
Effects of Discrete Design-variable Precision
on Real-Coded Genetic Algorithm

Toshiki Kondoh∗, Tomoaki Tatsukawa∗, Akira Oyama†, Takeshi Watanabe† and Kozo Fujii∗
∗Graduate School of Engineering, Tokyo University of Science,

Niijuku 6-3-1, Katsushika-ku, Tokyo, Japan 125-8585
Email:4416611@ed.tus.ac.jp {tatsukawa fujii}@rs.tus.ac.jp

†Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency,
Yoshinodai 3-1-1, Chuo-ku, Sagamihara, Kanagawa, Japan 252-0222

Email: {oyama watanabe}@flab.isas.jaxa.jp

Abstract—In this paper, we describe how discretizing design
variables on real-coded genetic algorithms (RCGAs) can influence
the convergence and the diversity of Pareto optimal solutions.
We use Non-dominated Sorting Genetic Algorithm II (NSGA-
II) as an RCGA based on Pareto dominance, changing the
number of significant digits after the decimal point for each
design variable. Test problems and engineering problems are
investigated. Computational results show that the use of a smaller
number of significant figures instead of larger ones achieves
better convergence that a larger number in many cases. In the
DTLZ3 test problem, low applied precision avoids dominance-
resistant solutions (DRSs) and improves both the generational
distance (GD) and the inverted generational distance (IGD). On
the other hand, in the DTLZ4 test problem, low digit precision
improves GD, whereas it worsens IGD. This indicates that a
minimum digit precision is required to maintain the diversity
of Pareto optimal solutions in some problems. When we use
RCGAs, it is critical to set the number of significant digits after
the decimal point to realistically represent actual engineering
problems.

I. INTRODUCTION

In recent years, many kinds of RCGAs have been proposed
and successfully applied to actual multi-objective optimization
problems. Real-world optimization problems often have not
only many objective functions but also many constraints.
Therefore, most of the RCGAs mainly focus primarily on
handling solutions efficiently toward optimum directions[1],
[2], [3] and finding feasible solutions[4]. In addition, the
discretization techniques of the objective space such as the
epsilon dominance can be also used to improve the conver-
gence of Pareto optimal solutions.

When we use RCGAs, we do not usually think about sig-
nificant figures in each design variable because computers can
handle a great digit precision. Design variables are considered
to be continuous variables in most of the test problems. On the
other hand, in practical optimization problems, the significant
figures in each design variable are often limited to the small
or realistic numbers.

In the following assumption[5], it is known that the low-
resolution representation can improve the convergence of
Pareto optimal solutions in binary-coding genetic algorithms
(BCGAs) because the search space is smaller as the resolu-
tion decreases. However, in RCGAs, the highest-resolution

representation is always employed. The effect of changing
significant figures in RCGAs has not been investigated well.
In particular, it may be important to set an appropriate number
of significant figures in practical applications.

The objective of this study was to assess the search ability
in RCGAs by changing the number of significant figures.
Here, we use Non-dominated Sorting Genetic Algorithm-II
(NSGA-II)[6] as an RCGA, which is based on the Pareto
dominance, and a set of test problems, including some simple
engineering problems. This study focused on using 2, 4, 6, 8,
or 16 significant digits.

II. RELATED WORKS

This section presents a brief review of the discretization in
an evolutionary multiobjective optimization (EMO) algorithm.

A. Discretization in objective function space

Studies about discretization of an objective function space
have been focused on in recent years. The idea of ε dominance,
which was proposed by Laumanns[7], is one of the most
popular discretization techniques of the objective function
space. It makes all points within a small distance (the ε
distance) from a set of Pareto-optimal points dominated. This
technique can reduce the number of Pareto-optimal solutions
so that the selection pressure is increased over the Pareto front
by using this technique[8].

Ishibuchi, et.al. examined the effects of discrete objective
functions with various granularities[9]. They focused on the
granularity difference between discrete objective functions
in combinatorial optimization problems and showed that a
distinct objective function with coarse granularity (low resolu-
tion) slows down the search ability of EMO algorithms along
that objective.

