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Abstract—The evaluation of the performance of forecasting
algorithms in the area of power forecasting of regenerative
power plants is the basis for model comparison. There are a
multitude of different forms of evaluation scores, which, however,
do not seem to be universally applied. In this article, we want to
broaden the understanding for the function and relationship of
different error scores in the area of deterministic error scores. A
categorization by normalization technique is introduced, which
simplifies the process of choosing the appropriate error score for
an application. A number of popular error scores are investigated
in a case study which details the development of error scores
given different forms of error distributions. Furthermore, the
behavior of different error scores on a real-world wind farm
data set is analyzed. A correlation analysis between the evaluated
scores gives insights on how these scores relate to each other.
Properties and notes on the applicability of the presented scores
are detailed in a discussion. Finally, an outlook on future work
in the area of probabilistic error scores is given.

NOMENCLATURE

t Time point of evaluation or forecasting origin.
k Look-ahead time or forecasting time-step.
kmax Maximum look-ahead time or forecasting horizon.
N Number of data items used for the evaluation.

xt+k|t Model input for time t+ k made at time origin t.
yt True (measured) power value at time t.
yinst Installed nominal power capacity.
ŷt+k|t Forecast for time t+ k made at time origin t.
et+k|t Forecasting error et+k|t = ŷt+k|t − yt+k.

I. INTRODUCTION AND RELATED WORK

Forecasting the power generation of regenerative power
plants has been a major area of research due to the increasing
portion of regenerative forms of energy in the power grid.
These forms of energy have volatile generation characteristics,
meaning that the power generation can not be controlled
(unlike in conventional power plants). Instead, they depend
on the atmospheric conditions, in particular wind speed (and
related parameters) for wind turbines, and solar radiation for
solar collectors. The typical power forecasting process takes
place in two steps:

• A numeric weather prediction (NWP) for the desired
area is created. This process typically is performed by
a weather model provider.

• The NWP (and possibly further data, such as the current
power generation) is used to generate a power forecast
for a desired time span using a forecasting algorithm.

An introduction into the area of forecasting wind power
generation is, e.g., given in [1], [2], [3]. Forecasting algorithms
typically happened to be physical models, which transform the
NWP into a power generation time series using a turbine, or
solar collector power curve (e.g., in [4]). However, in the last
decade, a multitude of other types of models, e.g., models
based on machine learning [5], [6], statistical models [7], or
ensemble methods [8], [9], were developed. As the portion of
renewable energies in the power grid is steadily increasing,
the absolute error may get very large in a worst-case. One
of the major goals of research in power forecasting therefore
is to develop more sophisticated (i.e., better performing)
algorithms.

In order to compare the performance of forecasting algo-
rithms, there has to be a clear definition of how the procedure
of quality assessment is performed. There are a multitude of
error scores which are utilized, each of which is of interest to
a certain participant in the industry, and whose names partially
are the same while they are calculated differently. A number
of surveys on the forecasting of power generation also include
error scores, however, this analysis aims at giving a focused
and more complete overview on the topic of forecasting error
scores for power forecasting.

Some articles describe and summarize the general assess-
ment of forecasting errors, e.g., [10], [11], [12]. Though these
measures are useful and are applied in part in the area of power
forecasting, this specific area has certain characteristics which
make other forecasting error measures more relevant. The area
of the power forecasting has been covered in some surveys,
e.g., in [2], [3]. Some other surveys also include sections
on forecasting error scores [1], [8], [13], however, they are
partially inconsistent with each other and only mention a
selection of error scores.

Furthermore, in addition to deterministic errors, the uncer-



TABLE I
OVERVIEW OF BASIC DETERMINISTIC ERROR MEASURES

Error Measure Name Formula Purpose

Bias Biask = 1
Nk

∑Nk
n=1 en Shows if an algorithm overestimates or underestimates a forecast (on average).

Mean Absolute Error MAEk = 1
Nk

∑Nk
n=1 |en| Linear absolute error measure. Proportional weighting of errors.

Mean Squared Error MSEk = 1
Nk

∑Nk
n=1 e

2
n Quadratic error. Smaller weighting of small errors, larger weighting of large errors.

Root Mean Squared Error RMSEk =
√

1
Nk

∑Nk
n=1 e

2
n Square root of MSE has the original physical unit of the forecast.

tainty assessment of a forecast is an increasingly important
aspect in power forecasting. It can, but not necessarily has
to be expressed as a probability [14]. Having an uncertainty
estimate of a power forecast, an actor in the industry has the
possibility to plan according to the amount of uncertainty,
e.g., taking preventive actions such as increasing the reserve
capacity. Reviews on probabilistic error scores for wind power
forecasting are described in [15], [16].

The main contributions of this article is a structured
overview of existing error measures in the area of deterministic
error scores. In two case studies, the characteristics of the
presented error measures are analyzed in detail. From the
insights of the case studies, advantages and limits in the
application of each error score is discussed.

The remainder of this article is structured as follows: Sec-
tion II summarizes deterministic error scores and categorizes
them by their way of normalization. Section III analyzes the
presented error scores in a case study to show their effects,
which are then discussed in Section IV. Our key findings are
summarized in Section V. An outlook on our future work and
a short introduction into the area of uncertainty assessment
techniques is given in Section VI.

