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A Hybrid Deep Boltzmann Functional Link Network for
Classification Problems

R. Savitha, Kit Yan Chan, Phyo Phyo San, Sai Ho Ling and S. Suresh

Abstract—This paper proposes a hybrid deep learning algo-
rithm, namely, the Deep Boltzmann Functional Link Network
(DBFLN) for classification problems. A Deep Boltzmann Machine
(DBM) with two layers of Restricted Boltzmann Machine is the
generative model that is used to generate stochastic features
and input weights for the discriminative model. A discriminative
Functional Link Network (FLN) uses these features to approxi-
mate the nonlinear relationship between a set of features and
their classes. FLN has three layers, namely, the input layer,
the enhancement layer and the output layer. In a DBFLN, the
features generated at the two hidden layers of the DBM act as the
input features and the enhancement layer responses of the FLN.
The output weights of the FLN are then estimated as a solution to
a linear programming problem through pseudo-inverse. We first
evaluate the performance of the DBFLN on three benchmark
multi-category classification problems from the UCI machine
learning repository, namely, the image segmentation problem, the
vehicle classification problem and the glass identification prob-
lem. Performance study results on the benchmark classification
problems show that DBFLN is an efficient classifier.

We then use the DBFLN to classify the images in the TID2013
data set, based on their depth of distortions. The TID2013 data set
comprises of 25 images, each with 5 levels of 24 distortion types.
In all, the data set has 3000 images, which can be classified based
on the depth of distortion. Thus, the IQA classification problem is
defined as classifying the distorted images into one of the 5 classes
(depending on the depth of distortion) using human visual image
metrics as the input features. The performance of the DBFLN in
classifying the image quality is compared with those of Support
Vector Machines, Extreme Learning Machines, Random Vector
Functional Link Network, and Deep Belief Network. Performance
studies show the superior classification ability of the DBFLN.

I. INTRODUCTION

The universal approximation ability of single layer feedfor-
ward neural networks (SLFN) render them the ability to solve
classification and regression tasks. However, the conventional
back propagation learning algorithm used to train these net-
works incur higher computational cost, is sensitive to learning
rate, and does not necessarily converge to the global minima.
Such issues are overcome by the Random Vector Functional
Link Networks (RFLN) [1], [2], where the weights between

Corresponding Author: Ramasamy Savitha (Member, IEEE) is with the In-
stitute of Infocomm Research, Agency for Science, Technology and Research,
Singapore. Email: ramasamysa@i2r.a-star.edu.sg

Kit Yan Chuan is with the School of Electrical Engineering and Computing,
Curtin University, Australia. Email: kit.chan@curtin.edu.au

Phyo Phyo San (Member, IEEE) is with the Institute of Infocomm Re-
search, Agency for Science, Technology and Research, Singapore. Email:
sanpp@i2r.a-star.edu.sg

Sai Ho Ling (Senior Member, IEEE) is with the Centre for Health
Technologies, Faculty of Engineering and Information Technology, University
of Technology Sydney, Australia. Email: steve.ling@uts.edu.au

Sundaram Suresh (Senior Member, IEEE) is an Associate Professor at
the School of Computer Engineering, Nanyang Technological University,
Singapore. Email: ssundaram@ntu.edu.sg

Enhancement
Layer

x1
2

x2

x2
M 2

2
Input

Layer

x1
1

x1

M 1x1

Output
Layer

ŷ
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Fig. 1: A Functional Link Network

the input and hidden layer are randomly generated and are
fixed during training.

Fig. 1 shows the structure of a RFLN. It can be seen from
Fig. 1 that the functional link network has an input layer,
an enhancement layer and an output layer. Unlike the neural
network, the RFLN has connections between the input and
output layers that helps to understand the variable significance
and the variable interactions. It has also been shown through
experimental studies in [1] that the connections between input
and output layer enhances the performance of the RFLN.

Random-Vector Functional Link Networks (RVFLN) [1],
[2] are a class of FLNs, where the weights between the input
and the enhancement layers are randomly generated and are
fixed during the training phase. Random initialization provides
infinitely possible hypotheses to fit the given data, affecting the
stability of performance. However, with proper initialization
of the input weights of the RFLN, it is possible to achieve
a stable and optimal performance of the RFLN. Therefore,
it is necessary to develop an efficient method for weight
initializations, to ensure stable and optimal performance of
a RFLN. The recently developed Deep Boltzmann Machines
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(DBM) generate a set of stochastic features that represent the
input probability distribution. These stochastic features are
linked to the input features through connecting weights. As
the DBM generated features are representative of the input
features, the trained weights of the DBM can be used as the
input weights of the FLN.