B. Discretization in design-variable space

The studies related to discrete design variables have been
conducted in binary-coded genetic algorithms(BCGAs).

Jaimes, et. al.[5] proposed the island parallel Multi-
Objective Evolutionary Algorithm (pMOEA) in which each
island had a different resolution (different length of binary
strings). During optimization, the resolution in each island



TABLE I
THE PROPERTIES OF BENCHMARK PROBLEMS.

Problem Obj. Var. Con. Separability Modality Bias Geometry
DTLZ2 M N - separable uni - concave
DTLZ3 M N - separable multi - concave
DTLZ4 M N - separable uni X concave
WFG2 M N - non-separable multi - convex,disconnected
WFG4 M N - separable multi - concave
WFG6 M N - non-separable uni - concave
WFG7 M N - separable uni X concave
UF2 2 N - separable multi - convex
UF9 3 N - separable multi - linear, disconnected
CF2 2 N 1 separable multi - convex, disconnected
CF7 2 N 2 separable multi - convex

C1DTLZ3 M N 1 separable multi - concave
C2DTLZ2convex M N 1 separable uni - convex, disconnected

C3DTLZ1 M N M separable multi - convex(feasible surface is PF)
Car Side Impact 3 7 10 uncertain
Welded Beam 2 4 4 uncertain

Obj. = the number of objectives; Var. = the number of variables; Con. = the number of constraints.
M = the user predefined number of objectives; N = the user predefined number of variables.

- = no value or no characteristic; X= that the problem has characteristic.
Car Side Impact and Welded Beam Design problems have uncertain properties because of engineering problems.

started low and gradually increased so that it could achieve
rapid convergence, while maintaining diversity.

Kim, et.al.[10] proposed a variable chromosome length
genetic algorithm for topology optimization problems. This al-
gorithm also starts with a low-resolution (a short chromosome)
and increases the number of bits after finding an optimum
solution at the current resolution.

Dynamic resolution techniques of [5], [10] are based on the
assumption described above, showing better search ability than
with the fixed resolution. However, to the best of our knowl-
edge, the studies investigating discretization of the variable
space in RCGAs has not been explored well.

III. EXPERIMENTAL STUDY

A. Test Problems

In this study, 16 benchmark test problems were considered:
three DTLZ problems[11], four WFG problems[12], four
CEC2009 problems[13], three CDTLZ problems[14], and two
engineering problems[14], [15]. The properties of the adopted
benchmark problems are summarized in Table I, where each
problem is classified under four characteristics[12]: separa-
bility, modality, bias and geometry. Separability indicates
whether a correlation relationship among parameters exists.
Separable problems are characterized by parameter indepen-
dence, whereas non-separable problems are characterized by
parameter dependencies, and are more difficult to analyze
than those characterized by parameter independence. Modality
shows the characteristics of fitness landscapes. Multimodal
problems have many local optimal points, whereas unimodal
problems only have one global optimal point. Bias is another
characteristic of the fitness landscape and indicates bias of
distribution in objective space. Geometry refers to the shape
of the Pareto-front surface.

The car side impact problem[14] and the welded beam
problem[15] are the engineering problems considered.

The car side impact problem is a multi-objective mini-
mization problem. Three objective functions are considered:
minimizing of the weight of car, minimizing of the public force
experienced by a passenger, and minimizing of the average
velocity of the V-Pillar responsible for withstanding the impact
load. These objectives conflicting with one another; therefore,
a three-dimensional trade-off front is expected.In addition, this
problem has ten constraints and seven real-parameter variables.

The welded beam design problem is also a multi-objective
minimization problem. Two objective functions are considered
here: minimizing the cost of fabrication and minimizing of
the end deflection of the welded beam. These objectives
also conflict; therefore, a two-dimensional trade-off front is
expected.Additionally, this problem has four constraints and
four real-parameter variables.

