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Abstract—A connection has recently been drawn between
Dynamic Optimization Problems (DOPs) and Reinforcement
Learning Problems (RLPs) where they can be seen as subsets of a
broader class of Sequential Decision-Making Problems (SDMPs).
SDMPs require new decisions on an ongoing basis. Typically the
underlying environment changes between decisions. The SDMP
view is useful as it allows the unified space to be explored.
Solutions can be designed for characteristics of problem instances
using algorithms from either community. Little has been done
on comparing algorithm performance across these communities,
particularly under real-world resource constraints.

In this paper we lay the theoretical foundations for the concept
of offline and online time in SDMPs. We implement a method,
based on the theoretical formulations, to limit offline time on
representative algorithms. We investigate the online performance
on a Conceptual Moving Peaks Benchmark (CMPB). Our results
show that the performance of an Evolutionary Dynamic Optimi-
sation (EDO) algorithm depends on the offline time constraint
while the performance of an EDO-hybrid is noticeably impacted
only past a lower bound on the size of the state-action space.

Our method evaluates the effects of resource constraints on
online algorithm performance and is a promising start to a
rigorous method of algorithm selection for real-world problems.

I. INTRODUCTION

Decision problems are often encountered in system design
and control. If the underlying environment changes the problem
is dynamic and requires new decisions over time. There is
a need for robust problem-independent search algorithms in
cases where knowledge of optimization function can only be
gained through sampling, or if there are insufficient resources
to construct a problem-dependent algorithm [1]. Current
approaches to construct problem-independent algorithms are
to frame the problem as a Dynamic Optimisation Problem
(DOP) [2] or as a Reinforcement Learning Problem (RLP) [3].

DOPs, often tackled using Evolutionary Dynamic Optimi-
sation (EDO) algorithms, are commonly seen as tracking
moving optima problems [2]. On the other hand, Reinforcement
Learning (RL) algorithms are used on RLPs, usually defined as
Markov Decision Processes (MDPs) [3]. Fu et al. [4] proposed
Sequential Decision-Making Problems (SDMPs) as a problem
class that includes DOPs and RLPs. This perspective is useful as
different algorithms specialise in different types of SDMPs [5].
The unified SDMP view encourages cross-pollination of ideas
between well-established communities. Techniques inspired by
both research communities include neuro-evolution [6] and
learning classifier systems [7].

The first contribution of the paper is theoretical work
comparing definitions of RLPs and DOPs in support of

the unified problem definition space for SDMPs (Fig. 1).
Dimensions in the SDMP space could include the number,
range and type of environment state variables; dynamics that
relate to the degree [8], rate and pattern of change [2] for the
variables; and the affect of time-linkage between states [3].
Environmental dynamics could include cyclical, random or
chaotic patterns. More recent benchmarks apply non-linear
transformations to break symmetry and introduce irregularity on
the fitness landscape [9]. Research is required to understand the
overarching dimensions of the SDMP space and how algorithm
performance changes under varying resource levels. This would
help to select algorithms for resource-constrained problems.

The second contribution of this paper is a method to compare
algorithm performance under constrained resources. We present
a formalisation of the online and offline time required by
algorithms used to solve SDMPs extending work by Fu et
al. [4], [5]. This allows us to reason about and evaluate the
impact of constrained offline time on the online performance of
representative EDO and RL algorithms on different instances
of the Conceptual Moving Peaks Benchmark (CMPB). This
research has immediate applicability to challenging real world
problems such as robot control where the computational
resources available for a task is dependent on other available
resources (e.g. battery life [10]).

The paper is structured as follows. Section II outlines
background knowledge. Section III contains theoretical work
to support SDMPs based on current problem definitions.
Section IV presents a theoretical formulation for measuring the
online and simulation time for algorithms. Section V presents
a method for measuring the online performance of algorithms.
Section VI details the experimental approach and methodology
as well the results, analysis and implications for algorithm
selection. Section VII concludes the paper.
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Fig. 1: Unified sequential decision-making problem defi-
nition space with gaps, and problem classes that overlap.



