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Abstract—In multiobjective optimization, a good quality indi-
cator is of great importance to the performance assessment of
algorithms. This paper investigates the effectiveness of the widely-
used hypervolume indicator, which is the only one found so far to
strictly comply with the Pareto dominance. While hypervolume is
of undisputed success to assess the quality of an approximation,
it is sensitive to misleading cases, particularly for diversity
assessment. To address this issue, this paper presents a modified
hypervolume indicator based on linear projection for diversity
evaluation. In addition to experimental studies to demonstrate
the effectiveness of the proposed indicator, the indicator is in-
troduced into the environmental selecction of an indicator-based
multiobjective optimization evolutionary algorithm. Experiments
show that the proposed indicator yields more evenly-distributed
approximations than the original hypervolume indicator.

I. INTRODUCTION

Multiobjective optimization involves the simultaneous op-
timization of several conflicting objectives. Due to multiob-
jectivity, the optima of a multiobjective optimization problem
(MOP) is not a single solution but a set of tradeoff solutions,
whose image in the objective space is known as the Pareto-
optimal front (POF). Multiobjective optimization evolutionary
algorithms (MOEAs) are an important class of approaches for
solving MOPs, as they can obtain a set of solutions without any
knowledge of problem features in a single run. This advantage
has led to a fast growth of the design of MOEAs, and many
MOEAs [3], [5], [9], [23], [24] have been proposed so far.

While many MOEAs are available for MOPs, a natural
question arises – how to measure theses algorithms. Due to
the presence of conflicting objectives, evaluating the quality
of approximations obtained by MOEAs that comprise mul-
tiple solutions is not an easy task. This makes performance
assessment an important research topic in multiobjective opti-
mization. Over the past 20 years, a variety of quality indicators
[9], [10], [23], [14], [15] have been proposed to measure POF
approximations. They focus on two aspects of the quality of
an approximation, i.e., convergence and diversity. Convergence
is related to the closeness of an approximation to the true
POF whereas diversity in general refers to the uniformity
and extensity of the approximation. Some quality indicators
are specifically designed to measure either convergence or
diversity, but others try to capture both aspects. Among these

indicators, hypervolume (HV) is the only one known to be
strictly compliant with the Pareto dominance [25]. Due to
this nice property, HV has been widely adopted as a standard
offline indicator for performance assessment [5], [3], [25] and
also an online selection operator for indicator-based MOEAs
[5], [3].

In real industrial design a decision maker (DM) is able
to consider only a few possible solutions (Pareto points). In
such a context, it is important to have an even distribution
and a good coverage of Pareto points from which the DM
can obtain maximum information about the Pareto front at
minimum computational cost. A well-distributed Pareto set can
also be a good foundation for visualizing the Pareto front. It
can substantially simplify the DM’s work. Note that, some
practitioners may appreciate a focus on regions of interest,
e.g., knees and borders on the POF, while knowing about
the limits of their problem. However, we believe that it is
more desired to obtain a set of well-diversified Pareto points
including the knees and borders so that the DM can have
more alternatives when making a decision. Therefore, one
may wonder how diversified a POF approxiamtion is enough
to represent the whole POF. This naturally gives rise to the
development of quality indicators to measure the diversity of
the POF approxiamtion in the literature [9], [8]. Despite that,
these diversity indicators often require the information of the
true POF or problem-specific parameter settings to guarantee
the correctness of assessment.

In this paper we focus on the use of HV for diversity
assessment. Recently, HV was found to give biased evaluations
in terms of diversity, which makes conclusions based on HV
unreliable [15]. In view of this, this paper presents a modified
HV indicator to quantify diversity. The proposed indicator is
examined on different scenarios of POF approximations, show-
ing fairly accurate measure of the approximations’ diversity.
Besides, the proposed indicator is also adopted as a selection
operator in SMS-EMOA [5], and results demonstrate that it
helps SMS-EMOA to achieve a more uniformly-distributed
approximation than the original HV indicator.