B. Computational Conditions

Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is
used in this study. The common parameter settings are shown
in Table II, where ηc and ηm are indices of simulated binary
crossover (SBX) and of polynomial mutation, respectively. The
other parameters adopted in each test problem are shown in
Table III. The population size, generation number, the number
of objective functions, and the number of design variables
are different in each benchmark problem. The number of
significant figures after the decimal points is either to 2, 4,
6, 8, or 16. A value with 16-digit precision is almost equal to
a continuous value. Design variables are rounded to a specified
decimal place after SBX and polynomial mutation in NSGA-
II.

C. Results and Discussions

We have chosen two types of performance metrics: the first
is the generational distance (GD) for the convergence and
the second is inverted generational distance (IGD) for the
diversity. The average GD / IGD is computed using feasible



TABLE II
VALUES OF THE COMMON PARAMETERS USED IN THE EXPERIMENTAL

STUDY.

parameter value
Crossover rate 1.0
Mutation rate 1/n

ηc 30
ηm 20
Trial 10

non-dominated solutions at each generation. In engineering
problems, approximate Pareto-optimal solutions are created by
merging non-dominated solutions of all trials, and this is used
it to evaluate GD / IGD.

Table III shows the averaged GD in each digit and bench-
mark problem. The averaged GD is evaluated at the 10th,
half, and final generation because the convergence rate is
important in MOEA as well as the final converged value. As
shown, in almost all benchmark problems except for WFG2,
WFG4, and the Welded beam problem, the final GD can
improve as the number of digits drops. This improvement
means that lower resolution, namely a more discretized design
variable, establishes convergence. In the DTLZ test problems,
the convergence rate can also be improved. In the WFG2,
WFG4, and the welded beam problem, using the lower digits
does not produce both better-converged values and conver-
gence rates, because these problems have large search ranges,
and the influence of changing the significant figures after
the decimal point becomes tiny. To make sure statistically
differences of GD trends between the lower digit (2-digit)
and the higher digit (16-digit), we applied the Wilcoxon rank-
sum test in each problem. According to the results of the
test, it was confirmed that there were significant differences
between two digit precisions in DTLZ2-4, UF9, CF2, CF7,
C1DTLZ3, C2DTLZ2 convex, C3DTLZ1 and welded beam
design problem.

Table IV shows the averaged IGD in each digit and
benchmark problem. The averaged IGD is evaluated at the
10th, half, and final generation because it is important to
maintain diversity during optimization in MOEA as well as to
obtain better-distributed Pareto-optimal solutions. As shown,
in DTLZ2 and DTLZ3, the final IGD can improve as the
number of digits drops. In addition, diversity is maintained
during optimization in these problems. In the UF, CDTLZ,
and Welded Beam test problems, the IGD can improve as the
number of digits drops. However, in the DTLZ4 test problem,
using a lower number of figures does not improve final IGD.
DTLZ4 has the almost the same structure as DTLZ2. The
major difference is that some variables carry the exponent
α(= 100) in the objective functions in DTLZ4 so that small
differences in the values of these variables have large effects
on the values of the objective functions. Therefore, to maintain
solution multiplicity, it is necessary to perform searches with
high precision. In the WFG test problems, except for WFG7,
using a lower number of figures does not improve the IGD.

The DTLZ test problems allow examination of the effect of

the significant figures in detail.
Figure 1 shows the histories of GD in DTLZ2, DTLZ3, and

DTLZ4. As shown in Fig. 1, lower resolution can improve both
the final convergence and convergence speed. However, in the
DTLZ3 test problem, though the difference in convergence
speeds among applied resolutions was largest, the convergence
was not sufficient in either case

Figure 2 shows the histories of IGD in DTLZ2, DTLZ3, and
DTLZ4. As shown in Fig. 2, lower resolution in DTLZ2 and
DTLZ3 can improve both the final distribution and distribution
during optimization. On the other hand, in the DTLZ4 test
problem, lower resolution worsens diversity.