II. BACKGROUND
A. Reinforcement Learning Problems

RL is a learning approach with roots in optimal control
and animal learning theory [3]. RLPs are often framed as
MDPs for environments with perfect information [3] or can
be defined as Partially Observable Markov Decision Processes
(POMDPs) to model uncertainty [11]. While RL algorithms
are considered both slow and resource intensive [12], they can
learn online under dynamic conditions without a need for an a
priori model or simulator [3]. This is a major benefit when the
model is unknown or too complex to simulate accurately [13].
Additionally, RL algorithms exploit time-linkage between states.
This makes convergence to an optima quicker if this information
is available and there is a high impact of time-linkage [3].

The exploration exploitation trade-off [14] is the need to
balance exploration of the environment with exploitation of
previous knowledge. While some RL techniques make a distinc-
tion between offline exploration and online exploitation [15],
there is no clear method to compare online performance with
techniques that require offline training, or delegate learning
updates. Examples of RL techniques in this class are TD-
Gammon [16], a temporal-difference learning method for
backgammon that trains itself using games of self-play, or state-
of-the-art techniques in playing Go, which use a combination
of supervised learning from human expert games, and RL from
games of self-play for training, with hard time limits for online
analysis and move selection in game play [17].

B. Dynamic Optimisation Problems

Jin and Branke [18] define DOPs as a special class of
optimization problems, that are “solved online over time”.
EDO is a sub-field of Evolutionary Computing that focusses
on DOPs. A major advantage of EDO algorithms in problems
with large or continuous action spaces is that the algorithms
need only evolve policies that directly map states to actions,
[19]. Further, EA policies need only specify an action for
each state, which can be simpler to represent than learning
methods, such as RL, that specify the value of each state-action
pair [19] and policy representations can be evolved rather than
needing to be design beforehand [12]. It may be advantageous
to use EDO algorithms with uncertain state information [20].
Empirical work with population-based methods show they
perform well on some DOPs [1]. This conjecture has been
conformed by recent theoretical work [21]. The most common
type of DOPs that current academic EDO research considers
are unconstrained, non-time-linkage problems [2]. However,
real-world problems are often constrained problems and time-
linkage problems [22].

C. Sequential Decision-Making Problems

Fu et al. [4] proposed a unified definition of DOPs, based
on the idea of multiple-decision making from RL. They
subsequently developed a new algorithm that combines the
strength of EDO and RL in a Q-learning Based Evolution-
ary Algorithm (QBEA) [5] (outlined in Section V-B). Key
assumptions are that the environmental state is observable

and that there is an available computational model of the
reward function. Experiments were run on two instances of the
Conceptual Moving Peaks Benchmark (CMBP). The moving
peaks benchmark [23] is currently one of the most widely
used synthetic problems for DOPs [24]. QBEA employs an
Evolutionary Algorithm (EA) to search on the reward function
at each time step. The outcome of this search is exploited
to speed up convergence to optimal policies. Their results
show that EDO and RL algorithms are specialised in different
types of DOPs [5]. Additional problems, both benchmarks and
application domains, are available from a unified SDMP view.
Our work extends their results, considering constraints on the
resource of offline time.
D. Comparing Algorithm Performance

Cruz et al. [24] noted in their review of DOPs that there is no
unified criteria regarding what to measure or how to compare
the performance of a set of algorithms over DOPs. Measures,
such as generations-to-convergence or best-of-generation are
used to compare population-based EDO algorithms [19]. These
measures do not allow for comparison to non-population-based
algorithms [24]. EDO algorithms currently ignore offline time
for performance comparisons [4]. Further, it is not clear how
the solution is applied to the environment [2][4].

Branke and Schmeck [25] proposed the offline error and
offline performance measures for EDO algorithms. These
measures are calculated for each fitness evaluation. The offline
error is measured as the average over the error of the best
solution found since the last change of the environment. Similar
to the offline error measure, the offline performance measure
calculates convergence to a previous optimal fitness, in the
case where exact values of the global optima are unknown,
since the last change. Disadvantages are that these measures
require that the time a change occurs is known and that they
are not normalised. They do not relate to online performance.

Weicker [26] considered the evaluation of three character-
istics in a DOP. These are solution accuracy, stability, which
measure whether changes in the environment not affect the
optimization accuracy, and reactivity, as the ability of an
algorithm to react quickly to changes. There is a need for
the development of new measures beyond those that reduce
the entire dynamic run to single-values [24] highlighting the
need for new methods to compare algorithm performance.

