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Abstract—Multiple Classifier Systems are often found to im-
prove results of intrusion detection by combining a set of classifier
decisions where single classifiers may not achieve the same
level of detection. However not every set of classifiers is more
able, therefore selection of more capable sets is required. A
misclassification is a false positive or negative instance; a set
of classifiers may produce one more than the other. An optimal
set of classifiers is required to reduce both, thus treating them as
individual objectives allows a balance to be found. The aim of this
work is the selection of optimal sets of base level classifies using
an evolutionary computation approach. A comparative analysis is
made of the performance of the generated ensembles against the
individual base level classifiers, it is shown that optimal ensembles
can be found to perform better than a majority of individuals.

I. INTRODUCTION

An ongoing challenge, for security experts and businesses,
in the defence and stability of modern networks is the detection
of intrusions that either illicitly retrieve data/information, or
prevent legitimate access [1]. Given the wide varieties of
existing intrusions, one key difficulty is providing accurate
detection. Intrusion detection depends largely on analysis of
attack vectors and purposes. Attack methods and perceived
purposes may be useful to determine if they are different
enough from normal traffic to accurately state them to be
attacks.

Systems put in place to detect intrusions are known as
Network Intrusion Detection Systems (NIDS). An NIDS may
function with respect to historical or real time network traffic
[2]. In either case, they are utilized to provide some method
of detection through analysing all or a specified set of features
[2], [3]. A popular approach to NIDS over the last decade has
been the use of multi-layered or tiered approaches [4], [5],
[6], which incorporate multiple methods within a hierarchy.
Accuracy of intrusions depends upon the algorithm employed,
when a single algorithm is not adequate, multiple algorithms
may be required, determination of how many and which
algorithms to employ requires further consideration.

The focus of this paper concerns the use of a Multi-
objective Genetic Algorithm (GA) to determine Pareto-optimal
ensembles of Base Level Classifiers (BLC) for the detection
of intrusions. The hypothesis is that the evolution of an
ensemble of BLCs may result in better performance, to some
degree, than individual BLCs. To explore this, we measured
performances of a set of supervised Machine Learning (ML)
algorithms, previously used with a GA [7], on two datasets

used for intrusion detection research, notably the NSL-KDD
[8] and ISCX2012 [9] datasets. The developed work is the
use of an evolutionary approach to sets of ML algorithms in
the application domain of network intrusion detection. The
work is differentiated by the use of the specific ML algorithms
for an efficient ensemble StackingC for the particular use
of network intrusion detection with more recent and large
dataset subsets. In particular, investigating performance and
determining applicability of produced ensembles per dataset
as well as existence of general ensemble across each.

The remainder of this paper is outlined as follows: Sec-
tion II describes some background on GA, ML algorithms
and existing NIDS. Following this, Section III, describes the
methodology employed for the experiments discussed herein,
followed by a presentation of the results obtained in Section
IV. Finally, in Section V a brief discussion of the results is
given along with a subsequent conclusion in Section VI.

II. BACKGROUND

As ML research and development continues more potential
algorithms are produced. For any given situation one algorithm
may perform as well as another algorithm, in this case the
need for both algorithms may become less likely, at least
for a certain series of instances [7]. Each algorithm may
require a certain amount of time for training and classification,
the overall amount of time may not simply be linear and
predictable. Therefore, implementation of all algorithms may
not be desirable or adequate for the problem of accurate
classification.

In general, the set of optimal algorithms for a given problem
is known to be a subset of all possible algorithms [10]. Thus,
selection of an optimal set requires a further optimization
process, such as a GA which follows the theory of evolution,
producing optimal sets of classifiers with objective evaluation
criteria.

NIDS can be evaluated using various different measures.
For example, F-Measure (FM), Detection Rate, totals of False
Positive (FP) or False Negative (FN), or rates of FP or
FN classification instances may be employed. Within this
paper, FP is taken to be the erroneous classification of an
instance as an intrusion. Conversely, a FN is taken to be the
erroneous classification of an instance as normal. With NIDS
a balance must be found between FPs and FNs, as these two
objectives generally compete. One way to achieve this balance



is to identify the Pareto-optimal trade-off between FP and
FN using Multi-objective optimization algorithms. A noted
limiting factor of NIDS is the reduction of FPs [11], [12].