The rest of this paper is organized as follows. Section
2 presents some existing diversity indicators and discusses
possible limitations of HV. Section 3 describes our proposed



TABLE I
DIVERSITY PERFORMANCE INDICATORS AND THEIR CHARACTERISTICS

Indicator Relative or
Absolute Uniformity Extensity Convergence

Boundary
Solutions
Needed

Reference Point/
Set Needed

space partition,
hyperboxes, or
parameters Needed

G-Metric [17] Relative
√ √ √

x x
√

DCI [14] Relative
√ √

x x x
√

PCI [15] Relative
√ √ √

x x
√

HV [25] Absolute
√ √ √

x point x
IGD [23], IGD+ [12] Absolute

√ √ √ √
set x

∆p [19] Absolute
√ √ √ √

set x
Spacing [8] Absolute

√
x x x x x

R2 [7] Absolute
√ √ √ √

set x
ε-indicator [25] Absolute x x

√ √
set x

∆ Metric [9] Absolute
√ √

x
√

set x
Sigma Diversity Metric [18] Absolute

√ √
x

√
set x

DM [10] Absolute
√ √

x
√

set
√

indicator. Experimental studies are delivered in Section 4.
Section 5 concludes the paper.

II. RELATED WORK

A. Diversity Indicators

Diversity is well recognized to play a very important role
in evolutionary multiobjective optimization. Throughout the
paper, diversity refers to only the distribution of an approxi-
mation in the objective space, and population distribution in
the decision space is beyond the scope of this work. Since
it is rarely possible to obtain all (infinite) solutions on the
POF, it is plausible to present DMs a ‘suitable’ finite-size
approximation of the POF. Therefore, it is important that
the POF approximation should be arranged in order to be a
sufficiently good representation of the POF. In practice, it is
often desirable that the POF approximation is well-diversified
over the whole range of the POF so as to maximize the
information of the POF presented to the DMs [20].

The diversity of POF approximations is often related to
the uniformity and extensity of the POF approximations.
Note that, a uniformly-distributed POF approximation not
necessarily means that the approximation covers well the
POF. As a complement to uniformity, extensity considers the
coverage or the spread of the POF approximation. That is, in
many cases it is desired to obtain simultaneously an evenly-
distributed and well-extended POF approximation. Mathemat-
ically, these two properties can be generally formulated as
uniformity(P ) and extensity(P, P ∗), where P and P ∗

are an POF approximation and the true POF, respectively.
An instantiation of uniformity(P ) is Spacing [8], where
equispaced approximation elements are thought to be an ideal
case of even distribution. Likewise, maximum spread [11] can
be considered as a realization of extensity(P, P ∗), where the
true POF P ∗ should be used as a reference when mentioning
the extensity of the approximation P . uniformity(P ) and
extensity(P, P ∗) collectively help to reflect the diversity of
the POF approximation P .

In the literature, there have been a few performance indi-
cators for evaluating MOEAs’ diversity. Table I lists some

existing indicators that can quantify the diversity of ap-
proximations, where the characteristics of each indicator are
briefly tabulated. It can been seen from the table that, the
indicators can be grouped into two categories, i.e., relative
and absolute indicators, according to the first characteristic.
Relative indicators can make a relative comparison between
different approximations, but they generally cannot reflect real
approximation to the true POF because they do not use any ref-
erence set/point related to the POF. Besides, relative indicators
often need to perform space (hyperbox) partition or population
clustering to help evaluation, resulting in the introduction of
extra parameters. If these parameters are not properly set,
relative indicators may make an incorrect diversity evaluation.
For example, the diversity comparison indicator (DCI) [14] is
sensitive to its internal parameter (e.g., the size of hyperboxes)
used for space partition. On the other hand, absolute indicators
can tell how well an approximation is to the true POF, but they
often require a known reference point/set. Boundary solutions
on the true POF are explicitly needed in order for these
indicators (except HV [25]) to make an accurate evaluation
of an approximation.

It is also clear from Table I that most of the indicators
can help to quantify the diversity performance (including
uniformity and extensity) of POF approximations. However,
they have weaknesses too. In order to analyze both uniformity
and extensity, relative indicators requires space partition [17]
or hyperbox construction [14] whereas absolute ones need a
reference point [25] or reference set [23]. Note that, Spacing
[8] is an exception which assesses diversity without the need
of reference or extra parameters. But, it concentrates mainly
on measuring the uniformity of an approximation and cannot
reflect how extensive the approximation is over the POF.