Figures 3, 4, and 5 show the distribution of 2-and 16-digit
resolutions in each DTLZ problem. As shown in Fig. 3, both
the convergence and the distribution of the 2-digit resolution
are same as those of the 16-digit resolution in the DTLZ2
test problem. As shown in Fig. 4, the convergence of 16-digit
resolution is not enough compared to that of 2-digit resolution
in the DTLZ3 test problem. We can find dominance-resistant
solutions (DRSs)[16] from the distribution of 16-digit resolu-
tion. As shown in Fig. 5, the distribution of 2-digit resolution
is entirely lost. Lower resolution was found to have a large
effect on the search performance characteristics, particularly
on convergence.

Both GD and IGD are not fully converged in the DTLZ3 test
problem. Therefore, to compare progress to the final conver-
gence, computations were made until sufficient convergence
was attained. Figure 6 shows the computational result up to the
1500th generation in the DTLZ3 test problem. As shown, the
difference in final convergence between all levels of precision
was not large. However, at various stages of convergence,
lower precision yielded better results than higher precision.
In real-world optimization problems, turn-around times for
optimization must be shortened, so it is significantly important
to set the appropriate precision, depending on the problem.

Finally, further computations were preformed to consider
this effect of handling significant figures. One possible rea-
son is a difference of distribution in crossovers (SBXs) and
polynomial mutation by digit precision. However, as seen
by the results of a Wilcoxon rank-sum test, we found no
result indicating any statistically significant difference between
the distribution of low digits and the distribution of high
digits. Crossover and polynomial mutation are not significantly
affected by differences in digit precision.

To search further for the cause of evolutionary differences,
we focused our investigation once again on the DTLZ3, where
the largest differences in convergence resulting from differing
applied precisions were found. As shown in Fig. 1(b), a large
difference between the GD obtained with 2- and 16-digit
precisions had already become apparent by generation 20.

Figures. 7(a) and (b) show the cumulative frequency his-
tograms of design variable x1 and x2, obtained using 2- and
16-digits at the 20th generation. Design variables in DTLZ test
problems are separated into those that determine the position
in the objective function space and those that determine the
distance from the origin in that space. Both x1 and x2 are for-



TABLE III
AVERAGED GD AT THE 10TH, HALF AND FINAL GENERATION. BEST CASE IS HIGHLIGHTED IN BOLD.

problem MG PS Obj. Var. Gen 2-digit 4-digit 6-digit 8-digit 16-digit
GD GD GD GD GD