A. Ensemble Algorithms

Outputs from multiple BLCs can be combined into a single
output, this approach may be referred to as an Ensemble
or Multiple Classifier System (MCS). Popular conventional
Ensemble methods include Bagging, Boosting and Stacking.
Bagging uses instances of a BLC and a replicated dataset
with differences introducing variations, improving average
classification result [13]. By contrast, Boosting uses BLCs
sequentially over one dataset. Improvements are induced at
each subsequent BLC, weighting changes of misclassified
instances, improving overall classification [14]. Similar to
Bagging’s use of multiple BLCs and Boosting’s use of one
dataset, Stacking uses BLCs in parallel over one dataset [15].
Each BLC predicts class probabilities as input for a regres-
sion model per class. Each regression model classifies each
instance [16]. Using class probabilities rather than predictions
improve overall performance. A Stacking variation, StackingC
[17], improved efficiency by using only the probability of a
specific class for each linear model for that class, rather than
considering the other class probabilities as well [17].

B. Ensemble-based NIDS

Within research literature, some NIDS have utilized Ensem-
ble approaches, improving upon performance of a single BLC.

Octopus-IIDS [5], described as an Intelligent IDS, imple-
ments a Kohonen network to split data into attack classes,
then SVMs to reclassify instances as Normal or Attack.

Hidden Markov Models with Payl (HMMPayl) [18] per-
forms analysis on payloads, as well as using Hidden Markov
Models (HMMs) initially, performing multiple initial classi-
fications, then forming a final classification from the initial
classification results.

Work described in [19] forms clusters with K-Means Clus-
tering (KMC), after which Naive Bayes (NB) corrects data
previously misclassified by the clustering. This approach in-
creases classification results as well as efficiency by grouping
the data.

C. Genetic Algorithms

A GA is an evolutionary algorithm that mimics the process
of natural selection to evolve a population of candidate solu-
tions to an optimization problem [20], [21]. The evolutionary
aspect of the algorithm is related to modelling evolutionary
processes whereby two chromosomes are 'mated’, producing
"child’” chromosomes based on ’parent’ chromosome repre-
sentations. Improvements can arise by selection and crossover
(i.e. 'mating’) of the fittest chromosomes. Mutations may also
be applied, whereby a gene of a chromosome is randomly
modified to introduce diversity within the population of chro-
mosomes. Each chromosome represents a potential solution to
the problem being solved.

Objective functions of a GA generate values utilized to
compare performance of decoded chromosomes, such that

the optimal or dominating chromosome may be identified.
Values may be maximized or minimized depending upon
need; for instance, maximising accuracy and minimizing error.
GAs with two or more objectives are Multi-objective GAs
(MOGA). In Multi-objective optimization, often the multiple
objectives compete. For competing objectives there exists no
"global’ solution, therefore a MOGA must use the concept
of dominance to compare and rank solutions. A solution x1
is said to dominate another solution x2 if and only if x1
is strictly better than X2 in one objective, and no worse in
all the others. Solutions that are not dominated by any other
solution represent the best possible trade-off in objectives, and
are called Pareto-optimal. The goal of a MOGA is to identify
a diverse set of Pareto-optimal solutions.

One of the most popular MOGA is Non-dominated Sorting
Genetic Algorithm IT (NSGA-II) [22], an improved version of
NSGA. NSGA-II creates an initial population of chromosomes
and evaluates those chromosomes using a defined problem.
Chromosomes in pairs create a child chromosome population
using crossover and mutation, which is then evaluated. Eval-
uated chromosomes are all compared to each other, providing
the domination information of each chromosome, i.e. which
chromosomes dominated and which were dominated by an
individual chromosome. Non-dominated chromosomes form
the first or ”0” subset; these Pareto-optimal chromosomes are
removed from any dominating set of remaining chromosomes.
This process continues, finding all possible and existing Pareto
fronts for the problem until all chromosomes have been
assigned to a front.

NSGA-III [23], is an improved version of NSGA-II, able
to more efficiently evolve solutions where problems include a
large number of objectives.

MOEA/D [24], is a Multi-objective Evolutionary Algorithm
that decomposes optimization problems into sub-problems, at
each generation the best solution of each sub-problem forms
the new generation, in this way the complexity of the overall
problem is reduced.