E. Dealing With Resource Constraints
Resources including sensors, memory, power and time are

limited in the real world. There is a range of techniques to
analyse algorithm time complexity [1], or build models of an
algorithm’s run-time [27] that can help gain an understanding
of how resource constraints affect solution quality. A different
approach is to allow a smaller number of iterations for small,
frequent environmental changes by mapping the required
iterations to a time parameter based on the frequency and
degree of change in the environment rather than resource-
constraints [28]. Recent work aims to reduce battery usage by
reducing computation [29], or for algorithms to learn to reduce
the computational resource and run-times [30].



III. PROBLEM SETTING

Based on Fu et al. [4], we define a DOP as: Given an
optimization problem F , an optimization algorithm G to solve
F , and an optimization period [t0, te], F is a DOP if during
[t0, te] the underlying fitness landscape changes and G has to
react by providing new solutions. The function E calculates
the estimated reward based on ft at each time step. When the
state of the environment at time t is a set of variables st, and
the action taken at time t is at, a DOP can be defined1 as:

max

te∑
t=0

E(ft(st, at)). (1)

Sutton and Barto [3] define the general form of the RLP as a
problem where an agent, for a sequence of discrete time steps,
t, at each t evaluates its representation of the environment’s
state, st ∈ S, where S is the set of all possible states, and
selects an action to perform, at ∈ A(st), where A(st) is the
set of available actions for the state st. As a consequence of
the action, at, the environment moves to a new state, st+1 and
provides a numerical reward to the agent for the next time
step, rt+1 ∈ R. The agent builds a policy π for each t, where
πt(s, a) is the probability that the selected action at = a if
st = s. The solution is a policy π that maximises2 the total
sum of expected rewards. If R denotes the reward function, an
RLP can be defined as:

max

te∑
t=0

R(arg max[πt(st, at)], st). (2)

A Unified Problem Setting

In both DOP (1) and RLP (2) the fitness or reward returned is
determined by the effects of an action on the current state of the
environment. Each problem seeks to maximise the accumulated
sum of the returned value. Further, algorithm performance is
determined by the values accumulated over the interval [t0, te].
Another similarity is that, at at every at time step t, EDO
algorithms compare individuals in a population set, while RL
algorithms select from a policy-value set.

Two significant differences relate to time-linkage between
states. The first is that DOP (1) accumulates the maximum
reward at every t while RLP (2) maximises the accumulated
sum of discounted future rewards. The second difference is
that the state representation in DOP (1) is a part of the problem
specification while RLP (2) tracks the received rewards using
state-action pairs (st, at) in the learning policy π. This implies
that DOP (1) does not cater for time-linkage between states,
while the policy π in RLP (2) tracks state transitions.

The similarities between the definitions of DOP (1) and
RLP (2) are striking and supports the view that DOPs and
RLPs are subsets of a broader class of SDMPs [4]. For some
problems the dynamic of state is linked to time [2], [3], [4].
The affect of time-linkage between states could be a useful
dimension of the SDMP space to help with algorithm selection.

1Notation has been adjusted to aid comparison to RLP (2).
2Maximization problems are considered without a loss of generality.

IV. ONLINE VERSUS OFFLINE TIME

This section presents a theoretical foundation for online and
offline time to enable the comparison of online performance for
different algorithms. In general, we define τ as the duration of
a single time step from ti to ti+1 where ti+1 = ti+τ . We then
define, τf , as unit duration for offline time that corresponds
to the time taken for a single fitness evaluation, an often-used
measure in EDO [2], [24]. The environment comprises of
everything that is outside of the learning method [3]. Online
time, τn, corresponds to the interaction of a algorithm with
the environment. We define the unit duration for online time,
τn as the time taken to perform an action on the environment.
Online operations would include sensing to detect the current
state or a reward value. We assume that sensing the current
state and reward values can occur several times during the
duration of a single τn. For environments with a finite action
set, a ∈ A, at every state, s ∈ S, the maximum offline time
required allows the algorithm to perform fitness evaluations
for each a at any t. Then τfmax = τf × |A|, where |A| is the
size of the set A. We define the ratio of offline time available
to |A| as the factor δ. We assume a fixed δ for the duration of
the learning episode3. Where A ⊆ A is the subset of actions
that can be evaluated at any time step t, then δ is:

δ =
τf × |A|
τf × |A|

(3)

The duration of a time step from ti to ti+1 is defined as:

τ = τn + δ × |A| × τf (4)

If δ = 0 then there is no offline time available for fitness
evaluations. If δ = 1 then there is sufficient time for fitness
evaluations for all A. If δ = 0.5 then there is only sufficient
time to perform fitness evaluations for 0.5 × |A|. An open
question would be how to allocate available resources? Fig. 2
provides a visualisation for a single time step.