DTLZ2
10 1.647 1.756 1.766 1.759 1.759

100 100 3 38 50 1.576× 10−1 2.247× 10−1 2.414× 10−1 2.595× 10−1 2.565× 10−1

100 5.525× 10−2 1.576× 10−1 9.490× 10−2 1.003× 10−1 1.011× 10−1

DTLZ3
10 2.191× 103 2.508× 103 2.518× 103 2.512× 103 2.508× 103

200 500 3 38 100 9.935× 10 2.230× 102 2.878× 102 3.154× 102 4.039× 102

200 6.521 4.580× 10 5.622× 10 6.196× 10 6.669× 10

DTLZ4
10 8.213× 10−1 1.286 1.216 1.223 1.223

100 300 3 38 50 1.910× 10−2 5.531× 10−2 6.576× 10−2 6.889× 10−2 7.147× 10−2

100 1.101× 10−2 1.819× 10−2 2.320× 10−2 2.363× 10−2 2.522× 10−2

UF2
10 2.978× 10−1 3.106× 10−1 3.149× 10−1 3.001× 10−1 3.001× 10−1

200 200 2 20 100 2.639× 10−2 2.312× 10−2 2.362× 10−2 2.451× 10−2 2.640× 10−2

200 1.573× 10−2 1.349× 10−2 1.573× 10−2 1.532× 10−2 1.701× 10−2

UF9
10 3.063 3.048 2.695 2.684 2.684

300 200 3 20 150 6.940× 10−1 5.745× 10−1 6.584× 10−1 6.003× 10−1 6.425× 10−1

300 4.206× 10−1 4.518× 10−1 4.892× 10−1 4.470× 10−1 4.389× 10−1

WFG2
10 10 2.350× 10−1 2.218× 10−1 2.428× 10−1 2.428× 10−1 2.428× 10−1

100 100 3 (k = 6) 50 6.324× 10−2 7.273× 10−2 6.490× 10−2 7.088× 10−2 7.141× 10−2

(l = 4) 100 4.277× 10−2 4.745× 10−2 4.516× 10−2 4.530× 10−2 4.220× 10−2

WFG4
10 10 2.249× 10−1 2.178× 10−1 2.143× 10−1 2.134× 10−1 2.134× 10−1

100 100 3 (k = 6) 50 9.867× 10−2 9.530× 10−2 9.935× 10−2 9.563× 10−2 9.510× 10−2

(l = 4) 100 6.772× 10−2 6.628× 10−2 6.678× 10−2 6.619× 10−2 6.654× 10−2

WFG6
10 10 3.896× 10−1 3.611× 10−1 3.592× 10−1 3.560× 10−1 3.560× 10−1

100 100 3 (k = 6) 50 1.545× 10−1 1.432× 10−1 1.590× 10−1 1.653× 10−1 1.653× 10−1

(l = 4) 100 1.201× 10−1 1.114× 10−1 1.276× 10−1 1.215× 10−1 1.215× 10−1

WFG7
10 10 3.525× 10−1 3.506× 10−1 3.553× 10−1 3.602× 10−1 3.602× 10−1

100 100 3 (k = 6) 50 1.226× 10−1 1.086× 10−1 9.925× 10−2 1.061× 10−1 1.061× 10−1

(l = 4) 100 7.178× 10−2 5.886× 10−2 6.009× 10−2 6.561× 10−2 6.517× 10−2

CF2
10 8.459× 10−1 9.424× 10−1 9.266× 10−1 9.583× 10−1 9.583× 10−1

200 300 2 20 100 2.069× 10−1 2.539× 10−1 2.729× 10−1 2.795× 10−1 2.851× 10−1

200 1.694× 10−1 1.500× 10−1 1.987× 10−1 2.051× 10−1 1.964× 10−1

CF7
10 2.584× 10 2.605× 10 2.359× 10 2.679× 10 2.721× 10

200 300 2 20 100 1.044 1.329 1.242 2.232 1.792
200 7.834× 10−2 4.992× 10−1 4.602× 10−1 7.675× 10−1 6.057× 10−1