Among these quality indicators, the inverted generational
distance (IGD) [23] and HV [25] are two of the most widely
used indicators for evaluating MOEAs. Both IGD and HV
can in a sense assess the two aspects (i.e., uniformity and
extensity) of diversity for an approximation. The accuracy
of IGD depends largely on the used reference set that is
uniformly sampled from the whole range of true POF. The
larger the size of the reference set, the more accurate IGD



will be. This hinders its wide application onto many-objective
optimization due to the exponential increase in the required
size of the reference set for a good evaluation. Also, if the
POF is unknown beforehand, IGD is not applicable.

Unlike IGD, HV can evaluate an approximation without
much knowledge of the true POF. The computation of HV
involves only a reference point instead of a reference set, so
the accuracy depends only on the selected reference point,
particularly when practitioners are interested in extremal or
boundary POF points (these kinds of solutions are often related
to the extensity of the approximation). The HV indicator
measures the size of the objective space dominated by the
approximated solution set S and bounded by the selected
reference point R = (R1, . . . , RM )T that is dominated by
all points of an approximation, and is computed by:

HV (S) = Leb( ∪
x∈S

[f1(x), R1]× · · · × [fM (x), RM ]) (1)

where Leb(A) is the Lebesgue measure of a set A, and M is
the number of objectives.

HV has a nice property that it guarantees strict compliance
regarding the Pareto dominance [25]. This property makes
it preferable than other performance indicators [25], and has
been widely used for assessing MOEAs’ overall performance.

B. Limitations of Hypervolume
Despite its great success in assessing the overall quality of

an approximation, HV has been reported to have the following
limitations:
• Sensitivity to the reference point: HV is very sensitive to

the setting of the reference point [2]. Different reference
points may result in different evaluations.

• Bias toward certain regions: HV is biased toward knee
points which make larger contributions than no-knee
points [25], [15]. Thus, HV-based search methods are
very likely to distribute too many solutions in knee-
near regions, leading to potential diversity loss during
the search.

• Expensive computation: While it is easy to compute
HV for two objectives, the computation of HV grows
exponentially when the number of objectives increases.
This prevents the wide application of HV to many-
objective optimizations.

• Inconsistency with true performance: As a result of the
second limitation, HV may give an incorrect measure of
the performance of an approximation even if the reference
point is well placed [15].

While most studies on HV are based on empirical ob-
servations, Auger et al. [2] made a theoretical investigation
regarding the first two limitations. They mathematically proved
that the optimal distribution of µ solutions that maximizing
HV depends largely on the slope of the POF. That is, HV
is biased toward knee points, but not necessarily toward
boundary points. They also further investigated the influence
of the reference point, thereby deriving an explicit lower bound
required for the reference point to ensure the good behaviour
of the HV indicator.
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(a) MOEA/D (b) IBEA

Fig. 1. An example that HV is not consistent with diversity, where true Pareto
optimal solutions are obtained by MOEA/D and IBEA on the three-objective
DTLZ2 without distance-related parameters.

TABLE II
HV RESULTS OF MOEA/D AND IBEA UNDER DIFFERENT REFERENCE

POINTS R = (r, r, r)T

r 1.01 1.05 1.10 1.20 1.50 2.00 3.00
MOEA/D 0.4441 0.5715 0.7448 1.1418 2.7888 7.4138 26.4138
IBEA 0.4453 0.5726 0.7460 1.1430 2.7900 7.4150 26.4150

To deal with the third limitation, a few efficient HV compu-
tation methods [3], [6], [21] have been proposed. This makes
HV applicable to many-objective optimization. For example,
in [3], the Monte Carlo simulation was used to estimate the
HV value in high-dimensional cases. Despite helping speed up
computation, estimated values cannot guarantee the accuracy
of HV. Also, the estimation method is still computationally
demanding when the number of objectives is very large.

On the other hand, the fourth limitation makes it hard to
effectively distinguish different approximations. Li et al. [15]
gave an example where inconsistency occurs when comparing
MOEA/D [22] and IBEA [24] on a DTLZ problem, which
is shown in Fig. 1. The figure clearly indicates MOEA/D is
better than IBEA whereas the HV value in Table II contradicts
this regardless of the setting of the reference point.

III. HYPERVOLUME-BASED DIVERSITY INDICATOR

As illustrated above, HV has the potential risk of making
incorrect evaluations, particularly when diversity is concerned.
In view of this, we concentrate on how to use HV to correctly
measure the diversity of an approximation.