Current reported experimental values for EDO and EDO-
hybrid algorithms such as QBEA have only considered cases
where δ = 1 [2], [5]. However, in real-world problems available
resources will vary. It is important that methods for algorithm
selection include comparisons for algorithm performance under
varying resource levels. There is a need for methods to compare
how the online performance of algorithms change under varying
levels of resource constraints.

ti ti+1

τf × |A|

τn

(a) δ = 1

ti ti+1

τf × 0.5× |A|

τn

(b) δ = 0.5

ti ti+1

τn

τf = 0

(c) δ = 0

Fig. 2: The effect of δ on the number of offline fitness
evaluations during a single time step from ti to ti+1. In Fig. 2a
τf is twice as large as τf in Fig. 2b.

3In real world applications δ may vary over time. We assume algorithms
execute actions consecutively with only as single degree of parallelism.



V. COMPARING ONLINE PERFORMANCE

This section outlines a method to compare the online
performance of EDO, RL and hybrid algorithms while varying
the available offline time.

A. Comparing EDO and RL Algorithms

Typically, EDO algorithms assume a fitness function [4]
while RL algorithms commonly assume some observability
of state and a reward function [3], [4]. To compare the
performance across EDO and RL algorithms we assume
equivalence of the fitness and reward functions. In general, EDO
algorithms assume the use an offline environment before the
solution is applied to the problem instance [18]. An exception
is online EDO where each fitness evaluation is applied online
to the problem instance. This occurs when τf = 0.

While many RL techniques operate directly on the envi-
ronment, there are cases where prior knowledge is gained
from training [31], or updates to the learning policy are
delegated [13]. The resources used for training and policy
updates are not clearly outlined in current literature and makes
the comparison of online performance across techniques neither
systematic nor rigorous.

B. Representative Algorithms

Q-learning [32] (Algorithm 1) is a representative RL algo-
rithm [3]. The internal learning policy is stored in a state-action
matrix called the Q-values. An off-policy implementation [3]
means that the policy update on line 7 uses the reward for the
best known action at new state st+1 rather that the selected
action performed on line 5 to improve the tracking of time-
linkage between states. While several RL methods [17], [15]
require offline time as defined in Section IV, Q-learning
(Algorithm 1) interacts directly with the environment in an
online manner with no offline time requirements.

Algorithm 1 Representative off-policy RL algorithm

Require: discount factor, learning parameter
1: INITIALIZE Q-values
2: for t = 0→ te do
3: OBSERVE state st
4: CHOOSE action at, at ∈ A(st) from Q-values
5: PERFORM action at;
6: OBSERVE state st+1 and RECEIVE reward rt
7: UPDATE Q-values
8: end for

In general, EDO assumes that solutions are generated offline
before being applied to the problem instance [19]. An EDO
approach for dynamic environments is hyper-mutation, which
increases the diversity of the population of candidate solutions
after a change has been detected [2].

A general form of an EA, with state awareness at each
time step, is described in the pseudo-code of Algorithm 2,
denoted as EDO hereafter. This algorithm would run at each
time step of the SDMP. Intuitively this means several offline
computational steps are required to make a decision at every

time step in comparison to Algorithm 1. We adopt an approach
to restart the algorithm at every time step with the fitness
function changing to reflect the new state of the environment.

Algorithm 2 EDO algorithm

Require: evaluation function f(s, a)
1: for t = 0→ te do
2: OBSERVE state st
3: INITIALISE population randomly
4: for each generations do
5: EVALUATE members of population
6: REPRODUCE members of population
7: end for
8: CHOOSE action at, at ∈ A(st) from population
9: PERFORM action at

10: end for

QBEA [5], described in Algorithm 3, is a RL-EDO hybrid.
QBEA uses Q-values similarly to Algorithm 1. In addition,
QBEA stores state transition information so that it can estimate
the next probable state. The EA on line 4 uses the estimated
state to search the reward function at each decision point,
updating the Q-values for each action evaluated.