Therefore, in this paper, we propose a hybrid deep learn-
ing algorithm, namely, the Deep Boltzmann Functional Link
Network (DBFLN). DBFLN comprises of a generative two-
layered Deep Boltzmann Machine (DBM) and a discriminative
Functional Link Network (FLN). A Deep Boltzmann Machine
consists of multiple stacked layers of Restricted Boltzmann
Machines (RBM). They are generative models that generate
a set of stochastic features that represent the probability
distribution of the inputs. As these generated features represent
the input distribution more effectively, the hidden layers of
the DBM are used as the input and enhancement layers of
the FLN. The trained weights of the DBN are used as the
input weights of the FLN. The output weights of the FLN
are then estimated in a single step through pesudo-inverse.
Therefore, the DBFLN overcomes the issues due to random
initialization of weights in the RFLN, and ensures stable
performance. We first evaluate the performance of the DBFLN
on three benchmark multi-category classification problems
from the UCI machine learning repository, namely, the image
segmentation problem, the vehicle classification problem, and
the glass identification problem. In this study, the performance
of the DBFLN is compared with those of Support Vector
Machines, Neural Networks with back propagation, Extreme
Learning Machines (ELM) [3], Random Vector Functional
Link Network (RVFLN) and Deep Belief Networks [4], [5].
Performance study results on the benchmark classification
problems show that DBFLN outperforms the other state-of-
the art algorithms used in the study.

We then apply DBFLN to classify the images of the
TID2013 database [6] based on the quality of these images
defined by their depths of distortion. TID2013 is an extension
of TID2008 [7] and has been developed based on 25 refer-
ence images from the KODAK image data base, where each
image is contaminated with 24 different types of distortions.
Each distortion type has 5 levels of contamination. Thus,
the TID2013 database consists of 3000 images. In [6], a
few Human Visual system (HVS) image metrics have been
identified to represent the distortions of the TID2013 data set.
We use these metrics to classify the quality of the images,
based on the levels of distortion. We conduct a 10-fold cross
validation study using 70% of the samples in training and
the remaining 30% in testing. In this study, the classification
performance of DBFLN is compared with that of SVM, ELM,
RFLN and DBN. Performance study results show the superior
classification ability of DBFLN.

The paper is organized as follows: Section II describes
the structure and the learning algorithm of the hybrid deep
Boltzmann functional link network in detail. In Section III,
we first present a brief discussion about the TID2013 data set
and then present the results for each subset of the data set.
Finally, Section IV presents a summary of the study.
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Fig. 2: Block Diagram of the Proposed Hybrid Deep Boltz-
mann Functional Link Network (DBFLN). The weights W1

and W2 are trained by the DBM. The features x1 and x2 are
generated after training the DBM. These generated features
are used to obtain the output weights (V) of the FLN. The
bold lines represent the weights trained through functional link
network.

II. HYBRID DEEP BOLTZMANN FUNCTIONAL LINK
NETWORK

In this paper, we propose a hybrid deep learning algorithm
[8], namely, the Deep Boltzmann Functional Link Network
(DBFLN). The hybrid deep learning algorithm has a gener-
ative Deep Boltzmann Machine (DBM) and a discriminative
Functional Link Network (FLN) as shown in Fig. 2.

Let us assume the data set with N samples[(
x01 , y1

)
, · · · ,

(
x0t , yt

)
, · · ·

(
x0N , yN

)]
, where

x0t ∈ <M0

= [x0
t

1 , · · · , x0
t

m, · · · , x0
t

M0 ] are the inputs
of the t-th sample and ct ∈ {1, 2, · · · , s} is its corresponding
class label, s is the total number of classes, and M0 is the
total number of input features. We define the coded class
labels( as )yt = [yt1, · · · , yts]) as

yti =

{
1 if ct = l
−1 otherwise i = 1, · · · s; (1)

We will omit the superscript t in future discussions.
A Deep Boltzmann Machine (DBM) with two layers of

Restricted Boltzmann Machines (RBM) is used to model
the distribution of the inputs (x0) and to generate stochastic
features (xn;n = 1, 2) and the input weights of the FLN.
These features and weights are then used to estimate the output
weights of the FLN for prediction.