D. Intrusion-based NIDS using GAs

GAs are also used to choose an optimal set of variables. In
[25] a GA has been implemented and used for the detection of
intrusions from the KDD’99 dataset. A multi-class approach
was taken, performing well on Denial of Service (DoS)
data, however not as a well on Normal data, although the
performance on DoS and User to Root data is stated as better
than that of the KDD’99 competition winner.

In [26] a set of features and the parameters of SVMs
kernel function is evolved to optimize the detection rate of
the resultant SVM. The proposed system is said to sometimes
outperform the KDD’99 competition winner. Similarly in
[27], a GA named Archive-based Micro Genetic Algorithm
2 (AMGA2) is used to optimize features, in this case those
of NB. The results from the evolved NB are compared
against other methods using NB as the BLC. Experiments are
carried out on both KDD’99 and the more recent ISCX2012



datasets, although low numbers of instances are selected from
ISCX2012.

III. METHODOLOGY

The focus of the work presented in this paper is investigation
and determination of optimal sets of BLCs, using NSGA-II,
for use in an ensemble, StackingC, employed for the detection
of network intrusions.

BLCs and an efficient ensemble method are implemented,
as described in [7]. A particular distinction is the difference
of domain upon which the set of BLCs are used, in this case a
NIDS. Additionally, in comparison with the current literature,
a more recent dataset, ISCX2012, is also employed with large
number of instances, facilitating investigation into the effects
of large scales of data with StackingC in an evolutionary
context.

To simplify selection and implementation of algorithms for
the ensemble, algorithms within Weka are used to form BLCs
and the Meta Level Classifier (MLC), e.g. Multi-response Lin-
ear Regression. In addition, JMetal [28], an “object-oriented
Java-based framework for multi-objective optimization with
metaheuristics”, has been utilized for encoding and decoding
chromosomes for the GA, providing an initial population of
chromosomes and assisting in catching potential issues with
child chromosomes; ensuring a minimum number of BLCs in
initial populations and handling when chromosomes decode to
an empty set.

Although the most recent variation of NSGA, NSGA-III, is
available, NSGA-II provides a robust and popular approach
that is adequate for optimization of two potentially competing
objectives. Development of a bespoke GA was beyond the
scope of this paper, thus a generic implementation of NSGA-
I was implemented.

A. StackingC with pre-trained BLCs

StackingC required a number of changes to provide the
efficiency found when using pre-trained BLCs. Objects and
methods were added to Stacking and StackingC (the latter de-
pending upon the former), maintaining trained BLCs, indices
selecting required BLCs for the current chromosome and the
meta data with which to train each MLC.

With the existence of a possibly unlimited number of BLCs
for use in an ensemble, StackingC needs to be more efficient.
When StackingC is used over multiple iterations of a set of
BLCs, each set would require training on the full dataset
for each iteration. Considering all BLCs and the amount of
training data, the training time required for each ensemble is
potentially large. Thus due to a combination of, firstly, size of
current and future BLC sets, secondly, training datasets and,
thirdly, time required to train individual BLCs, a change to
only training once was required.

B. NSGA-II using BLC evaluations

Binary encoding of the set of BLCs was utilised, whereby
the presence or absence of a BLC is represented by a 1
or 0 respectively. An implementation of NSGA-II for binary

encodings was utilized. Subsequently, creation and evolution
of chromosomes provide sets of BLCs, where these sets
are subsets of the entire possible set of BLCs. Comparisons
of chromosomes involved minimization of both FP and FN
values. It is assumed that, two sets of BLCs that perform well
may be evolved and produce at least one set of BLCs that can
perform better than and is different to the prior two sets.

C. Evolving sets of BLCs for StackingC

The use of a GA would facilitate the process of evolving a
chromosome evaluated on pre-selected objectives, evaluation
provided by the more efficient StackingC. Within this section
such a system is described, illustrated in Fig.1. The illustration
provides 10 stages in total, the methodology of the experiment
from an initial StackingC and population generation followed
by descriptions of the evolution of the population.

An initial iteration of StackingC is run on training data,
training the MLC but also producing a set of Trained BLCs
from the full set of BLCs and the Meta Data, as shown in
stages 1-3 of Fig.1 respectively. Trained BLCs and Meta Data
are represented in stages 2 and 3 respectively. Subsequently,
as illustrated in stage 4 of Fig.1, NSGA-II through the use of
a problem description creates multiple solutions forming the
initial population of chromosomes.