Algorithm 3 Pseudo code of QBEA

Require: discount factor λ, learning parameter α, evaluation
function f(s, a)

1: INITIALISE Q-values, state-action
2: for t = 0→ te do
3: OBSERVE state st
4: SEARCH reward function f(st, at)
5: for each evaluated ai on f(st, ai) do
6: UPDATE Q-values
7: end for
8: CHOOSE action at, at ∈ A(st) from Q-values
9: PERFORM action at

10: OBSERVE state st+1 and RECEIVE reward rt
11: UPDATE Q-values
12: UPDATE state-action
13: end for

C. A Method to Constrain Resources
The EDO (Algorithm 2) was implemented using both

Random Local Search (RLS) and a (1+1)-EA [33]. RLS
generates a single generation, with the population size limited
to the number of fitness evaluations afforded by the offline
time constraint. There are no duplicates in a generation. The
(1+1)-EA creates a single individual and evolves the individual
for a number of generations, limited by the number of offline
fitness evaluations. The EDO algorithm requires additional
memory resources to ensure unique candidate solutions.

QBEA (Algorithm 3) uses an EA to search on the reward
function. The offline constraint was implemented by limiting
the size of the set of actions, A ∈ A, evaluated for each t on
Line 4. The EA implemented for QBEA operates in the same
manner as the EA for EDO (Algorithm 2).



VI. EXPERIMENTAL CASE STUDY

In this section, we use the two instances of the CMPB [5] to
study the change in online performance of representative EDO,
RL and EDO-RL hybrid algorithms under varying offline time
constraints. To explore the impact of constrained resources
with different sized state spaces, we define a new cyclical
environment dynamic for the two current time-linkage instances
of the CMPB. In this paper we consider only environmental
dynamics where the environment returns to previous states.

A. Benchmark Instances of the CMPB

For all benchmark instances, the reward function at time
step t is:

ft(st, at) = 30− 2|at − ct|+ bt, (5)

where st represents the state at time step t: st = (ct, bt). at
belongs to the interval [−10, 10] and represents the decision at
time step t. The dynamic of the bias bt is as follows (b0 = θb):

bt =

{
θb if at−1 ≥ 0,

−θb otherwise,
(6)

where θb is a parameter, which controls the influence of at−1

on bt, with larger values being more influential on the effect
of time-linkage. In the first benchmark instance, θb is set to
100, and in the second benchmark instance, θb is set to 15.

In the CMPB [5], the dynamic of the environment variable
ct is (c0 = 5):

ct = ct−1 ×−1 (7)

Therefore ct oscillates between c0 and −c0 and the environment
returns only two states. We denote the benchmark that uses
Equation 7 as CMPB-O.

To explore the impact of constrained resources with dif-
ference state space sizes, we define a cyclical dynamic for
the environment variable ct. We denote the benchmark with
this dynamic as CMPB-C. Where θb is set to 100 in the first
instance, and θb is set to 15 in the second instance. Where the
set S represents all possible environment states, the dynamic
of the environment variable ct in Equation 7 is replaced as
follows (c0 = −10):

ct = c0 + t mod |S| (8)

Where ct now belongs the to interval [−10, 10], there are
|S| states encountered in the CMPB-C. This increases the
size of the state-action space, requiring additional exploration,
compared to the CMPB-O instances, where the only states
encountered are {c0,−c0} ⊆ (S).

B. Representative Algorithms

Fu et al. [5] use an ideal EDO method and Q-learning
for comparative results with QBEA. We compare EDO (Al-
gorithm 2), using both random search and a (1+1)-EA [33],
Q-learning (Algorithm 1), QBEA (Algorithm 3) and a random
method that performs action selection with no evaluation.

C. Experimental Results and Analysis
The performance of EDO, Q-learning, and QBEA, together

with the optimal accumulated rewards and a random method,
on the first and second benchmark instances of CMPB-O and
CMPB-C with δ increasing in the range [0, 1] are presented in
Figs. 3, 4, 5 and 6 respectively.