In this Section, we describe the generative DBM and the
discriminative FLN in detail.
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A. Deep Boltzmann Machine

Deep Boltzmann Machines are generative models with
one visible layer and multiple stacked layers of Restricted
Boltzmann Machine (RBM). Each RBM in a DBM has a
visible layer and a hidden layer, which are connected to each
other through symmetric weights. The nodes in the same layer
are disconnected. The hidden layer of each RBM serves as the
visible layer of the successive RBM. Each layer of RBM (in
a DBM) is trained through a greedy algorithm [5]. A trained
RBM (and hence, DBM) generates a set of stochastic features
[9]. In this paper, we use a two-layered RBM as shown in Fig.
2.

It can be seen from the figure that the DBM has one visible
layer and two hidden layers. The visible layer and the hidden
layer 1 forms RBM1. The hidden layer 1 and hidden layer 2
forms the RBM2. The hidden layer 1 acts as the visible layer
of the RBM2 [10]. Every node in the hidden layers of the
DBM employ a sigmoidal activation function to transfer the
signal from one layer to the next. Thus, the output of each
node in the hidden layers of the DBM is given by:

xnl = σ

Mn−1∑
m=1

wn−1lm xn−1m + an−1m

 ; (2)

l = 1, · · · ,Mn;n = 1, 2 (3)

where xn−1m are the features of the previous layer, wn−1lm are
the symmetric weights connecting the l-th node in n-th layer
and the m-th node in the n− 1 layer, an−1m is the bias of the
m-th node in layer n− 1 and Mn is the number of nodes in
layer n.

The objective of a generative DBM is to model the probabil-
ity distribution of the inputs (x0 = [x01, · · · , x0m, · · · , x0M0 ]T ),
as closely as possible and to extract a set of latent stochastic
variables x1 = [x11, · · · , x1m, · · · , x1M1 ]T . As DBM is built
by stacking multiple layers of RBM, this is achieved by
estimating the energy of the joint configuration of the visible
and hidden nodes of each RBM using the symmetric weights
(Wn; n = 1, 21 2) and the bias (anm,m = 1, · · · ,Mn;n =
0, 1, 2).

The joint distribution of the visible and hidden nodes of
each RBM is given by

P (xn−1,xn) =
1

Z
exp(−E(xn−1,xn)) (4)

where Z is the normalization constant defined by

Z =
∑
xn−1

∑
xn

exp(−E(xn−1,xn)) (5)

1W 1 =

 w1
11 · · · w1

1M0

. . . . . . . . .
w1

L1 · · · w1
M1M0


2W 2 =

 w2
11 · · · w2

1M1

. . . . . . . . .
w2

M21
· · · w2

M2M1



E(xn−1,xn) represents the energy of the variables and is
defined as

E(xn−1,xn) =
1

2

Mn−1∑
m=1

(
xn−1m

)2 −Mn−1∑
m=1

an−1m

−
Mn−1∑
m=1

Mn∑
l=1

xn−1m wlmx
n
l −

Mn∑
l=1

anl x
n
l (6)

From the energy equation (Eq. (6)), it can be seen that the
nodes in the same layer are independent of each other. This is
because there are no connections between nodes in the same
layer in a RBM.

The parameters of the generative RBM are optimized
through a stochastic gradient on the log-likelihood of the
training data. The derivative of the log probability of a training
vector with respect to its weights is given by

∂log p(xn−1)

∂wn−1lm

=
〈
xn−1m xnl

〉
p0
−
〈
xn−1m xnl

〉
p∞θ

(7)

where < . > denotes the expectations under the distribution,
p0 is the distribution of the data and p∞θ is the equilibrium
distribution designed by RBM.