C1DTLZ3
10 2.661× 103 2.829× 103 2.845× 103 2.871× 103 2.871× 103

300 100 3 38 150 1.051× 102 2.214× 102 2.601× 102 3.168× 102 3.267× 102

300 4.986× 10 1.012× 102 1.043× 102 1.297× 102 1.243× 102

C2DTLZ2
10 4.041× 10 5.867× 10 7.045× 10 7.017× 10 7.017× 10

300 100 3 38 150 1.091× 10−1 1.299× 10−1 1.160× 10−1 1.191× 10−1 1.114× 10−1

convex 300 9.363× 10−2 9.723× 10−2 9.941× 10−2 9.688× 10−2 9.450× 10−2

C3DTLZ1
10 1.163× 103 1.166× 103 1.152× 103 1.152× 103 1.152× 103

300 100 3 38 150 2.497× 102 2.797× 102 3.001× 102 4.157× 102 3.801× 102

300 1.721× 102 2.002× 102 2.144× 102 2.304× 102 2.587× 102

Car Side Impact
10 7.528× 10−2 7.492× 10−2 7.618× 10−2 7.269× 10−2 6.863× 10−2

300 500 3 7 150 2.753× 10−2 3.066× 10−2 3.167× 10−2 3.173× 10−2 3.003× 10−2

300 2.602× 10−2 2.720× 10−2 2.970× 10−2 2.826× 10−2 2.881× 10−2

Welded Beam
10 1.247× 10−1 6.547× 10−1 5.801× 10−1 5.850× 10−1 5.850× 10−1

300 500 2 4 150 2.395× 10−3 3.043× 10−3 2.330× 10−3 2.764× 10−3 2.071× 10−3

300 2.094× 10−3 1.854× 10−3 1.159× 10−3 1.071× 10−3 2.295× 10−3

MG = the number of generation set; PS = the number of population size set.
Obj. = the number of objectives; Var. = the number of variables.

Gen = the generation that results were computed on.
k = position parameter in WFG problems; l = distance parameter in WFG problems.



TABLE IV
AVERAGED IGD AT THE 10TH, HALF AND FINAL GENERATION. BEST CASE IS HIGHLIGHTED IN BOLD.

problem MG PS Obj. Var. Gen 2-digit 4-digit 6-digit 8-digit 16-digit
IGD IGD IGD IGD IGD