II. DETERMINISTIC FORECASTING ERROR SCORES

A forecast is conducted at a time t, the forecasting origin.
Depending on the desired application, a forecast is performed
for a number of forecasting time-steps

k = kmin, kmin + 1, . . . , kmax. (1)

The forecasting time-step borders kmin and kmax can be
chosen arbitrarily, for typical applications, such as the day-
ahead forecast, the forecasting time-steps are chosen to k =
24h, . . . , 48h. For an intra-day forecast, on the other hand,
typical borders are k = 1h, . . . , 24h.

The forecasting process is typically performed using a
forecasting model to transform a weather forecast into a power
forecast, which in a typical form can be

ŷt+k|t = f(xt+k|t|Θ), (2)

where xt+k|t are the parameters of a numeric weather pre-
diction at time t + k with forecast origin t, and f is the
forecasting model function with model parameters Θ. In case
the forecasting algorithm is an ensemble algorithm consisting

of J predictions, the deterministic forecast can be computed
by

ŷt+k|t =

J∑
j=1

wjfj(x
(j)
t+k|t|Θ(j)) (3)

with the sum of all weights being
∑J

j=1 wj = 1. The value
of x

(j)
t+k|t and the forecasting model parameters Θ may vary

for some forms of ensembles. The forecasting error can be
calculated after creating the forecast using

et+k|t = ŷt+k|t − yt+k, (4)

where yt+k is the power measurement at the corresponding
time t + k. From this simple form of forecasting error, error
measures can be derived.

A. Basic Error Measures

For quality assessment, a number of single deterministic
forecasting errors are aggregated into an overall score. There
exist a number of scores, which can be seen from Table I.
Though there are more sophisticated error scores, most of
those scores are based on one of these basic scores.

Each score can either be computed for each forecasting
time-step k separately, or as a summarized overall score
over all forecasting time-steps. The formula remains the same
in this case, though, naturally, all relevant points for the
evaluation have to be included then.

The Bias score is just an averaging of all single error values

Biask =
1

Nk

Nk∑
n=1

en. (5)

In itself, this measure has the property of balancing out
positive and negative errors. Therefore, it only shows whether
an algorithm overestimates or underestimates a forecast on
average. The bias itself is not a measure of the forecasting
quality of an algorithm, though a low bias is desirable and
related to a low error.

The mean absolute error (MAE) is computed using

MAEk =
1

Nk

Nk∑
n=1

|en|. (6)

The MAE score sums up the absolute error of each forecast. It,
therefore, factors in the error distribution in a linear fashion.



TABLE II
OVERVIEW OF COMMONLY USED NORMALIZATION TECHNIQUES

# Normalization Technique Formula Purpose

1 Nominal Capacity yinst Scale-free comparison, comparability independent of nominal capacity.
2 Current Power Generation yt Examination of relative error. Errors in low generation scenarios have higher impact.
3 Deviation from Average |yt − ȳ| Lower weighting of situations at the extreme ends of the generation spectrum.
4 Dynamic characteristics |yt − yt−1| Lower weighting of situations with high variability in the power generation.

If the overall minimum difference in error values is to be
determined, the MAE is the appropriate score.

The mean squared error (MSE) is calculated using

MSEk =
1

Nk

Nk∑
n=1

e2n. (7)

Unlike the MAE score, this score factors in the errors quadrat-
ically. Thus, high errors are penalized more, while low errors
have lower influence on the overall score. If a forecasting
algorithm has to avoid extreme errors, the MSE score is the
more appropriate error measure. However, the MSE score is a
squared score, the value has little relationship with the actual
differences. Therefore, this score is mostly used for optimiza-
tion purposes during forecasting model training. The MSE
is optimal during least-squares optimization when assuming
a normally distributed error which overlays the deterministic
portion of the signal [17].

The root mean squared error (RMSE) is computed using

RMSEk =

√√√√ 1

Nk

Nk∑
n=1

e2n. (8)

The RMSE has the same qualitative meaning as the MSE
score. However, as the square-root of the MSE value is
computed, the value is represented in the original physical
unit, making it easier to relate to a forecast value. The reason
the MSE is used nevertheless is that it is faster to compute
(no computation of the square-root).

B. Normalization Techniques

In the area of power forecasting, there exist a multitude
of types of error normalization, each of which has a certain
purpose. An overview of the various normalization techniques
is given in Table II.

1) The simplest way of normalization is by dividing the
forecast value by the nominal capacity of the powerplant
(i.e., by yinst). The error consequently is computed using

et+k|t

yinst
. (9)

This normalization is a constant division factor for each
power plant, making it easily understandable. Using this
form of normalization, a scale-free comparison of the
forecasting quality for different power plants is possible.
The overall installed capacity of each power plant is no
longer relevant.

2) Another way of normalizing is by dividing the error
through the current power generation of the power plant
yt, i.e., by calculating

et+k|t

yt
. (10)

This form of normalization realizes a relative error in the
sense of a percentage error. This type of normalization
naturally weighs a certain absolute error in a low power
generation scenario higher than in a high power genera-
tion scenario (as the percent-wise error is larger).