Following the formation of an initial population illustrated
in stage 4, in stage 5 of Fig.1 the GA decodes a chromosome
from the population to produce an array of indices indicating
which BLC should be present in a set. This array is used
against the full set of Trained BLCs to provide the set of
Reduced BLCs, given by stage 6 of Fig.1.

Both the array and Reduced BLCs are passed to a new
StackingC instance, given by stage 7 of Fig.l, to set the
required BLCs and the indices of data from the Meta Data
initially used to train the MLC, as shown in stage 8 of Fig.1.

The combination of these three objects, the Reduced BLCs,
the array and the Meta Data, provides the creation of a
StackingC model without retraining the whole set of BLCs or
recreating Meta Data with which to train the MLCs, as shown
in stage 8 of Fig.1. Within this new StackingC instance, Meta
Data is reduced using the array to form Reduced Meta Data.
This reduction is required as, similarly with Reduced BLCs,
the new StackingC instance will only require specific parts
of Meta Data to produce Trained MLCs. These specific parts
being representative of the ensemble provided by NSGA-II.

Testing Data passed to the Reduced BLCs is used to
produce Testing Meta Data for the testing of Trained MLCs.
Subsequent Classification and evaluation of the ensemble,
as described by the chromosome, are used to update the
solution’s objective values (Update Solution) and subsequently
the solution in the population (Update Population), as shown in
stage 9 of Fig.1. The process illustrated in stages 5-9 of Fig.1
is repeated for each chromosome in the initial population, after
which the process illustrated in stage 10 is performed.

With the population evaluated, if the stopping condition is
not met, which in this case is the evaluation of 30 generations
of the population, a child population is evolved. Each child
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Fig. 1. Illustration of efficient StackingC training and subsequent evolution by NSGA-II

population chromosome is subject to processes of stages 5-
9 of Fig.1. Optimal chromosomes from parent and child set
are found by measure of domination, as described previously,
to form a new Updated Population of parent chromosomes,
as shown in stage 10 of Fig.1. The process repeats until the
specified number of generations has been passed.

D. Datasets

Work presented in this paper employs two primary datasets:
NSL-KDD and ISCX2012. NSL-KDD has been pre-processed
into training and testing datasets, the proportion of which is
presented in Table I. By contrast, ISCX2012 has not been pre-
processed, hence required training and testing datasets to be
subsequently generated. Consequently, the ISCX2012 dataset
was split in two ways: UUJN - using only the Distributed
Denial of Service (DDoS) scenario from the dataset, with a
similar distribution of classes as NSL-KDD; and Yassin2013
- using an approximation of the dataset used by [19] with a
higher number of attack instances in the training set. Table
I gives brief description of all the dataset variation datasets
utilized within the experiments.

IV. RESULTS

A number of experiments were performed to determine the
optimal sets of BLCs for StackingC, with focus on detecting

network intrusions. Each dataset was used with the full set of
BLCs during the experiments. Adjustments to the full set of
BLCs were required to allow results from each dataset to be
obtained. This was due to different feature types, number of
instances as well as BLC performance per dataset.

One issue faced was time complexity of training; When
trained on NSL-KDD, the full set of BLCs were able to
produce results within an adequate time frame. However,
UUIJN and Yassin2013 were found to require extended periods
of time for training. Some BLCs required scores of hours
before finishing and in some cases did not finish. Therefore,
results from only a subset of the BLCs for these two datasets,
as indicated in Table II, were viable. Consequently, BLCs
that experienced extended training times were removed from
the full set and a new subset/full set was produced. This
new set experienced no such issues with UUJN, however still
some issues were found with Yassin2013 for one BLC. In
response, again, the BLC causing issues was removed and a
new subset/full set was produced.