DTLZ2
10 1.261 1.269 1.278 1.264 1.264

100 100 3 38 50 1.469× 10−1 1.662× 10−1 1.753× 10−1 1.782× 10−1 1.782× 10−1

100 5.433× 10−2 6.017× 10−2 6.096× 10−2 6.453× 10−2 6.213× 10−2

DTLZ3
10 1.657× 103 1.694× 103 1.685× 103 1.647× 103 1.666× 103

200 500 3 38 100 6.871× 10 1.545× 102 1.921× 102 2.001× 102 2.195× 102

200 5.059 3.451× 10 4.000× 10 4.369× 10 4.607× 10

DTLZ4
10 1.174 1.257 1.241 1.236 1.236

100 300 3 38 50 6.164× 10−1 3.498× 10−1 3.195× 10−1 3.503× 10−1 3.517× 10−1

100 5.803× 10−1 2.773× 10−1 2.794× 10−1 2.507× 10−1 2.507× 10−1

UF2
10 2.131× 10−1 2.125× 10−1 2.256× 10−1 2.283× 10−1 2.283× 10−1

200 200 2 20 100 4.521× 10−2 4.646× 10−2 5.174× 10−2 5.228× 10−2 5.312× 10−2

200 4.147× 10−2 3.917× 10−2 4.591× 10−2 4.411× 10−2 4.534× 10−2

UF9
10 1.161 1.183 1.069 1.102 1.102

300 200 3 20 150 3.057× 10−1 2.840× 10−1 3.077× 10−1 3.169× 10−1 3.145× 10−1

300 2.272× 10−1 2.235× 10−1 2.487× 10−1 2.543× 10−1 2.537× 10−1

WFG2
10 10 4.981× 10−1 4.963× 10−1 4.964× 10−1 4.964× 10−1 4.964× 10−1

100 100 3 (k = 6) 50 3.452× 10−1 3.462× 10−1 3.307× 10−1 3.087× 10−1 3.072× 10−1

(l = 4) 100 3.008× 10−1 2.945× 10−1 3.185× 10−1 2.699× 10−1 2.713× 10−1

WFG4
10 10 4.941× 10−1 4.402× 10−1 4.466× 10−1 4.638× 10−1 4.638× 10−1

100 100 3 (k = 6) 50 1.520× 10−1 1.477× 10−1 1.546× 10−1 1.465× 10−1 1.439× 10−1

(l = 4) 100 1.003× 10−1 9.719× 10−2 1.016× 10−1 9.837× 10−2 9.700× 10−2

WFG6
10 10 4.857× 10−1 4.829× 10−1 4.589× 10−1 4.538× 10−1 4.538× 10−1

100 100 3 (k = 6) 50 1.834× 10−1 1.690× 10−1 1.810× 10−1 1.846× 10−1 1.846× 10−1

(l = 4) 100 1.345× 10−1 1.247× 10−1 1.346× 10−1 1.359× 10−1 1.359× 10−1

WFG7
10 10 5.090× 10−1 5.143× 10−1 5.014× 10−1 4.986× 10−1 4.986× 10−1

100 100 3 (k = 6) 50 2.361× 10−1 2.246× 10−1 2.375× 10−1 2.345× 10−1 2.345× 10−1

(l = 4) 100 1.779× 10−1 1.701× 10−1 1.722× 10−1 1.658× 10−1 1.664× 10−1

CF2
10 4.487× 10−1 4.484× 10−1 4.807× 10−1 4.719× 10−1 4.715× 10−1

200 300 2 20 100 1.074× 10−1 9.756× 10−2 9.820× 10−2 1.023× 10−1 1.015× 10−1

200 1.073× 10−1 9.058× 10−2 9.864× 10−2 9.672× 10−2 8.944× 10−2

CF7
10 1.747× 10 1.751× 10 1.720× 10 1.742× 10 1.765× 10

200 300 2 20 100 4.949× 10−1 5.319× 10−1 4.949× 10−1 6.665× 10−1 7.408× 10−1

200 5.217× 10−1 3.410× 10−1 3.300× 10−1 3.072× 10−1 2.853× 10−1

C1DTLZ3
10 1.964× 103 2.052× 103 1.940× 103 1.950× 103 1.950× 103

300 100 3 38 150 9.702× 10 1.660× 102 1.783× 102 2.002× 102 1.956× 102

300 4.338× 10 7.928× 10 7.859× 10 9.252× 10 8.024× 10

C2DTLZ2
10 3.799 4.373 4.221 4.338 4.338

300 100 3 38 150 7.416× 10−2 8.165× 10−2 7.831× 10−2 7.594× 10−2 7.828× 10−2

convex 300 7.111× 10−2 7.861× 10−2 7.477× 10−2 7.388× 10−2 7.260× 10−2

C3DTLZ1
10 7.123× 102 6.939× 102 6.765× 102 6.938× 103 6.938× 103

300 100 3 38 150 5.704× 10 7.554× 10 8.131× 10 9.100× 10 8.776× 102

300 1.921× 10 2.938× 10 3.119× 10 3.399× 10 3.508× 10

Car Side Impact
10 2.222× 10−1 1.836× 10−1 1.861× 10−1 2.025× 10−1 1.824× 10−1

300 500 3 7 150 2.896× 10−2 2.954× 10−2 2.934× 10−2 2.926× 10−2 2.879× 10−2

300 2.289× 10−2 2.261× 10−2 2.230× 10−2 2.229× 10−2 2.258× 10−2

Welded Beam
10 2.932× 10−1 2.986× 10−1 2.495× 10−1 2.507× 10−1 2.507× 10−1

300 500 2 4 150 6.491× 10−2 6.480× 10−2 5.166× 10−2 4.184× 10−2 3.196× 10−2

300 3.929× 10−2 1.808× 10−2 4.589× 10−2 3.456× 10−2 1.863× 10−2

mer variables. Here we call the former position variables. The
distribution obtained using either precision indicate a strong
tendency for large-frequency concentrations near the poles 0
and 1. The cause of this concentration may be that when the
position variables are near 0 and 1, these become polar regions
in the objective function space, where non-inferior solutions
readily form and are frequently taken as parents. These DRSs
reportedly tend to prevent effective optimization.

As shown in Figs. 7(a) and (b), 2-digit precision yields fewer
individuals near poles than 16-digit precision does, suggesting
that 2-digit precision tends to reduce the occurrence of DRSs,
thereby reducing the number of search iterations near these

poles. Discretization of the number of significant digits is
equivalent to discretization of the objective function space,
and a reduction in the number of DRSs that can be generated
may be the result of improved convergence. In this hypothesis,
observed increases in convergence and diversity by the use of
lower applied digit precision results from its prevention of
evolution-impeding DRS formation.