Auger et al. [2] proved a theorem that for a linear bi-
objective POF, a set of µ points maximizes the HV indicator
if and only if the points are equally spaced. Inspired by
this, we can project the solutions of an approximation onto
a linear POF and use the HV indicator to assess the diversity
of the projections. Without loss of generality, the hyperplane
f1 +f2 + · · ·+fM = 1 is considered where the approximation
should be projected. The projection process is described in
Algorithm 1. The projection method can nicely inherit the
distribution structure from the original approximation.

Since HV here is used only for diversity evaluation, we call
the new indicator HVd. Figure 2 illustrates how HVd works
for evaluating two different distributions. According to the
theorem by Auger et al. [2], the approximation in Fig. 2(a)
will have a higher HVd value than that in Fig. 2(b), which



Algorithm 1 Projection of A POF Approximation
1: Input: S (normalized POF approximation), f1 + · · · +
fM = 1 (projection plane)

2: Output: Ŝ (translated POF approximation).
3: for each member s ∈ S do
4: for j = 1 : M do
5: f̂j(s) = fj(s) +

1−
∑M

i=1 fj(s)

M ;
6: end for
7: Save s with the translated objectives into S;
8: end for

(a) even distribution (b) uneven distribution

Fig. 2. Illustration of the idea behind the hypervolume-based diversity
indicator. The approximations (black dotted), projections (circled), and ref-
erence points (red dotted) are presented. The hypervolume of the projections
corresponds to the hatched area.

TABLE III
HVd RESULTS OF MOEA/D AND IBEA UNDER DIFFERENT REFERENCE

POINTS R = (r, r, r)T

r 1.01 1.05 1.10 1.20 1.50 2.00 3.00
MOEA/D 0.9453 1.0989 1.3069 1.7796 3.7031 8.9546 29.8289
IBEA 0.9012 1.0547 1.2626 1.7349 3.6574 8.9072 29.7781

is consistent with the real diversity performance of the two
considered approximations.

IV. EXPERIMENTAL STUDY

A. Evaluation of Artificial Approximations on Linear POFs

In this subsection, artificial approximations on linear POFs
are used to assess the two aspects of the diversity of HVd, i.e.,
extensity and uniformity in tri-objective cases. Although Auger
et al. [2] has theoretically proved that equispaced solutions on
linear POFs can maximize the HV value in bi-objective cases,
but whether their theorem is applicable to tri-objective cases
or not still remains unknown. For this reason, we empirically
study the relationship between HV and the distribution of
linear POF approximations in tri-objective cases. Note that,
when the POF is linear, HVd is equivalent to HV.

Now, let us look back to the earlier illustrated example of
Fig. 1. The HVd results of two algorithms are presented in
Table III, which correctly distinguish the algorithms regardless
of the choice of the reference point. This further confirms the
effectiveness of HVd.

Figures 3 and 4 present artificial examples with different
scenarios of extensity and uniformity, respectively. The testing
results HVd of these examples are given for each scenario.
Clearly, an approximation with a better extensity is rewarded
a higher HVd value. Similar observations are obtained in
the evaluation of uniformity: the more uniform an approx-
imation is, the better HVd it will have. Thus, the artificial
approximations show that HVd is able to effectively evaluate
and distinguish approximations with different extensities and
uniformities in three-objective cases.

B. Evaluation of Real Approximations on Nonlinear POFs

To verify the effectiveness of HVd, evaluating real approx-
imations and nonlinear POF geometries is needed. Next, we
apply HVd to the diversity assessment of six MOEAs, i.e.,
NSGA-II [9], AR [4], IBEA [24], DMO [1], TDEA [13],
and AR+Grid [16], on the three-objective DTLZ2 problem.
These MOEAs were also used to evaluate a diversity indicator
introduced by Li et al. [14].

The POF approximations of the six algorithms are graphi-
cally presented in Fig. 5, where the display order is arranged
according to the algorithms’ visual diversity. This figure il-
lustrates that all the algorithms are well-converged but with
different solution distributions. Then, HV and HVd are used
to quantify the quality of the six approximations. The reference
point of HV and HVd is placed on (1.01, 1.01, 1.01)T , which
is slightly larger than the nadir point of the POF of DTLZ2.
All the approximations need to be normalized before being
assessed.

Table IV gives the HV and HVd values of the six approx-
imations. The superscript of each value indicates the corre-
sponding algorithm’s rank under the corresponding indicator.
Algorithms obtaining the highest values are given rank one
whereas those having the worst values are ranked last.