Thus three BLC set variations were of appropriate use for
each dataset with some overlap between which datasets and
which sets of BLCs provided results. Positions of each BLC
for each BLC set variation in which they were viable are
presented in Table II under the column Base Level Classifier



TABLE I

CLASS DISTRIBUTIONS OF DATASETS USED FOR EXPERIMENTS

Training Testing
Dataset Features Normal | Attack Total Normal | Attack Total
NSL-KDD 42 67,343 58,630 | 125,973 9,711 12,833 | 22,544
UUJN 16 35,223 30,666 65,889 4,571 6,040 10,611
Yassin2013 | 15 63,765 8,968 72,733 19,115 37,159 | 56,274
TABLE II

PRESENCE OF BASE LEVEL CLASSIFIERS FROM WEKA

Base Level Classifier Base Level Classifier Set Variation
Name Type One Two Three
NaiveBayesUpdateable bayes 10000000000000 | 10000000000 | 1000000000
PART rules 01000000000000 | 01000000000 | 0100000000
J48 (pruned) trees 00100000000000 | 00100000000 | 0010000000
J48 (unpruned) trees 00010000000000 | 00010000000 | 0001000000
DecisionStump trees 00001000000000 | 00001000000 | 0000100000
DecisionTable rules 00000100000000 | 00000100000 | 0000010000
ClassificationViaRegression meta 00000010000000
RandomForest trees 00000001000000
RandomTree trees 00000000010000
VFI misc 00000000010000 | 00000010000 | 0000001000
ConjunctiveRule rules 00000000001000 | 00000001000 | 0000000100
JRip rules 00000000000100 | 00000000100 | 0000000010
NNge rules 00000000000010 | 00000000010
HyperPipes misc 00000000000001 00000000001 0000000001
Total Classifiers 14 11 10
Set Variation. The three BLC set variations are thus named 120007
. 0 o BLC
as One, Two apd Three or refe.rre'd to respectively as first, 11000k + optimal ensemble
second and third BLC set variation. NSL-KDD produced
results with each BLC set variation, UUJN produced results 100007
with the second and third BLC set variations and Yassin2013 g 9000
only produced results with the third BLC set variation. This & 30001
. . on
is shown in Tables II, III and IV. 2
g 70001
=
= 6000+ 0
A. On NSL-KDD Results 5000-
o o o
The results of each BLC set variation, as given in Table III, 40001 o ©
show that overall there is a single data point that exists as an 3000 ¥ : : 9
0 200 400 600 800 1000

optimal set of FP and FN values, achievable by multiple unique
ensembles. This is true across each BLC set variation where
the FP and FN values obtained remain the same. All ensembles
across NSL-KDD achieve 248 FPs and 3263 FNs, while some
individual BLCs achieve similar results. From Table IV it is
seen that ensembles perform best regarding FN where in all
but one case the individuals achieve around 700 more FNs.

Considering the results obtained using NSL-KDD, shown
in Table III and Table IV, it can be determined that ensembles
outperform the majority of BLCs, in terms of FP as well as
FN. An exception, however, is found with the HyperPipes
BLC, which outperforms any of the ensembles in terms of
FP, achieving 56 FP compared to 248 FP achieved by any
ensemble.

The data points from BLCs and optimal ensembles are
presented in Fig.2. It is evident from positions of BLCs
in comparison to the optimal ensemble that the ensemble
outperforms the BLCs.

False Positives

Fig. 2. NSL-KDD Results

B. On UUJN Results

As previously discussed, in terms of the UUJN dataset, there
are only results from the second and third BLC set variations.
Across both there are four data points found, each with at least
two unique ensembles. The ensembles outperform a number
of BLCs in terms of both FP and FN. However, while some of
the ensembles outperform a number of BLCs, both PART and
JRip produce similar results and one, J48 unpruned, produces
the same results.

From Table IIT and Table IV it may be observed that PART
achieved 1 FP with 10 FN to an ensembles 0 FP with FN
10 and JRip achieved 2 FP with 7 FN to an ensembles 1 FP
with 6 FN. J48 unpruned achieved the same results as some



TABLE III
INDIVIDUAL BASE LEVEL CLASSIFIER RESULTS

Dataset
Base Level Classifier NSL-KDD UUJN Yassin2013
FP FN FP | FN | FP FN
NaiveBayesUpdateable 670 4714 67 66 | 728 | 37152
PART 275 3948 1 10 11 37159
J48 pruned 263 3900 0 16 60 | 37159
J48 unpruned 268 3930 3 3 60 37159
DecisionStump 440 4072 65 66 3 37158
DecisionTable 256 5923 92 25 | 415 | 37156
ClassificationViaRegression | 659 4713
RandomForest 267 4206
RandomTree 278 4381
VFI 377 | 4567 37 12 54 | 37069
ConjunctiveRule 884 | 3328 65 66 0 37159
JRip 288 | 4613 2 7 11 37159
Nnge 697 3994 | 430 4
HyperPipes 56 11443 | 445 9 211 [ 37069
TABLE IV