For all benchmark instances, experiments were averaged
over 100 runs for 1000 time steps. We generated a set of seeds.
The same seeds were then used for repeated runs. The standard
error is shown by the error bars. Where there is no variance
of the standard error, the error bar is shown only once.

1) General Observations: The accumulated rewards for
neither Q-learning nor the random algorithm are effected by δ
in any benchmark instance. This is expected as there are no
offline operations defined for the algorithms.

For δ = 1, the results are in line with Fu et al. [5].
Q-learning achieves better performance than EDO on the
first benchmark instances where time-linkage has a higher
effect. EDO outperforms Q-learning on the second benchmark
instances. QBEA consistently outperforms on all instances.

EDO tracks the performance of the random algorithm for
δ = 0. EDO accumulates higher rewards as δ → 1 and the
standard error reduces as δ → 1. For δ = 1, EDO performs
exhaustive search and, as expected, the standard error is 0.

2) Impact of Constraints on Time: EDO specialises in
the second benchmark instances (Figs. 4 & 6), where the
bias reduces the effects of time-linkage between states. EDO
outperforms Q-learning on the second benchmark instance
only where there is sufficient offline time, which occurs when
δ ≈ 0.23 for the CMPC-O (Fig. 4) and δ ≈ 0.11 for the
CMPC-C (Fig. 6).

On the CMPB-O (Figs. 3 & 4) the affect of δ on the
performance of QBEA was unexpected. There is no clear
change in accumulated rewards with constrained offline time
and increasing values of δ do not predict higher accumulated
rewards. However, the impact of δ on QBEA can be seen on
both instances of the CMPB-C (Figs. 5 & 6) where there is a
clear increase in accumulated rewards as δ → 1. These results
show that the performance of QBEA is effected by δ, provided
that there is a minimum bound on the required exploration.
Further investigation of this is shown in Section VI-C4. Of
interest, the QBEA standard error decreases as δ → 1 however,
the standard error does not equal 0 for δ = 1, unlike EDO.

3) Impact of State Space Size: The performance of EDO
increases slightly in both benchmark instances of CMPB-C
(Figs. 5 & 6) as δ → 1, while the performance of Q-learning
falls significantly in comparison to the corresponding CMPC-O
instances (Figs. 3 & 4). This suggests that changes in the size
of state-space may have a greater impact on RL algorithms
than EDO, or that EDO copes better than RL with a wider
range of state dynamics.

QBEA clearly outperforms the other techniques when the
size of state space is increased. This is particularly marked
when compared to Q-learning on the first benchmarks instances
(Figs. 3 & 5). The increase in the exploration required in CMPB-
C, compared to CMPB-O, before Q-values tend to being fully
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Fig. 3: The averaged accumulated rewards in Equation 5
over 100 runs with θb = 100 with δ in range [0, 1] on the
CMPB-O. Environment dynamics oscillate (Equation 7).
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Fig. 4: The averaged accumulated rewards in Equation 5
over 100 runs with θb = 15 with δ in range [0, 1] on the
CMPB-O. Environment dynamics oscillate (Equation 7).
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Fig. 5: The averaged accumulated rewards in Equation 5
for 1000 times steps over 100 runs with θb = 100 and δ
in range [0, 1] on the CMPB-C. Environment dynamics
cycle through S (Equation 8).
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Fig. 6: The averaged accumulated rewards in Equation 5
for 1000 times steps over 100 runs with θb = 15 and δ
in range [0, 1] on the CMPB-C. Environment dynamics
cycle through S (Equation 8).

mapped means there is further exploration required before
QBEA convergences to optimal policies. Investigation of the
algorithm operations shows that dependant on the size of the
state space, even with the random exploration strategy used
when δ = 0, QBEA converges to an optimal policies quicker
than the ε-greedy exploration strategy used by Q-learning.