The learning rule for weight update between the visible and
hidden layer 1 is given by

∆wnlm = α
(〈
xn−1m xnl

〉
p0
−
〈
xn−1m xnl

〉
p∞θ

)
(8)

where α is the learning rate. Obtaining an unbiased sample of
< umx

1
l >p∞θ is difficult. Therefore, the approximation to the

gradient is obtained through contrastive divergence [4] and is
given by

∆w1
lm = α

(〈
xn−1m xnl

〉
p0
−
〈
xn−1m xnl

〉
p1θ

)
(9)

The biases in the visible and hidden layer 1 are updated as

∆anm = α
(
〈xnm〉

0
p − 〈x

n
m〉p1θ

)
(10)

Thus, the weights and biases are updated layer by layer, in
each RBM until the input distribution is represented by the
set of stochastic variables. Thus the learning algorithm of the
DBM can be summarized as follows:
• Initialize the number of nodes in Hidden layer 1 (M1)

and hidden layer 2 (M2). Initialize the symmetric
weights (wnlm; n = 1, 2) and the biases (anm; m =
1, · · · ,Mn, n = 1, · · · , n).

• Estimate the joint probability distribution of the nodes in
RBM1 (the visible and hidden layer 1). (Eq. (4)).

• Estimate the joint probability distribution of the nodes in
RBM2 (the hidden layer 1 and hidden layer 2).

• Perform contrastive divergence to approximate the gra-
dient and estimate the weight and biases update rule for
RBM2 using Eqs. (9) and (10), with n = 2.

• Update the weights of RBM2
• Perform contrastive divergence to approximate the gra-

dient and estimate the weight and biases update rule for
RBM1 using Eqs. (9) and (10), with n = 1.

The stochastic features generated by the DBM (x1 and
x2) are used to train a real-valued functional link network
to classify the images of the TID2013 data set based on the
depths of distortion in the images.
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B. Functional Link Network

In this section, we describe the functional link network. The
structure of the functional link network is presented in Fig.
1. From the figure, it can be seen that the FLN has three
layers, namely, the input layer, the enhancement layer and
the output layer. There are weights connecting the nodes in
the input and enhancement layers to the output layer. In the
DBFLN shown in Fig. 2, the hidden layer 1 is the input layer
of the FLN and the hidden layer 2 is the enhancement layer
of the FLN. Therefore, the features generated by the DBM are
the inputs to the FLN. The weights between the two hidden
layers of the DBM are the input weights of the FLN. As these
DBM generated features and weights follow the probability
distribution of the original input features, they represent the
inputs more efficiently. Moreover, they are a clear indicator of
the input feature significance and their many interactions.

As the input weights (w1 = [w1
11, w

1
12 · · · , wM1M0 ]T and

w2 = [w2
11, w

2
12 · · · , wM2M1 ]T ), the DBN generated features

(x1 = [x11, · · · , x1M1 ]) and the responses of the nodes in the
enhancement layer of the FLN (x2 = [x21, · · · , x2M2 ]) are
generated by the DBM, the objective of the FLN is to estimate
the output weights

V =

 v111 · · · v11M1 v211 · · · v1M2

. . . . . . . . . . . . . . . . . .
v1s1 · · · v1sM1 v2s1 · · · vsM2

T .

The output weights of the FLN can be estimated as a linear
least square solution according to:

V = yx† (11)

where x = [x11, · · · , x1M1 , x21, · · · , x2M2 ].
The predicted output of the DBFLN (ŷ) can then be esti-

mated as:

ŷ = Vx (12)

In the next section, we evaluate the performance of the
DBFLN on a set of benchmark multi-category classification
problems, in comparison with SVM, ELM, RFLN and DBN.
We also study the image quality assessment performance of
the DBFLN in comparison to SVM, ELM, RFLN and DBN
on the TID2013 data set.

III. PERFORMANCE EVALUATION

In this section, the effectiveness of the proposed DBFLN
is first evaluated on a set of benchmark multi-category clas-
sification problems from the UCI machine learning repository
[11], namely, the image segmentation problem, the vehicle
classification problem and the glass identification problem. In
this study, the performance of DBFLN is studied in compari-
son to the SVM, NN, ELM, RFLN and DBN. We then apply
the DBFLN to classify the images of the TID2013 data set
according to their depth of distortion.