OPTIMAL ENSEMBLES AND RESULTS FOUND FOR EACH DATASET AND RELEVANT BLC SET VARIATION

Base Level Classifier Set Variation

Dataset One Two Three
Chromosome FP FN Chromosome FP FN Chromosome | FP FN
11110000011000 01111000000 0111101001
11110000000001 01111000001 1111001001
01110000010001 01111010000 TT1110100T
T1110000010001 | 248 | 3263 | 11111000001 243 | 3263 0111001001

NSL-KDD 11110000000000 01110000000 0111000000 248 | 3263
01110000010000 11111010000 111101000
11110000010000 01111010001 0111101000

11111000000 0111001000
0111000001
11100101011 0 10 0110110001 0 1
11100101010 0110010001
10110101000 1011110001
10110101001 0011110001
00110101001 | 1 6 1011110000 1 6
00110101000 1011010000
00111100000 1011010100
10011111011 2 4 0011100001
000ITI110T11 0001111001
UUJN N/A 10010001011 0001100101
00010111000 0011010001
10010101000 1001100101
10010011011 3 3 0011000000 3 3
00010101000 - 1011100100 -
10010011001 1011000100
10010111011 1011000000
10011101000 1011100001
0001000101
0001010000
0000100100
1000100100
1000100101
1000000101 0 37159
0000100101
0000000101
. 0000100001
Yassin2013 N/A 1000100000 ; 7158
0000100000 N
1000100001
0000111001
0000011001
oooooTTroo | 43| 37069
0000011000




ensembles of 3 FPs with 3 FNs as evidenced in Tables III and
IV. The optimal ensembles achieve low FPs ranging from 0-3.
While these values match some FPs produced by BLCs, the
FNs indicate that those same instances achieve higher results
and, in some cases, the optimal ensembles achieve lower FNs.
For example, PART with 1 FP and 10 FNs is outperformed
by an ensemble with 0 FPs and 10 FNs. While this difference
may be marginal it is still indicative of a better performing
ensemble in some cases.

C. On Yassin2013 Results

Finally, with regard to the Yassin2013 dataset, results were
only obtained for the third BLC set variation. As there
exists only one set of results for this dataset the comparisons
between the optimal sets and BLCs are somewhat simplified.
Consequently, there are a small number of optimal data points
found, each with at least four unique ensembles. Considering
the results from each individual BLC, as well as comparisons
between the optimal ensembles, it can be observed that some
BLCs are able to achieve the same result as optimal ensembles.
In particular, this is the case with the BLCs ConjunctiveRule
and DecisionStump, which achieve 0 FPs with 37159 FNs
and 3 FPs with 37158 FNs respectively. Comparisons also
show that while both the set of individual BLCs and optimal
ensembles achieve 37159, 37158 or 37069 FNs, the number
of FPs vary more, with the optimal ensembles outperforming
most of the BLCs in terms of the number of FPs alone.
Optimal ensembles achieve 0, 3 or 43 FPs, where optimal
ensembles that achieve 0 or 3 FPs perform better than most
individual BLCs where the number of FPs are typically found
to be 11 and above, three of which achieve over 200 FPs.

V. DISCUSSION

As stated in Section IV, the optimal ensembles found
with NSL-KDD outperform the majority of individual BLCs.
Comparing them on their individual FPs and FNs, 100%
of the ensembles outperform 93% of the BLCs in regards
to FPs while 100% of the ensembles outperform 100% of
the BLCs in regards to FNs. Thus, overall, it is shown that
93% of the optimal ensembles strictly outperform any of the
BLCs. The greatest distinction between BLCs and optimal
ensembles may be the difference found with the single BLC,
HyperPipes, that is not strictly improved upon; the FPs of
the BLC is approximately 22% of any ensemble’s FPs, the
FNs from the BLC is approximately 350% of any ensemble’s
FNs. Hence while the FPs may be of more importance for
NIDS, the FNs would have more of an effect being instances
where an intrusion was not detected. The performances found
with UUJN differ in comparison to NSL-KDD, the differences
between optimal ensembles and individual BLCs are not as
definitive. With four and three possible optimal ensemble
results for the second and third BLC set variations respectively,
individual comparisons are more varied. For the second BLC
set variation at least a single optimal ensemble, for example
11100101011, dominates 63% of individual BLCs. For the
third BLC set variation at least a single optimal ensemble,

for example 0110110010, dominates 54% of individual BLCs.
The performance when considering Yassin2013 is more easily
defined. Two BLCs, DecisionStump and ConjunctiveRule,
achieve results equal to those of two different sets of opti-
mal ensembles. Those optimal ensembles are least likely to
dominate given results equal to individual BLCs, thus remains
the third optimal ensemble, strictly dominating 60% of the
individual BLCs.

