C|). In Fig.
11, runtime is plotted as a function of the number of decision
variables in the MILP. We set a limit on the computation time
at 3600 seconds, which was reached in four out of all test
instances. In this case, the solver returns the so far best found
solution, which was still better than the solution found by the



APF method in every occurrence.
The advantage of the APF method is the very low com-

putational cost. It required less than one second on all in-
stances. In the MILP method, on the other hand, optimization
is performed during the execution of a previously planned
search-trajectory. Therefore, it suffices to find a solution within
the order of minutes. However, the computation time needed
to prove optimality grew rapidly with K. The problem was
solved within nine seconds for all instances with K = 4
and within 283 seconds for all instances with K = 6, but
computation time exceeded one hour for some instances with
K = 8. An estimation on available computation time can
be acquired using the standard turn rate in aviation. It takes
a platform two minutes to turn 360◦ when turning with the
standard turn rate. This takes six nodes on the reduced graph.
So a time step would approximately have a duration of 20
seconds in the application. This means that when K = 12, the
solver has four minutes to plan for the next stage. We conclude
that for larger instances, solving the MILP using a commercial
solver is insufficient. However, customized algorithms on
similar problems yield promising results [11].

VI. CONCLUSION

Several recent cases, especially emergencies at sea, have
shown the high importance of acquiring knowledge about the
location of a target. Natural disasters, extreme cases in air
transport and the shipping industry as well as terrorist threats,
are the basis for possible scenarios of interest. Many of these
scenarios can have disastrous consequences when the target
is not found (in time). Effective search-trajectory optimization
methods are therefore needed. We presented a novel approach,
consisting of a mixed integer linear program. This model
accounts for the kinematics of the platforms and the fluidity
of the trajectory, as well as for the uncertain movements of
the target. It furthermore enables K-step-lookahead planning,
which yields a higher probability of detection than myopic ap-
proaches. We ran simulations to substantiate this proposition.
Results show that our approach yields much better results in
terms of probability of detection on all test instances, which
is crucial in emergency operations.

For now, the main goal of this paper was to introduce and
demonstrate the new model. The focus of our future research
is on developing a customized algorithm (e.g. [25]), such that
optimal search-trajectorys can be planned efficiently for larger
instances.
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