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Abstract—The reduction of waste is a concept companies adopt
in order to enhance their friendliness versus the environment
and to contribute to sustainability. Constraints on lifetimes of
products force organizations to carefully plan their production in
cooperation with their supply chain partners in order to prevent
decreased quality or waste of production parts and products. This
gains importance because waiting times imply longer lead times
charging the production system with work in process inventories.
Longer lead times can lead to quality losses due to depreciation,
so that parts need to be reworked if possible or discarded.
But return flows of products for rework or remanufacturing
actions significantly complicate the production planning process.
We analyze sustainability options with respect to lead time man-
agement by formulating a comprehensive mathematical model.
We consider a deterministic, mixed-integer programming model
to highlight main characteristics of sustainability options and to
derive managerial insights for production planning in the light
of sustainability.

I. INTRODUCTION

Lead times of products from the receipt of an order until
the delivery of the product at the final customer are among
the important key performance indicators of today’s business.
Only a few models exist for production and lot size planning
that take into consideration lead times that depend on the
workload, known as load dependent lead times (LDLT); see
[1,2]. The same is valid for models linking order releases,
planning, and capacity decisions to lead times taking into
account the system utilization, batching/lot sizing, and se-
quencing decisions. For instance, reducing lot sizes reduces
inventory holding, but increases setups that consume capacity.
On the other hand, increased lot sizes force items to wait for
processing which increases work in process (WIP) within the
production system. In case that items have a limited lifetime
and their quality degrades while waiting, items might pass their
valuable lifetime and need to be either discarded or reworked.
If rework is possible and performed with regular production
resources, i.e., “in-line,” resource utilization further raises due
to additional setups and processing for rework items causing
a downward spiral on lead times and item quality [2].

Models for production and supply chain planning are fre-
quently formulated as mixed-integer programs (MIP) where
various versions exist; see, e.g., [3] for an overview. One
of the most frequently applied models is the capacitated lot
sizing problem (CLSP) that is also implemented in software
systems for enterprise resource planning. It is NP-hard, so

that many researchers propose heuristics for solving larger test
instances, also being useful to understand mechanisms and
relationships of planning issues. In this paper, we present a
MIP based on the CLSP including production smoothing for a
production system with lifetime restrictions on items, external
remanufacturing streams as well as internal rework which
pertains to sustainability with the aim of smoothing utilization
of production and rework actions. These characteristics can be
attributed, e.g., to chip and wafer fabrication where wafers can
be recycled and reused multiple times. Perishability occurs due
to two issues where the first is the short life cycles of wafers
leading to obsolescence of wafer value. The second pertains
to in-process waiting time-related deterioration/contamination
that requires, e.g., re-polishing. Generally, defective wafers
are reworked in the photo-lithography area which is also
the system bottleneck. Return flows may consist in “reclaim
wafers.” These are reworked and used as test wafers for
electronic tests and quality assurance; see also [4] for details
on wafer types. Moreover, recycling ratios of new and reclaim
wafers versus recycled wafers can be assumed with 78% [4].
We use high and low return rates of recycled products for
model testing in our numerical study and present our findings
as well as conclusions including an outlook for future research.

II. INTEGRATING LDLT AND SUSTAINABILITY

Lead time management and the question “how to do it
quicker” has been in the focus of management since the
1990s with considerable interest in the role of lead times in
production and supply chain planning. Classical models for
production and supply chain planning treat lead times as static
input data, but in most situations, the output of a planning
model implies capacity utilization which, in turn, influences
lead times. This circularity has received much attention in
recent years [5]–[8]. Nevertheless, the influence of restricted
lifetimes on quality of items and related rework action has not
been extensively taken into account [2].

A. LDLT and Production Smoothing

Most models for aggregate planning integrate lead time
information using estimates based on experience and rules of
thumb as input parameters for planning. But, in most situa-
tions, the output of a planning model determines planned ca-
pacity utilization which, in turn, influences estimated/planned



lead times. For instance, worst case lead times might be used
in order to have enough “buffer time” to fulfill accepted orders
regarding a certain time interval and thus satisfy demand [9].
Orders may be released earlier into the system than necessary
to ensure delivery due dates, so that WIP builds up way
ahead and resource utilization increases. Items are forced to
wait, so that lead times increase, too, compromising the initial
idea to assure due dates and service levels. This over-reaction
that corrupts lead times leading to high variability becomes
a self-fulfilling prophecy and is addressed in the literature as
the lead time syndrome. It shows the results if the relations
between average lead times, WIP, and workload, are ignored;
for extensive studies see [10,11].