Given that adjustments to the sets of BLCs were based
on the usability of the datasets, it has been shown that each
BLC did not perform equally across each individual dataset.
A clear example of this is with the BLC named Conjunc-
tiveRule; from results obtained using both the NSL-KDD and
UUIJN datasets it may be observed that any optimal ensemble
outperforms ConjunctiveRule. Instead, from results obtained
from Yassin2013 it may be observed that ConjunctiveRule
performs just as well as at least one of the ensembles, for
example 0000100100.

Where comparisons across each dataset can be made di-
rectly, over the third set variation as given in the last three
columns of Table IV, it can be seen that each ensemble found
to be optimal is unique; an optimal set of BLC found for NSL-
KDD is not found for UUJN or Yassin2013. Accordingly, it
may be the case that the data points utilized by each dataset
may be less compatible with some BLCs than with others. A
particular BLC may perform better when trained on NSL-KDD
rather than UUJN; BLCs that do not perform as well may be
removed from subsequent generations of chromosomes by the
evolutionary process.

When considering the patterns of the presence of the BLCs,
over the third set variation, as given in Table IV, it can be seen
that for each dataset there is at least one BLC, namely JRIP,
that does not appear in any of the optimal ensembles. JRip is
dominated by at least one ensemble whenever used with NSL-
KDD, UUIJN or Yassin2013. Consequently, it is likely that
future experiments may be able to exclude JRip as it would
appear to play no part in the generation of optimal ensembles.

With the removal of a BLC, NNge, between the second and
third set variation, there is a slight decrease in performance
with UUJN. In the second set variation an optimal ensemble,
for example 11100101011, achieves 0 FPs and 10 FNs, while
in the third set variation an optimal ensemble, for example
0110110001, achieves 0 FPs and 11 FNs. While these example
ensembles differ in the presence of more than one BLC, it may
be observed that removal of NNge allows production of similar
but less favourable results by the remaining BLCs. Further-
more, a different optimal ensemble, for example 10011111011,
is no longer produced. Hence, achieving 2 FPs and 4 FNs no
longer occurs in the third BLC set variation, perhaps indicating
that while the addition of a BLC can improve an optimal
ensemble, it may also introduce a wider range of unique
optimal ensembles from a set of BLCs.

A comparison between the results obtained and similar
works within the literature may also be made. Comparing
against [19] shows less FPs however more FNs, all evolved
ensembles more accurately detect intrusions but less accu-



rately classify normal instances. It should be noted that the
Yassin2013 dataset used in the work presented herein here is
only an approximation of the dataset used in [19].

VI. CONCLUSION

The hypothesis was that a GA should be able to evolve
sets of BLCs for use with a Multiple Classifier System to
produce an ensemble that is able to outperform a number of the
individual BLCs from the full set of BLCs. Results show that
evolved optimal ensembles can perform better than individual
BLCs, the number of optimal ensembles that perform better
would appear to partly be based on the dataset.

When considering the BLC set variations, no singular
optimal set of BLCs is produced that may be applied with
impunity across the varied datasets. However, NSGA-II is
capable of evolving sets of BLCs to optimal ensembles for
each dataset. Individual BLCs require some analysis before
benefits may be produced, especially where prolonged training
time requires removals of BLCs, indicating that datasets may
dictate inclusion of BLCs. Sets of BLCs may also need to be
adequately large to provide optimal variations of optimal en-
sembles and subsequent data points from evaluation measures.
Thus the benefits of the optimization of StackingC could rely
on combinations of BLCs and datasets.

Future works could include further investigation and anal-
ysis into the selection of individual BLCs better suited for
use across varied datasets with hopes that optimal ensembles
across varied datasets may be evolved. However, such an
approach could be restrictive when attempting to cover a large
enough number of datasets. Additionally, implementation of
additional GAs and additional objectives could be included as
future works.
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