A. Performance Study: Benchmark Datasets

In this section, we present the performance study results
on the three benchmark multi-category classification problems
from the UCI machine learning repository[11], namely, the

TABLE I: Description of the benchmark multi-category clas-
sification problems used in the performance study

Problem No. of No. of No. of samples I.F.
features classes Training Testing

Image 19 7 210 2,100 0
Segmentation
Vehicle 18 4 424 422 0.1
Classification
Glass 9 6 109 105 0.68
Identification

image segmentation problem, the vehicle classification prob-
lem and the glass identification problem. The distribution of
samples in each class of these data sets is measured by the
imbalance factor (I.F.) that is defined as:

I.F. = 1− s

N
min
l=1···s

Nl (13)

where s is the total number of classes and Nl is the number
of samples in class l.

Table I presents the details of these multi-category classifi-
cation benchmark data sets including the number of features,
and number of samples used in training/testing data sets used
in the study and the imbalance factor of these data sets. From
the table, it can be seen that the three data sets are small data
sets with varied number of classes. Moreover, it can also be
seen that the image classification data set is a balanced data
set with equal number of samples in all the 7 classes. On
the other hand, the vehicle classification problem is mildly
imbalanced, while the glass identification problem has high
sample imbalance among classes.

It must be noted that the inputs for all the problems are
normalized in the range [0, 1], and for all the algorithms
considered, sigmoidal activation function is considered to
enable fair comparison. The number of neurons for all the
algorithms are chosen based on the constructive-destructive
approach for neuron selection, discussed in [12]. We evaluate
the performances of the various algorithms using training and
testing overall (ηO) and average (ηA) accuracies, which are
defined as:

ηO =

n∑
l=1

qll
N

X100% (14)

ηA =
1

s

s∑
l=1

qll
Nl

X100% (15)

where qll is the number of samples correctly classified in class
l, Nl is the number of samples in class l, s is the number of
classes and N is the total number of samples.

We present the classification accuracies of the DBFLN in
comparison with the SVM, NN, ELM, RFLN and DBN, on
the benchmark multi-category classification problems in Table
??. From the table, it can be observed that the DBFLN outper-
forms the other state-of-the-art classifiers used in comparison
on the balanced image segmentation data set (at least 2%)
and the highly unbalanced glass identification data set (at least
5%). Although it outperforms SVM, NN, ELM and RFLN in
solving the vehicle classification problem, its performance is
similar to that of the DBN.
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TABLE II: Performance Results on Benchmark Multi-category
Classification Problems

Data set Algorithm K Training Testing
ηO ηA ηO ηA

Image SVM 67 99.524 99.524 91.524 91.524
NN 100 92.381 92.381 90.143 90.143

Segmentation ELM 100 98.095 98.095 90.048 90.048
Problem RFLN 80 97.143 97.143 90.381 90.381

DBN 80 92.857 92.857 91.238 91.238
DBFLN 80 100 100 93.238 93.238

Vehicle SVM 184 87.028 86.8 75.118 75.238
Classification NN 100 82.903 82.996 75.355 76.394

ELM 100 89.677 89.721 77.962 78.393
Problem RFLN 80 88.71 88.67 78.436 78.837

DBN 80 96.29 96.389 82.701 83.412
DBFLN 80 96.29 96.389 82.701 83.412

Glass SVM 81 77.064 77.503 64.762 56.664
NN 50 86.905 86.905 67.619 77.231

Identification ELM 100 98.214 98.214 70.476 80.53
Problem RFLN 100 98.81 98.81 76.19 76.19

DBN 100 88.988 88.988 72.381 85.034
DBFLN 80 99.107 99.107 81.905 89.759

In the next section, we apply the DBFLN to classify
the images of the TID2013 dataset based on their depth of
distortion, using the human visual image metrics as the input
features.

B. Image Quality Assessment on the TID2013 Dataset

In this section, we first describe the TID2013 data set and
then present the results of the performance study.

1) TID 2013 Dataset: The TID2013 dataset [6] is an
extension of the TID2008 data set [7], which was developed
based on 25 reference images from the Kodak data base. The
images in the TID2013 dataset have 24 types of distortions
that can be related to the peculiarities of the Human Visual
System (HVS). Each distortion has 5 levels of distortion. In
all, the data set has 3000 images, which can be classified into
one of the 5 different levels of distortion. The data set is a fully
balanced data set, with 600 images in each level of distortion.
The complete list of distortions in the TID2013 can be referred
in [6].