3) The error can be normalized by factoring in the deviation
of a current power generation yt from the average power
generation ȳ in the evaluated time span, i.e.,

et+k|t

|yt − ȳ|
. (11)

This form of normalization penalizes errors near the
average power generation, while errors at the extreme
ends of the power spectrum have less influence on the
overall error score.

4) The error can be normalized with respect to the dy-
namic characteristics of the current power generation
∆yt = |yt − yt−1|, the normalized error consequently
is computed using

et+k|t

∆yt
. (12)

In general, a forecasting problem is more difficult when
the dynamics of the weather situation (and thus of the
power generation time series) are high. This form of
normalization aims to penalize errors in situations with
low dynamic variability higher, while situations with high
variability are weighted lower. This way of normalization
lowers the impact of difficult weather situations.

C. Derived Error Scores
There are a number of additional combined error scores,

which are a combination of one of the primary error scores
(see Section II-A) and a normalization technique (see Section
II-B). The effect of these derived measures consequently is
a combination of the primary score and the normalization
technique. The derived scores are categorized with respect to
their basic score and the normalization technique in Table III.
The calculation of the particular scores is again shown in Table
IV. Some authors use the same measure name for a score with
a different normalization technique (see Table III), therefore,
the calculation formula of the precise score should always be
given when reporting error scores. Some of the mentioned
scores even include multiple normalization techniques.



TABLE III
ERROR MEASURES DEPENDING ON THEIR BASIC ERROR MEASURE AND RESPECTIVE NORMALIZATION TECHNIQUE.

THE COMPUTATION OF THE SCORES IS DESCRIBED IN TABLE IV.

Measure Normalization Technique
# yinst yt |yt − ȳ| |yt − yt−1|

1 Bias NBias[13] - - -
2 MAE NMAE[13] MRE[8], MAPE[8], [12] - RAE[12], MASE[11], [8]
3 (R)MSE NMSE[13], NRMSE[13] - NMSE[8], [12], mRSE[12], KL[12] RSE[12], mRSE[12], U2[12]

D. Deviation Assessment, Correlation and Model Comparison

For deterministic forecasts, it makes sense to not only deter-
mine the average error of a forecast, but also the distribution
of the errors. The standard measure for deviation assessment
is the standard deviation. However, as it is already being dealt
with errors, the term Standard Deviation of Errors (SDE) is
introduced in [13], [1], which is nevertheless very similar to
the classic standard deviation computation

SDEk =

√∑Nk

n=1(en − ē)2
Nk − (q + 1)

, (13)

where q is the number of estimated parameters using the
considered data and ē is the mean of all error values.

If a more precise assessment of the distribution is desired,
the computation of higher moments of the distribution is an
option. In particular, the calculation of the skewness or kurtosis
are two reasonable options. Other possibilities to assess the
errors are, e.g., using error distribution histograms.

The process of comparing forecasting models is typically
done using the skill score [13], [1] computed by

Imp =
ebase − eeval

ebase
, (14)

where eeval is the error score of an evaluated forecasting
technique and ebase is the error of a baseline technique to
compare it to. In many cases, the persistence method or a
climatological forecast is used as baseline technique. The
result is a factor of improvement Imp, which is positive if the
evaluated technique is better than the baseline technique and
negative if the baseline technique outperforms the evaluated
technique. The skill score therefore often is represented as a
percentage value (by multiplying it with 100). It can be applied
on any measure, such as MAE, (R)MSE, or even probabilistic
scores. It then represents the improvement on the respective
score.

Another quality assessment technique is the coefficient of
determination R2, which is the squared coefficient of correla-
tion computed by

R2 =

(∑Nk

n=1(ŷn − ¯̂y)(yn − ȳ)
)2∑Nk

n=1(ŷn − ¯̂y)2
∑Nk

n=1(yn − ȳ)2
, (15)

where ¯̂y is the average of each forecast value. This measure
shows the ability of the model to account for the variance of
the data, i.e., it determines the amount of correlation between
the evaluated data set and the forecasting model. However,
only the amount of linear correlation is assessable, which

TABLE IV
ADDITIONAL COMBINED FORECASTING ERROR SCORES GROUPED BY

NORMALIZATION TECHNIQUE. A CATEGORIZATION OF THESE
TECHNIQUES IS SHOWN IN TABLE III.

Measure Formula

NBias NBiask = 1
Nk

∑Nk
n=1

en
yinst

NMAE NMAEk =
MAEk
yinst

NMSE[13] NMSEk = 1
Nk

∑Nk
n=1

e2
n

yinst

MRE MREk = 1
Nk

∑Nk
n=1 |

en
yn
|

MAPE MAPEk = MREk × 100%

NMSE[8], [12] NMSEk = 1
Nk

∑Nk
n=1

e2
n

|yn−ȳ|

mRSE mRSEk =

√
1

Nk

∑Nk
n=1

e2
n

∆y2
n+ 1

Nk

∑Nk
n′=1

(y
n′−ȳ)2

KL KLk =

√
1

Nk

∑Nk
n=1

e2
n

1
Nk

∑Nk
n′=1

(y
n′−ȳ)2

RAE RAEk =
∑Nk

n=1 |en|∑Nk
n=1 |∆yn|

MASE MASEk = 1
Nk

Nk−1

∑Nk
n=1 |en|∑Nk

n=2 |∆yn|

RSE / U2 RSEk =

√∑Nk
n=1

e2
n

∆y2
n

limits its usefulness. Furthermore, the R2 score may be high,
even though the model may still be incorrect regarding bias
or scale. The score is in the range [0, 1]. There are a number
of scores related to the R2 score, such as Pearson’s r, mutual
information, or the Kullback-Leibler divergence, which have
a similar meaning. In [13], an additional definition of the R2

score is given with

R2 =
MSEavg −MSEeval

MSEavg
, (16)

which aims to eliminate some of the disadvantages of the R2

score. In the above formula, MSEavg is the error of the global
mean model (the forecast always is ȳ). A detailed critique of
the R2 score can be found in [13].