4) Estimating mean exploration time: QBEA’s Q-values
table for the CMPB is a matrix with dimensions that map each

state s ∈ S to each action a ∈ A. The required exploration for
each state s is a combination of the available actions A. For
δ = 0, the action selection is random. To determine the mean
number of time steps required explore the environment this
can be treat this as the “coupon collector’s problem” [1]. This
problem asks, “Given n coupons, how many coupons do you
expect you need to draw with replacement before having drawn
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Fig. 7: The mean number of time steps required for
exploration of |A| over the number of states encountered
by QBEA as shown in Equation 9.

each coupon at least once?”. The mean number of expected
time steps N(t) to fully explore the encountered states has
been shown to for large |A| × |S| to approach [34]:

N(t) = |A| × |S| log |A| × |S| (9)

On the CMPB benchmarks for every t a ∈ A, and so the set of
actions is equal for each state. Fig. 7 plots the mean time steps
required for mapping the CMPB against the number of states
encountered for three different values of δ. For δ = 0, |S| = 2,
the mean time steps required to explore the state action space
is t ≈ 250. For δ = 0, |S| = 21, the mean time steps required
to explore the state action space is t ≈ 11.5× 102.

D. Implications for Algorithm Selection

The ratio of offline to online time δ has been defined in
Section IV. Fu et al. [5] show that EDO and RL techniques
specialise in different types of SDMPs, where the SDMP type
is determined by the influence of time-linkage between time
steps. The results from Section VI-C support the findings from
Fu et al. [5] where the hybrid QBEA technique outperforms
both EDO and RL techniques.

The method from Section V brought an understanding of
the impact on algorithm performance for real-world problems
with constrained resources. Our results show the impact of a
constraint on offline time for EDO and EDO hybrid algorithms.

For SDMPs where there is little impact from time-linkage
between states, EDO outperforms Q-learning, provided there is
sufficient offline time. With an increase in the state-action space,
the relative performance of EDO to Q-learning, for SMPDs
where there is a higher impact from time-linkage between
states, improves provided there is sufficient offline time.

For δ = 0, the quality of the solutions for EDO match a
random method. In this situation, Q-learning may produce better

quality solutions than EDO, even for types of SDMPS where
EDO previously outperformed. Offline time has an upper bound
of δ = 1, which provides sufficient offline time to evaluate all
possible actions. To conserve run-time resources, algorithms
can limit offline time to |A| × |S|.

QBEA outperforms other algorithms for all benchmark
instances. Under constrained offline time, random exploration
provided an effective, computationally inexpensive exploration
for QBEA. This may be an effective strategy for QBEA on
new SDMPs with constrained resources. However, further in-
vestigation is required to determine when to change exploration
strategies or expend additional resource.

For problems that require an always available solution both
QBEA and EDO would meet this requirement. However, while
QBEA it will initially provide random solutions it can leverage
off any available offline time to improve the learning policy
between decision points. EDO is particularly suited to SDMPs
where solutions found previously are no longer optimal due to
rapid or large changes in the environment.

VII. CONCLUSIONS

In real-world sequential decision-making problems, resources
are limited. There is a need for methods to model constrained
resources to understand how algorithm performance could
change under varying resources for real-world implementations.
This paper presents a method to model constrained resources
based on the proposed theoretical foundations for offline and
online time for SDMPs.

Results on a conceptual moving peaks benchmark show that
an EDO algorithm provided lower quality solutions with limited
offline time. On the other hand, the relative performance of an
RL algorithm reduced by a greater degree when the size of
the state-action space increased. QBEA, an EDO-RL hybrid,
outperforms the other algorithms and copes well with changes
in the dynamics of environment state. The relative QBEA
solution quality is affected with limited offline time only after
the size of the state-action space reaches a minimum bound.

Our results show that the relationship of time-linkage
between states, the size of the state-action space and run-time
resource constraints affect the online performance of algorithms.
When these characteristics are specified for problem instances
they can be used to help with algorithm selection. Developing
a further understanding of how these constraints affect solution
quality could help to design or select more efficient algorithms,
particularly when specific resources need to be conserved.

One important consideration is that the paper only considers
environmental dynamics where the environment returns to
previous states. Q-learning was designed to learn the difference
between states. In the presence of random or chaotic dynamics,
or in the case of a large or continuous state-space, EDO may
be more suitable. Useful extensions to the benchmark would be
to include a wider range of varied sized state-action spaces, as
well as state dynamics, to test relative algorithm performance
under different SDMP dimensions.

There are two key areas of interest for future work. First,
problem instances that are exceptions to the assumption of



equality between fitness and reward. And second, algorithm
performance under uncertainty. Exceptions can be investigated
by changing the reward estimation function (E in eq. 1). The
problem definitions (eq. 1 and 2) can simulate noise in sensing
by adding a Gaussian probability density function to the values
of st.
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