We tested this hypothesis using DTLZ3 with 16-digit ap-
plied precision overall, but modified it by reducing the applied
precision when solutions approached the poles to determine
whether lower precision tended to prevent DRS formation,
thus promoting efficient evolution. In DTLZ3, the approach
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to the poles occurred when the position variables were near
0 or 1. The applied precision was then lowered to 2 digits
whenever the position variables x1 and x2 reached 0.1 or less
or 0.9 or more. The same computational conditions given in
Table II were used.

As shown in Fig. 7(c), the modified 16-digit precision
substantially reduced the number of individuals near poles 0
and 1. Table V shows the averaged GD and IGD at the 10th,
half, and final generation when using 2-, 16-, and modified
16-digit precisions. Figure 8 shows the histories of GD and
IGD, and plots of the final non-dominated solutions. The modi-
fied 16-digit precision yielded substantially better convergence
than the non-modified 16-digit precision. As shown by the
plot of non-dominated solutions in Fig. 8(c), the modified
16-digit precision improved both convergence and diversity.
These results clearly indicate that convergence is accelerated
in DTLZ3 by locally reducing the applied precision, thereby
preventing DRS formation. This tendency is also evident in the
distributions found in DTLZ2, and in the smaller number of
DRSs using 2-digit precision. This suggests that in DTLZ2 as
well as DTLZ3, lowering the applied precision reduces DRSs
formation, thereby accelerating convergence.

IV. CONCLUSION

In this study, we investigated the general effects of conver-
gence and diversity via discrete design variables changed by
the number of significant figures using NSGA-II and various
types of multi-objective problems. The results show that using
low-precision digits quickly creates convergence in many
cases, but it does not always produce better distribution. In
actual engineering optimization problems, turn-around time for
optimization must be shortened, so it is significantly important
to set the appropriate precision, depending on the problem.

As seen by the results of the Wilcoxon rank-sum test, SBX,
and polynomial mutation are not significantly affected by the
number of significant figures in design variables. One factor
that allows quick convergence while using low-precision digits
is DRSs. Simulated binary crossover and polynomial mutation
are not significantly affected by the number of significant
figures in design variables. If DRSs are not created using
lower-digit precision, using lower-digit precision with NSGA-
II may accelerate convergence.

Further investigation will be necessary to find techniques for
dynamically selecting the appropriate level of precision for ef-
ficient searching, including cases of real-world problems with
unknown properties. One possible procedure may consist of
first performing rapid low-resolution search and convergence
using a low precision and then applying a higher precision for
the higher-resolution search.

In addition, we only changed significant figures after the
decimal point in this study so that all variables are same
degree of discretization by digits precision. Design variables
may have different number of granularity even if variables
have same digits precision in general. Therefore, future work
also includes examining the effects of resolution while using
the same number of granularity with design variables.
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Fig. 7. Cumulative-frequency histograms of position variables x1 and x2 obtained using 2- and 16- and modified 16-digit.

TABLE V
AVERAGED GD AND IGD AT 10TH, HALF AND FINAL GENERATION FOR USING 2-DIGIT, 16-DIGIT, MODIFIED 16-DIGIT ON DTLZ3. BEST PERFORMANCE

IS SHOWN IN BOLD.

problem MG PS Obj. Var. Gen 2-digit 16-digit modified 16-digit
GD GD GD

DTLZ3
10 2.191× 103 2.508× 103 2.210× 103

200 500 3 38 100 9.935× 10 4.039× 102 1.554× 102

200 6.521 6.669× 10 2.345× 10

IGD IGD IGD

DTLZ3
10 1.657× 103 1.666× 103 1.675× 103

200 500 3 38 100 6.871× 10 2.195× 102 1.090× 102

200 5.059 4.607× 10 1.867× 10
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Fig. 8. GD / IGD histories and plots of final non-dominated individuals in the case of using modified 16-digit on DTLZ3.
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