III. CASE STUDY

In this section, two case studies aim to show the effects of
various error measures. In Section III-A, the behavior of error
measures is investigated given a systematical modification of
the error distribution the scores are computed on. Section III-B
assesses the quality of a number of real-world datasets from a
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(1) Model with high bias.
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(2) Skewed error distribution.
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(3) Model with higher error spread.
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(4) Model with different kurtosis.

Fig. 1. Different forms of error distributions. The original distribution is shown by the blue line in each figure. The distribution is then modified to represent
a model with a high bias (Fig. 1.1), a skewed error distribution (Fig. 1.2), a higher spread than the original distribution (Fig. 1.3), or a model with a different
kurtosis (Fig. 1.4). Basic error scores are listed in each of the error distributions. The behavior of different error scores for each of the presented error
distributions is shown in Table V.

wind farm data set using some of the presented scores. Finally,
an analysis of the correlation between different error measures
is performed.

A. Case Study: Error Distribution Effects

In this case study, we want to investigate the behavior of
different error measures given a varying form of error distribu-
tion to compute the scores on. The error distribution is taken
from a real-world example from a windfarm data set [18].
The error distributions are modified in order to simulate some
possible forms of error distributions. The different distributions
are shown in Fig. 1. For the sake of better visibility, the
distribution is visualized as an estimated density function. We
aim to include five forms of modified error distributions in
the case study. Besides the original error distribution, a model
with a high bias (Fig. 1.1), skewed error distribution (Fig.
1.2), higher error spread (Fig. 1.3), and a different kurtosis
(Fig. 1.4) are included. The corresponding error distributions
are displayed in Table V.

In the evaluation, we include the most popular error scores,
i.e., the basis scores (see Table I), and other popular and
frequently used scores, such as SDE, R2, mRSE, KL, MASE,
NMSE [12], and MAPE. All distributions except the biased
distribution have no bias, as is shown by the bias score. The
values of the RMSE score generally are higher than those
of the MAE score due to the high weighting of elements
with high distance. This effect can especially be observed if
changing the kurtosis: The value of RMSE remains the same,
while the MAE value decreases. Both scores represent an

increase of model spread proportionally to the scaling factor.
The MSE is just the squared distance of the RMSE.

As expected, SDE does not change when changing solely
the bias. When having an unbiased model (cases 3− 5), SDE
behaves exactly like the RMSE. R2 drops when having a
biased or skewed distribution and is especially sensitive to a
higher model spread. However, a change of kurtosis has little
impact on the score. The mRSE and KL measures are very
close to each other and react very similar to the RMSE error
and the inverse of R2. The temporal normalization ∆yn in
mRSE seems to have little impact compared to the second
normalization term.

MASE has a different value domain due to the normalization
term. However, for the same evaluated data set (as in the
present case), the percent-wise change of the MASE corre-
sponds exactly with the MAE error. MAPE is very sensitive to
changes of bias, skewness, and kurtosis. It scales linearly when
increasing the error spread. The NMSE error has a behavior
which is rather hard to interpret. When adding skewness to
the error distribution, the NMSE actually decreases (due to
high weighting of a number of points close to the average
power generation). It is rather unsensitive to changes of bias,
skewness, or kurtosis. Interestingly, both MAPE and NMSE
do not seem to relate to any of the other scores.

B. Case Study: Quality Assessment for Wind Farms

In a second case study, the behavior of the presented
error scores given a real-world dataset of 45 wind farms
is analyzed (EuropeWindFarm dataset, publicly available at
[18]). A normalization is performed for each input dimension.

TABLE V
ERROR SCORES COMPUTED FROM THE ERROR DISTRIBUTIONS OF FIG. 1. THE VALUE OF EACH SCORE IS DENOTED AND THE ABSOLUTE AND RELATIVE

CHANGE OF THE RESPECTIVE SCORE FOR EACH OF THE ERROR DISTRIBUTIONS. THE COLORS DENOTE THE SIZE OF THE RESPECTIVE ERROR, WHERE
GREEN MEANS LOW ERROR AND YELLOW REPRESENTS A HIGH ERROR.