In this paper, we use the image metrics defined for the sev-
eral types of distortion to classify the image quality depending
on the depth of distortion. The distortions of the TID2013 data
set can be categorized into 6 types of distortions namely, noise
distortion, color distortion, exotic distortion, actual distortion,
new distortion, and full distortion. Ponomarenko et. al., [6]
have studied the correspondence of about 25 metrics to the
HVS and identified the three most significant metrics for each
subset, using Spearman Rank Order Correlation Coefficient
and Kendall Rank Order Correlation Coefficient. The three
most significant HVS image metric for each subset is tabulated
in Table III.

From the table, it can be seen that the FSIM, FSIMc,
PSNRHA, PSNRHVS, PSNRHMA and PSNRc are predomi-
nantly used human visual image metrics for the various images
in the data set. Therefore, in this study, we choose these 6
metrics as the input features to classify the images according
to their depths of distortion.

TABLE III: Types of Distortions and their Metrics

Actual PSNRHA,PSNRHMA,FSIMc
Color PSNRc [13],FSIMc [14],PSNRHMA
Exotic FSIMc,FSIM [14],PSNRHA
Noise PSNRHA, PSNRHMA[15], PSNRHVS [16]
New PSNRc,PSNRHMA,FSIMc
Full FSIMc,PSNRHA,FSIM

2) Performance Study on the TID2013 Data set: Next,
we study the classification performance of the DBFLN in
classifying the quality of images in the TID2013 data set, and
compare the results with that of Support Vector Machines,
Extreme Learning Machines, Random Vector Functional Link
Network and the Deep Belief Network. We perform a 10-fold
cross validation study using 70% of the samples in training
and 30% of the samples in the testing. The training and
testing overall and average accuracies are used to compare
the performances of the various classifiers.

TABLE IV: Performance Results on the TID 2013 Data Set

Classifier K Training Testing
ηO ηA ηO ηA

SVM 82.714 82.714 82.111 82.111
MLP 100 82.571 82.571 82.444 82.444
ELM 60 79.905 79.905 82.111 82.111
RFLN 60 81.714 81.714 83.222 83.222
DBN 80 86.048 86.048 84.667 84.667

DBFLN 80 88.143 88.143 85.889 85.889

Table IV presents the classification results of the DBFLN
in comparison with Support Vector Machines (SVM), Neural
Network (NN), Extreme Learning Machines (ELM), Random
Vector Functional Link Network (RVFLN) and Deep Belief
Network (DBN) in classifying the image quality of the images
in the TID2013 data set. Table IV shows that the DBFLN
outperforms the other tested state-of-the-art algorithms used
in this study. Comparing the performance of the DBFLN with
that of the RFLN, it can be seen that the features generated by
DBM have improved the classification accuracy of the FLN
by at least 2%. Thus, it can be inferred that the DBFLN is
capable of assessing the quality of image better than the other
state-of-the art algorithms.

IV. CONCLUSIONS

In this paper, we have proposed a hybrid deep learning
algorithm namely, Deep Boltzmann Functional Link Network
(DBFLN). The architecture and the learning algorithm of
DBFLN is discussed. DBFLN has two components, a gener-
ative Deep Boltzmann Machine (DBM) and a discriminative
Functional Link Network (FLN). The DBM has two layers of
Restricted Boltzmann Machine that are trained layer-by-layer
through a greedy algorithm. The RBM and hence, the DBM
generates stochastic features at both the hidden layers, which
model the probability distribution of the input features. The
hidden layers of the DBM act as the input and enhancement
layers of the FLN. Thus, the input features, enhancement node
responses and the input weights of the FLN are generated
through the greedy algorithm of the DBM. The output weights
of the FLN are then estimated in a single step, as a solution to a



6

linear programming problem. The performance of the DBFLN
is evaluated on three benchmark multi-category classification
problems. Performance comparison with SVM, ELM, RFLN
and DBN show that DBFLN outperforms these algorithms,
with similar or lesser network resources. Next, the DBFLN
is used to classify the images on the TID2013 data set based
on their depth of distortion. The 6 most significant metrics
corresponding to the human visual system for the six types of
distortions in TID2013 data set are used as the input features.
The performance of the DBFLN is classifying the images of
the TID2013 data set according to their quality is compared to
that of SVM, ELM, RFLN and DBN. The performance results
show the superior classification ability of the DBFLN.
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