Table IV shows that HV is unable to make a fair judge-
ment for algorithms’ diversity performance. For example, HV
indicates IBEA is better than NSGA-II and DMO, which is
inconsistent with the approximation plots given in Fig. 5.
The inconsistency may result in a misleading conclusion for
these three algorithms. On the other hand, HVd can correctly
rank the compared algorithms according to their diversity.
This indicates HVd is effective for algorithms’ performance
evaluation and comparison.

It is worth noting that, despite the advantage of diversity
evaluation, HVd cannot quantify the convergence aspect of an
approximation. However, HV and HVd can be used jointly
to discriminate algorithms, although each has its own draw-
back(s). Taking NSGA-II and DMO as examples, both HV
and HVd values in Table IV show the former is better than
the latter. On the basis of this, we can conclude that NSGA-II
obtains a better approximation than DMO in terms of both
diversity and convergence.

C. Integration of HVd into SMS-EMOA

The previous experiments have validated the effectiveness
of HVd for assessing POF approximations’ diversity. It will
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(a) HVd=1.12390 (b) HVd=0.92896 (c) HVd=0.71575

Fig. 3. HVd testing results of artificial examples with different POF extensities. All points are located on the POF f1 + f2 + f3 = 1.
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(a) HVd=1.12390 (b) HVd=1.10585 (c) HVd=1.08983

Fig. 4. HVd results of artificial examples with different uniformities. All points are located on the POF f1 + f2 + f3 = 1.
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(a) TDEA (b) AR+Grid (c) NSGA-II
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(d) DMO (e) IBEA (f) AR

Fig. 5. HVd results of POF approximations obtained by six algorithms on the three-objective DTLZ2.

TABLE IV
THE PERFORMANCE OF SIX ALGORITHMS MEASURED BY HV AND HVd

Indicator TDEA AR+Grid NSGA-II DMO IBEA AR
HV 0.77977(2) 0.77982(1) 0.74223(4) 0.70132(5) 0.77950(3) 0.56255(6)

HVd 1.21451(1) 1.20662(2) 1.17038(3) 1.15582(4) 1.15006(5) 0.78778(6)



Algorithm 2 SMS-EMOA
1: Input: N (population size)
2: Output: P (a POF approximation).
3: Create an initial population P ;
4: while stopping criterion not met do
5: for i = 1 : N do
6: Generate one offspring q by variation operators on

two random parents from P ;
7: Q = P d q;
8: {R1, . . . , Rl}=fast-nondominated-sort(Q);
9: ∆H(s,Rl) = HV (Rl)−HV (Rl \ {s}), ∀s ∈ Rl;

10: r = argmins∈Rl
∆H(s,Rl);

11: P = Q \ {r};
12: end for
13: end while
14: Output P ;

be interesting to use HVd as a quality indicator in the
environmental selection of MOEAs. A straightforward way is
to integrate HVd into SMS-EMOA [5], a steady-state MOEA
originally based on the HV indicator. The basic framework
of SMS-EMOA is presented in Algorithm 2. it can be seen
that SMS-EMOA uses nondominated sorting [9] to rank the
population into different fronts and the HV indicator to discard
a solution from the last front Rl considered. Here, the hyper-
volume contribution of a solution s ∈ Rl is the difference
∆H(s,Rl) = HV (Rl) − HV (Rl \ {s}) between the HV of
Rl and that of Rl without s. In a word, HV acts like a density
estimator in environmental selection.

Here, we would like to replace HV with HVd in SMS-
EMOA while computing the hypervolume difference and see
how this can affect the quality of the resulting approximations.
Thus, the hypervolume difference is modified as ∆H(s,Rl) =
HVd(Rl)−HVd(Rl\{s}). Originally, SMS-EMOA was tested
on the EBN(γ) problem [5], which is mathematically described
as follows:

EBN(γ) :

{
f1(x) = (n−1

∑n
i=1 |xi|)γ

f2(x) = (n−1
∑n
i=1 |1− xi|)γ

(2)

where n is the number of decision variables and x =
(x1, . . . , xn) ∈ [0, 1]n. The parameter γ controls the curva-
ture of the POF of EBN(γ), thereby yielding different POF
characteristics.