# Error Distributions Bias % MAE % RMSE % MSE % SDE % R2 % mRSE % KL % MASE % NMSE[12] % MAPE %
0 Original distribution 0.006 0 0.085 0 0.120 0 0.014 0 0.119 0 0.740 0 0.481 0 0.510 0 1.834 0 4.34 0 358.6 0
1 Biased distribution 0.106 1721 0.132 56 0.160 33 0.025 78 0.119 0 0.537 -27 0.655 36 0.681 33 2.856 56 2.35 -46 1111.0 210
2 Skewed distribution 0.006 1 0.122 43 0.159 33 0.025 77 0.159 33 0.540 -27 0.644 34 0.678 33 2.629 43 4.38 1 863.8 141
3 More spread (* 1.5) 0.010 80 0.126 48 0.176 48 0.031 118 0.176 47 0.433 -41 0.711 48 0.753 48 2.714 48 9.74 124 536.4 50
4 Different kurtosis 0.004 -29 0.076 -10 0.119 0 0.014 0 0.119 0 0.741 0 0.479 -1 0.509 0 1.650 -10 3.58 -17 285.1 -20



For each wind farm, as forecasting model an extreme learning
machine (ELM) is trained using 1500 randomized hidden units
and a regularization parameter λ = 10−3, which are chosen
based on expert knowledge. As activation function for the
ELM, a rectified linear unit function is chosen. The dataset
is split into both, training (1/3) and test dataset (2/3). The
results of the experiments are shown in Table VI. The table
shows the results of the error scores for each wind farm. The
colors denote the relative quality of each measure from low
error (green) to high error (red). For an easier inspection of
the error scores, the absolute value of the bias is given (A.
Bias).

As can be seen from the table, some of the farms are better
predictable than others, which can be seen from the values of
the various error scores. The basic assumption is as follows:
When using the same forecasting algorithm, differences in the
quality of the forecast are mostly due to differences coming
from the weather situation or power plant location. When
comparing forecasting models, a suited score for forecasting
model comparison should be able to abstract from these
difficulties, i.e., it should have little relative difference. This
difference is denoted in the last row of Table VI, which
shows the relative percentage between the average value and
the standard deviation of each score (shown in the next to
last rows). As can be seen, mRSE, KL, and MASE have
a smaller relative difference than the established measures
such as RMSE, indicating that they might be better suited for
model comparison. As can be seen from some of the results,
some scores turn out to be problematic in some situations.
In particular, this can be observed for the MAPE score (e.g.,
wf39, wf43) or the NMSE score (e.g., wf4, wf30, wf32), where
the scores have massive outliers as results and very big values
for the standard deviation.

The correlation of the error measures is further investigated
in Fig. 2. The figure shows the absolute correlation of the
Pearson correlation coefficient with interval [0, 1]. The corre-
lation matrix is computed using the 45 wind farms for each of
the 11 investigated error measures. This heat map shows the
amount of correlation between the error scores. As can be seen
from the figure, the elements along the diagonal line (lower
left to upper right) have perfect correlation, as the correlation
of each error measure with itself is perfect. The bias has little
correlation with the other measures. This is due to the fact
that all the investigated trained models have a very small bias,
in case of a model with a high bias the correlation to other
error measures, such as MAE, does exist. This can, e.g., be
observed in the first case study (see Table V). MAE, (R)MSE,
and SDE form a central block of high correlation in the figure
with correlation higher than 0.9. These measures have no form
of normalization which may distort the results, therefore the
scores are very understandable. Scores of this category are
suited to select a model and give insights on the absolute
imprecision of a forecast.

The second category of highly correlated scores are rep-
resented by R2, mRSE, and the KL score. These measures
are better suited to compare errors for multiple forecasting

TABLE VI
ERROR SCORES FOR THE EUROPEWINDFARM DATASET. THE COLORS

INDICATE THE ERROR SCORE VALUES FROM LOW (GREEN) TO HIGH (RED).
THE LAST ROWS DENOTE THE AVERAGE VALUE OF EACH SCORE, THEIR

STANDARD DEVIATIONS, AND THE PERCENT-WISE DIFFERENCE.

Data A.Bias MAE RMSE MSE SDE R2 mRSE KL MASE NMSE MAPE
wf1 0.011 0.082 0.115 0.013 0.114 0.719 0.497 0.530 1.866 0.328 340.5
wf2 0.032 0.138 0.181 0.033 0.179 0.566 0.609 0.659 1.828 0.647 705.3
wf3 0.000 0.062 0.100 0.010 0.100 0.760 0.441 0.490 1.649 0.439 1033.3
wf4 0.017 0.084 0.116 0.013 0.115 0.755 0.468 0.495 1.806 3.232 425.3
wf5 0.006 0.129 0.207 0.043 0.206 0.306 0.800 0.833 2.662 0.997 451.6
wf6 0.062 0.181 0.286 0.082 0.279 0.197 0.841 1.094 1.576 1.332 312.2
wf7 0.006 0.132 0.182 0.033 0.182 0.685 0.531 0.561 2.007 0.395 157.6
wf8 0.002 0.113 0.158 0.025 0.158 0.702 0.513 0.546 1.948 0.252 160.4
wf9 0.006 0.040 0.071 0.005 0.071 0.561 0.550 0.663 1.677 0.133 292.5
wf10 0.009 0.103 0.138 0.019 0.137 0.719 0.499 0.530 1.948 0.654 421.5
wf11 0.039 0.129 0.189 0.036 0.185 0.639 0.566 0.601 2.147 0.357 385.7
wf12 0.041 0.113 0.165 0.027 0.160 0.651 0.548 0.590 1.859 0.500 1178.0
wf13 0.017 0.063 0.093 0.009 0.091 0.691 0.502 0.556 1.742 0.311 465.1
wf14 0.061 0.103 0.151 0.023 0.138 0.496 0.650 0.710 2.069 0.450 554.5
wf15 0.017 0.079 0.115 0.013 0.114 0.704 0.499 0.544 1.639 0.291 1044.9
wf16 0.006 0.075 0.108 0.012 0.107 0.721 0.481 0.528 1.622 0.233 928.3
wf17 0.010 0.097 0.143 0.020 0.143 0.643 0.552 0.598 1.862 0.650 631.3
wf18 0.001 0.066 0.105 0.011 0.105 0.707 0.498 0.541 1.711 0.290 261.3
wf19 0.002 0.085 0.126 0.016 0.126 0.759 0.458 0.491 1.714 0.243 178.5
wf20 0.019 0.135 0.192 0.037 0.192 0.609 0.587 0.626 2.191 0.423 453.8
wf21 0.008 0.121 0.168 0.028 0.168 0.615 0.568 0.621 1.805 0.350 3670.4
wf22 0.006 0.061 0.090 0.008 0.090 0.695 0.493 0.552 1.668 0.222 1561.8
wf23 0.005 0.099 0.139 0.019 0.138 0.650 0.555 0.592 2.119 0.482 455.9
wf24 0.012 0.077 0.113 0.013 0.112 0.623 0.566 0.614 1.914 0.207 165.2
wf25 0.005 0.087 0.123 0.015 0.123 0.630 0.559 0.608 1.933 0.309 710.8
wf26 0.004 0.103 0.156 0.024 0.156 0.577 0.595 0.650 1.898 0.365 3528.1
wf27 0.003 0.087 0.134 0.018 0.134 0.621 0.539 0.615 1.572 0.353 1282.3
wf28 0.034 0.108 0.170 0.029 0.167 0.636 0.570 0.603 2.441 0.303 5497.2
wf29 0.015 0.063 0.093 0.009 0.092 0.729 0.473 0.520 1.762 0.303 279.1
wf30 0.047 0.131 0.193 0.037 0.188 0.599 0.598 0.633 2.177 3.650 320.0
wf31 0.045 0.168 0.227 0.051 0.222 0.482 0.689 0.719 3.069 0.580 5151.7
wf32 0.008 0.099 0.146 0.021 0.146 0.695 0.506 0.552 1.788 3.635 1496.4
wf33 0.006 0.076 0.113 0.013 0.112 0.650 0.531 0.592 1.820 0.324 827.8
wf34 0.009 0.117 0.160 0.026 0.160 0.691 0.517 0.555 1.799 0.395 355.8
wf35 0.006 0.094 0.133 0.018 0.133 0.804 0.423 0.443 2.109 0.457 1564.3
wf36 0.017 0.096 0.146 0.021 0.145 0.646 0.531 0.595 1.937 0.412 1173.8
wf37 0.008 0.088 0.125 0.016 0.125 0.718 0.484 0.531 1.646 1.043 2591.4
wf38 0.001 0.070 0.114 0.013 0.114 0.717 0.471 0.532 1.747 0.262 439.3
wf39 0.007 0.129 0.173 0.030 0.173 0.728 0.497 0.522 2.223 0.574 54769
wf40 0.034 0.088 0.140 0.020 0.136 0.658 0.535 0.585 1.898 0.483 403.4
wf41 0.005 0.065 0.114 0.013 0.114 0.504 0.603 0.705 1.892 0.237 342.7
wf42 0.023 0.158 0.206 0.043 0.205 0.526 0.634 0.689 1.819 0.765 126.2
wf43 0.010 0.083 0.118 0.014 0.117 0.835 0.384 0.406 1.691 0.324 20047
wf44 0.013 0.116 0.158 0.025 0.158 0.684 0.528 0.562 1.931 0.779 432.9
wf45 0.020 0.162 0.218 0.047 0.217 0.698 0.534 0.549 3.113 0.362 1179.9
Avg. 0.016 0.101 0.147 0.023 0.145 0.636 0.544 0.594 1.940 0.652 2639.0
Std. 0.016 0.031 0.042 0.014 0.041 0.156 0.083 0.107 0.331 0.799 8431.2
% 100 30.7 28.6 60.9 28.3 24.5 15.3 19.6 17.1 122.5 319.5

models. For instance, the value of these scores can indicate
whether there remains a potential for improvement, or if the
best possible outcomes are already achieved. As can also be
seen, there exists a moderate correlation to the block formed
by MAE, (R)MSE, and SDE.

The MASE score forms an own category of error score. The
form of normalization aims to reduce the influences of the
respective location and from the observed time period. MASE
still has a moderate correlation to the first block of error scores
which can be expected, as it measures the absolute distance.