Despite these nice features, EBN(γ) can only generate
Pareto-optimal solutions and is not applicable for examining
an algorithm’s convergence performance. For this reason, we
generalize the definition of EBN(γ), and therefore construct a
variant, called EBN∗(γ), as follows:

EBN∗(γ) :


f1(x) = (k−1

∑k
i=1 |xi|)γ + g(x)

f2(x) = (k−1
∑k
i=1 |1− xi|)γ + g(x)

g(x) =
∑n
i=k+1

(
xi − 1

i

)2 (3)

where k ≤ n is a parameter that controls the difficulty related
to diversity maintenance, and g(x) is a function controlling the
difficulty related to convergence. k = n means that EBN∗(γ)

degenerates to the original EBN(γ). The search space remain
the same as EBN(γ).

The population size (N = 100), the maximum number
of function evaluations (MaxFE = 2000), and other key
parameters remain the same as in [5]. SMS-EMOA with HV
and HVd are tested in the following scenarios of EBN∗(γ).
The reference point used in HV and HVd is set by the worst
value of each objective plus 0.5.

1) Scenario I: : In this scenario, we focus only on the effect
of different HV variants on POF diversity. Correspondingly,
(k, n) = (2, 2) is used in EBN∗(γ).

Figure 6 shows a comparison between HV-based and HVd-
based SMS-EMOAs for optimizing the EBN(γ) problem. The
HV-based SMS-EMOA can distribute solutions uniformly only
when the POF is linear. In the case of nonlinear POFs, SMS-
EMOA with HV tends to favour knee regions, and very few
solutions are placed on the boundaries. Also, when the POF
is extremely shaped, e.g., γ = 0.2 or 4, extremal solutions are
likely to be discarded in the HV-based selection. In contrast,
SMS-EMOA based on HVd is able to yield a set of uniformly-
distributed solutions regardless of POF shapes, and extremal
solutions are also well maintained.

2) Scenario II: : In this scenario, we would like study the
convergence aspect of different HV variants on population
diversity and convergence. Thus, (k, n) = (2, 10) is used in
EBN∗(γ).

Figure 7 plots the POF approximations obtained by HV-
based and HVd-based SMS-EMOAs. Clearly, both HV and
HVd can help SMS-EMOA to converge toward the POF,
and HVd has advantage over HV in uniformly distributing
solutions across the POF. In contrast to Scenario I, Scenario
II illustrates that the convergence-related function g(x) in
EBN∗(γ) affects more or less the extensity performance, par-
ticularly when the POF is irregularly shaped. As a result, both
HV-based and HVd-based SMS-EMOAs miss some boundary
points, but clearly the former misses more than the latter.

3) Scenario III: : In this scenario, we complicate diversity
maintenance by increasing the value of k in EBN∗(γ). That
is, (k, n) = (5, 10) is used in EBN∗(γ).

Figure 8 presents the POF approximations on Scenario III.
Clearly, the variation of k in EBN∗(γ) influences much the
performance of HV and HVd. Specifically, compared with the
plots in Scenario I and Scenario II, those displayed in Scenario
III do not cover the POF very well, particularly on boundary
regions. Despite that, it is very clear that HVd-based selection
performs better than HV-based selection in terms of extensity
and uniformity.

The above comparisons demonstrate that HVd can be
applied in the environmental selection of indicator-based
MOEAs to achieve an even distribution of approximations.

V. CONCLUSIONS

When evaluating and comparing MOEAs’ performance, it
is important that the adopted quality indicator is able to give
a true measure of their obtained approximations. This paper
has discussed the effectiveness of the popular HV indicator,
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which is the only metric known to be strictly compliant with
the Pareto dominance. One drawback of HV is that it is likely
to bias diversity assessment of an POF approximation. In view
of this, we have suggested a modified HV indicator, i.e., HVd,
to measure MOEAs’ diversity performance.

The proposed HVd indicator has been verified on both arti-
ficial and real approximations with different solution distribu-
tions. Experimental results have demonstrated the effectiveness
and correctness of HVd for diversity evaluation. Furthermore,
HVd has been introduced into an indicator-based MOEA,
i.e., SMS-EMOA, to act as a selection indicator. Compared
with HV, HVd helps SMS-EMOA to yield a more uniform
distribution and a better extensity of POF approximations.

A future study includes the sensitivity analysis of the
reference point in HVd. It will be also interesting to further
investigate the behavior of HVd on many-objective optimiza-
tion.
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