MAPE and NMSE have almost no correlation with any of
the other error measures. Both scores employ a form of nor-
malization which can lead to singularities in this application
(as situations with very little power generation or a power
generation close to the average generation are very likely to
exist in the dataset). The error scores can, thus, be influenced
dramatically by a very small number of individual errors. The
problematic nature of these scores is further supported by the
extreme development of the scores in the observed dataset. The
fact that these scores have very little correlation with MAE,
(R)MSE, and SDE shows that NMSE and MAPE struggle
to correctly assess the quality of a forecast correctly in this
application. As these scores are also based on some form of
error, a certain amount of correlation should exist.
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Fig. 2. Absolute value of the Pearson correlation coefficient displayed in a
matrix. Naturally, each score has perfect correlation with itself, as is displayed
by the yellow diagonal line. A large block of correlated scores is formed
by MAE, (R)MSE, and SDE. A second block of high correlation contains
R2, mRSE, and the KL score. MASE has moderate correlation with MAE,
(R)MSE, and SDE. NMSE and MAPE have no correlation with any of the
other scores.

IV. DISCUSSION OF DETERMINISTIC ERROR SCORES

This section discusses the use of deterministic error scores.
In Section IV-A, general properties of the employment of error
scores are discussed. Section IV-B deals with the handling of
different forms of normalization. Section IV-C discusses how
to deal with multiple time horizons and deviation assessment.

A. General Error Score Properties

The optimal score heavily depends on the desired applica-
tion and market participant. Considering the basic scores, the
RMSE should always be preferred to the MSE score when
presenting results, as the error units are better understandable.
However, for model training the MSE score is equivalent (and
faster to compute). RMSE and MAE are equally important, the
more appropriate score depends on the target application (or
the target audience in the industry, respectively). For electricity
trading (where a deviation typically has linear costs), the
MAE is preferable. The use of cost/reward functions or loss
functions makes sense in conjunction with the MAE when the
monetary consequences have a direct relationship to the error
of a forecast and are the center of interest. This may, e.g., be
the case when an error fee has to be paid for each kWh of
deviation between forecast and observation. The function can
be defined asymmetrically for power surplus or power deficit;
furthermore it can be designed in a nonlinear fashion. For grid
operators and other grid stability oriented market participants,
the RMSE score is more appropriate (as the problematic nature
of extreme errors is reflected more appropriately).

The use of skill scores makes sense to compare models with
each other, however, they can be misleading if compared to
very weak models, such as a climatological model. In any
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Fig. 3. Different forms of uncertainty estimation. In Fig. 3.1, a homoscedas-
tic uncertainty estimation is performed, the uncertainty intervals are equal
throughout the predictor input space. Fig. 3.2 shows a heteroscedastic uncer-
tainty estimation. This form of uncertainty estimation is able to identify the
change of the amount of uncertainty depending on the predictor input space.

case, the precise computation of all used error scores should
be given, as some of the score names are defined in different
ways.

B. Handling of Normalization

Considering the forms of normalization, again, their appli-
cation depends on the desired outcome. Normalization by yinst
is very unproblematic and can (and should) be conducted in
every case for model comparison. While the idea of the nor-
malization with yn is elegant for model assessment (percent-
wise error), it has the unwanted property of a singularity
when having a power generation near the low end. Thus,
scores based on this normalization technique can eventually
be dominated by a small number of measurements where the
power generation happens to be very low (as could be observed
by the MAPE score in Table VI). Beyond unequal weighting,
the division through yn can turn out problematic numerically
(as yn may be 0). Therefore, we think error measures using
this form of normalization (such as the popular MAPE score)
should define some form of lower bound ρ for the denominator
which results in a limit for maximum weighting, such as

yn,limit = max(yn, ρ). (17)

As an estimate, we think the value of ρ should be chosen in
the range of 0.05 ≤ ρ ≤ 0.2 assuming yn is in the range [0, 1].

The idea of the normalization with |yn − ȳ| is to weigh
extreme power generation situations lower. When computed on
a data set, it aims to statistically penalize data sets who have
little variation in the data. While the idea is commendable, it
has the same singularity in the normalization (see NMSE [12]
in Table VI), thus should be treated again with some form of
threshold limit, such as performed by Eq. 17.

We think the normalization by ∆t makes sense in filtering
out the impact of highly dynamic and thus difficult weather
situations and the effects of “step” errors, i.e., errors which
occur when misjudging the point in time of a sudden ramp in
the power generation. An approach for this type of normal-
ization is also discussed in [19]. Thus, it has a similar goal



than normalization technique |yn − ȳ|, however, it seems to
be more tailored towards time series (all other normalization
techniques basically can be computed for standard regression
problems as well). Again, in itself, this form of normalization
has the same disadvantages as the two previous normalization
techniques.

However, when the normalization terms are summarized,
such as in mRSE, KL, RAE, or MASE, the normalization
lowers the impact of the overall weather situations which
occurred in the data set in the evaluated period. In addition, this
form of normalization eliminates the impact of singularities
and therefore the need of thresholding, such as performed by
Eq. 17. Especially when comparing algorithms which were
evaluated on different data sets, these scores can help to make
the algorithms better comparable. We therefore think scores
based on this form of normalization is preferable for this task.

C. Multiple Time Horizons and Deviation Assessment

For some applications, it may make sense to aggregate the
errors not for each forecasting time-step, but as a whole (i.e.,
one score for the whole forecasting time-span). Typically, in
the literature this is performed just by computing the score
while including the errors from all time horizons. However,
as errors typically increase when forecasting time-steps which
are further away from the forecasting origin, errors close to
the forecasting horizon may dominate the overall result. Espe-
cially for (very-)short term algorithms, such as the persistence
method, this turns out disadvantageous. Though not practiced
on a regular basis, an option worth investigating is the use
some form of time horizon smoothing, e.g., in the form

RMSE =
1

kmax − kmin + 1

kmax∑
k=kmin

RMSEk

k
, (18)

when aggregating forecast errors for multiple forecasting time-
steps.

Even for deterministic scores we think measures such
as the SDE should be determined in the evaluation, as it
gives an insight on the anticipated fluctuation of errors. A
disadvantage of this form of deviation assessment is the
implicit normal distribution assumption of the error, which
may not always hold. Furthermore, the error distribution is
computed over the complete evaluated data set, assuming an
equal error distribution over the data set (i.e., homoscedasticity
assumption), which is usually not the case. This form of
uncertainty representation is visualized in Fig. 3.1. However,
this form of uncertainty representation would fail to correctly
assess the uncertainty in case of the uncertainty distribution
of Fig. 3.2. Situation-dependent uncertainties can be assessed
using probabilistic uncertainty assessment techniques which
are heteroscedastic, i.e., they are able to assess uncertainty
unequally for different areas of the input space. This form of
uncertainty representation is shown in Fig. 3.2. While more
difficult to assess, heteroscedastic uncertainty usually fits the
real uncertainty in a power forecasting context more precisely,
as, e.g., the absolute error of a forecasting algorithm is higher
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(5) Low bias qq plot.
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Fig. 4. Different visualization techniques for uncertainty assessment. The
figure shows three quantile regression models (row 1) with their respective
qq plots (row 2) and rank histograms (row 3). The leftmost figures show a
model where the assumed distribution fits the observed distribution, the middle
column shows a model with low bias, and the right model shows an unbiased,
but underconfident model.

in a situation with a lot of wind than in low-wind situations.
A small introduction into the area of probabilistic uncertainty
assessment techniques is given in Section VI.

V. CONCLUSION

This article presents some of the most frequently used
deterministic error scores and gives insights on how to use
them depending on the desired application. In the area of
deterministic error scores, we highlight some of the commonly
used normalization techniques, which simplifies the catego-
rization of different forms of errors. In two case studies, we
investigated the behavior of the most popular error scores
depending on the form of the error distributions they were
computed on, and their correlation. In a discussion, we gave
some insights and best practices on the use of advanced error
measures.

VI. OUTLOOK

In the future, we aim to use the presented deterministic
scores for more sophisticated ensemble variants which make
use of quantile regression techniques. We also intent to include
some of the presented error scores as objective function for
machine learning models during model training.

Moreover, we plan to expand the analysis of error scores
to the assessment of uncertainty and their representations,



which are, e.g., described in [15], [16]. We aim to present
different forms of uncertainty representations, such as interval
forecasting techniques, quantile regression, or probability den-
sity functions. In this context, we want to assess the role and
necessity of ensemble techniques which may be a prerequisite
for some forms of uncertainty assessment. Therein, we will
highlight different methods of ensemble creation. We then
plan to investigate forms of assessing the uncertainty both
numerically and visually.

The following example gives a short insight in how a visual
inspection can work given a discrete uncertainty representa-
tion, here in the form of a quantile regression model created by
repeated model training of extreme learning machines using a
modified loss function for each quantile during model training.
Popular forms of visual uncertainty assessment techniques
can, for instance, be so-called quantile-quantile (qq) plots, and
Talagrand diagrams, often also referred to as rank histograms.

A qq plot shows the relation of assumed quantile positions
to the actual observed quantiles in the data. Ideally, the
quantiles are located on the diagonal line, which means the
estimated quantiles match the observed quantile positions.
Three examples of qq plots are shown in the middle row in
Fig. 4. A qq plot for a model with correct estimation of the
quantiles (Fig. 4.1) is shown in Fig. 4.4. The model of Fig. 4.2
shows a model with a “low” bias, as can be seen by the line
which is located under the ideal line in Fig. 4.5. Furthermore,
it can be observed that the model is overconfident, as the slope
of the qq plot is lower than the ideal slope. Fig. 4.3 shows an
underconfident model, it has too much spread. This can be
observed in Fig. 4.6 by the s-curve in the qq plot.

The rank histogram is a simplified form of assessment of
uncertainty. Assuming the quantile intervals are equally dis-
tributed (e.g., 0.2, 0.4, 0.6, 0.8), the rank histogram is optimal
if the same amount of observations is in every bin, such as
can be seen from Fig. 4.7. In the same fashion as the qq plot,
in Fig. 4.8 a low bias can be seen as there are too many
observation in the highest bin. Fig. 4.9 shows a variant with
too much model spread, which can be seen by the little number
of samples which are in the outer bins. In the future, we
aim to investigate the techniques presented above and further
uncertainty assessment techniques. We intent to highlight their
advantages and disadvantages. We also plan to give hints on
which uncertainty assessment techniques are advantageous for
which forms of uncertainty representation depending on the
form of the used forecasting model or ensemble.
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Windpark-Portfolios. Kassel, Germany: Intelligent Embedded Systems,
Kassel University Press, 2016.