1) Lead Time Estimates: In the literature, various re-
searchers concentrate on the estimation of planned lead times
[12]–[14] by, e.g., testing and iterating lead time estimates
regarding their influence on the system using simulation.
However, the relationship between system workload, resource
utilization, and lead time(s) (distributions) is not taken into
account in mathematical models. Besides, not much work is
provided that analyzes planned lead times and workload in
environments subject to highly varying demands [10]. For
instance, the authors of [10] study production smoothing
methods with the aim of reducing subcontracting and overtime
as options to deal with demand peaks and variability. They
propose smoothing strategies on the master planning sched-
ule and planned lead time control at multiple workstations.
Other authors incorporate the relation between lead times and
production (system) workload in their optimization models
linearizing the resulting nonlinear relationship of WIP-related
exponentially increasing lead times; see, e.g., [5,8,15].

2) Production Smoothing: Inventory holding is one of
the classical tools to smooth production and buffer against
demand peaks [16]. If products have limited lifetimes, in-
ventory holding as a smoothing strategy is limited especially
regarding quality issues. Smoothing resource utilization of
bottleneck machines focuses on workloads that are penalized
in the objective function thus preferring lower utilization rates
[17,18]. This is contrary to practice aiming at 100% resource
utilization avoiding idle times especially in capital intensive
industries such as, e.g., wafer fabrication and semiconduc-
tor manufacturing. Maximum values smaller or equal 10%
idle times are a frequently stated targets [19]. However, the
lead time syndrome states that releasing jobs earlier in the
production system increases WIP and thus lead times. Thus,
production smoothing is likely to have a negative effect on lead
times. On the other hand, there is a resource utilization level
after which lead times rise significantly and in an exponential
manner. As shown by queuing models and also confirmed in
practice [20], there is a desirable sector of operation and thus
resource utilization (also denoted “operation curve” mainly
in the German speaking literature; see [21,22]) where slight
reductions of this level lead to great reductions in lead times.
This does not say much on WIP, but if workload measured
in WIP is another performance indicator of utilization, then
lead times can be reduced by holding similar amounts of

WIP. Therefore, this operation sector should be targeted by
production smoothing actions.

Production smoothing has mainly been taken into account in
synchronized assembly line systems; see, e.g., [17,18] and the
references therein. Analysis concentrates on both the output
rate of finished goods inventory (FGI) at the final assembly
stage (output rate variation (ORV)) and on the product rate
variation (PRV) which refers to the pull rate of WIP. Accord-
ing to [17], the major part of research is on the PRV, possibly
due to raised complexity regarding the settings where ORV is
relevant. Setup times are frequently assumed as negligible in
these production environments and processing times allow to
produce exactly one unit in a time period; see also [17,18].
Accordingly, scheduling of multiple products with the aim
to smooth overall workload has not been extensively studied.
One example of work in the multiple product case is [23] that
considers a PRV approach in a single (final stage) workstation
system with stochastic setup and processing times.

Production smoothing is frequently integrated in mathemat-
ical models by modifying the objective function according
to some criterion(s) as in [24], e.g., defining indicators such
as a usage goal that denotes the deviation of actual and
ideal resource consumption or a loading goal of an overall
production system determining the deviation between planned
and actual workload. These can be integrated into an objective
function of an optimization model by using, e.g., absolute
or squared values for the deviation that can take positive or
negative values. Other production smoothing criteria taken into
account by researchers are the minimization of total production
rate variations, WIP, the maximization of system utilization,
or responsiveness, where a piecewise linear cost term is used
to motivate planned capacity utilization around 70 − 85%.
This selection point for the target utilization in the objective
function can be implemented using special ordered sets of
variables (SOS), e.g., SOS1 (SOS of type 1) as another method
to specify the integral condition. SOS1 require that at most one
variable takes a strictly positive value while all others be zero.
However, there does not seem to be any criterion superior over
the other(s) as stated in [18].

3) Our Implementation of Production Smoothing: The
model presented in this paper integrates the interval selection
according to planned capacity utilization employing binary
variables, denoted by ybt ∈ {0, 1} where b = 1, . . . , B denotes
the B breakpoints of the piecewise linear capacity constraint.
They give the interval borders regarding the utilization sectors
where the cost terms are selected depending on the planned
processing and setup times, accordingly. In order to correctly
model the cost terms, we differentiate between fixed utilization
costs when a subsequent interval (or sector) is reached and
variable costs according to the planned utilized capacity units.
In each time period t, an interval/sector needs to be selected
according to the planned capacity utilization:

B∑
b=1

ybt = 1 ∀ t = 1, . . . , T (1)



The planned capacity utilization in a time period t is attributed
to the load dependent indicator as follows:

N∑
i=1

T∑
t=1

(ξi · xit + sti · δit) =
B∑

b=1

pscubt ∀ t (2)

where the first term denotes resource consumption by produc-
tion and setup time where ξi is the resource consumption factor
of producing one unit of item i and xit is the decision variable
of the amount of items i produced in period t. Moreover, sti
denotes the setup time of item i and δit is the setup variable.
The resource consumption is required to be equal to the sum of
the planned smoothed capacity utilization

∑B
b=1 pscubt over all

breakpoints B. We consider three intervals for the piecewise
linear function. The intervals are defined as follows:

pscubt ≤ ybt · bB ∀ b = 1, . . . , B, t = 1, . . . , T (3)
pscubt ≥ bb · ybt ∀ b = 1, . . . , B, t = 1, . . . , T (4)
pscubt ≤ bb+1 · ybt ∀ b = 1, . . . , B − 1, t = 1, . . . , T (5)

Inequalitites (3) give the border of the last interval denoted
by breakpoint B. Inequalities (4) denote the lower and In-
equalities (5) the upper limit of pscubt. The borders of the
intervals/sectors bb are parameters and thus input data.
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Fig. 1. Approximation of load dependent resource utilization costs

In order to integrate the load dependent processing and setup
consumption into the objective function, we define a fixed
cost term pcuf

b and a variable cost term pcuv
b as well as a

cost parameter η to attribute costs to the planned consumed
capacity pscubt that are integrated as follows in the objective
function:

T∑
t=1

[
B∑

b=1

(pcuf
b · ybt + η · pscubt − pcuv

b · ybt · bb)

]
(6)

The load dependent capacity utilization costs are chosen
according to the binary variable ybt that becomes 1 if the
utilization is within a certain interval; see also Figure 1.

B. Lifetime Restrictions

Deterioration can be defined as the gradual process of decay,
damage, or spoilage of items due to various reasons, so that
they cannot be used anymore for their original purpose [2].
They go through a change loosing their utility. Perishability
can be differentiated from deterioration as a fixed, maximum
lifetime like a “best-before” date in practice where the utility
of items is all lost after that date due to external factors,
laws and regulations etc. that determine their shelf lives [25].
Products including services as a main component incur similar
issues, e.g., airline seats or hotel rooms [26,27]. As a result,
we can distinguish two subcategories of deterioration: 1)
functional deterioration over time. That holds, e.g., for fruit,
vegetables, or milk. 2) customer perceived utility where the
demand deteriorates although functions and physical condition
of the products remain the same, e.g., fashion clothes, high
technology products, newspapers [28]. Lifetime restrictions
define the time point until which items can or should be
used. Different methods are proposed in the literature that
can be used to integrate lifetime restrictions into mathemat-
ical models for optimization depending on the model type
(deterministic/stochastic and time-dependent (finite/infinite)).
The interested reader is referred to [28] for these methods.

In this paper, we regard lifetime constraints due to per-
ishability of items that can be reworked which is waiting-
dependent and integrated by modifying the inventory balance
equation of well known production-inventory lot size (I&L)
formulations [29] by subtracting items that passed their useful
lifetime calculated as follows:

IDit ≥
t−ΘL

i∑
u=1

(xiu + xr
iu)−

t∑
u=1

diu −
t−1∑
u=1

IDiu, (7)

∀i, t = 1, . . . , T ; t ≥ ΘL
i

where IDit is the amount of items i that perish in a time period
t. These are calculated by the sum of produced items xiu and
reworked items xr

iu in the time interval (u, t − ΘL
i ), i.e., the

production from the beginning of the planning horizon until
period t reduced by the length of the item’s lifetime ΘL

i , less
the sum of those items that are used to satisfy demand of
period u until period t, i.e.

∑t
u=1 diu, and items that have

already been disposed in previous periods up to t − 1, i.e.∑t−1
u=1 I

D
iu.

Spoilage costs need to be added in the objective function
if no production costs are regarded which is mostly the case
in classical discrete deterministic lot sizing models. If neither
production costs nor spoilage costs are taken into account, the
model might produce items and immediately dispose them to
prevent inventory costs, because this is not punished by the
objective function.

C. Sustainability Options: Remanufacturing and Rework

Sustainability can be widely understood as the “quality that
permits to preserve, to keep, to maintain something” [30].
Therefore, if something is able to be kept, it is sustainable”



[31] implying the avoidance of permanently damaging the
related item or environment, so that it is available for future
generations. For an overview on sustainability in supply chains
see [32]. In relation to this, we consider items that pass their
lifetime in the production process and are good for rework
actions in order to re-use them in the production process.
Rework includes all recovery actions required to transform
products that do not meet a specific quality (anymore) in a
way that they regain quality standards [28,33]. We attribute
rework to company-internal problems, e.g., unplanned waiting
times or out-of-control production systems leading to defec-
tives [34]. Instead, remanufacturing encompasses industrial
processes where worn out products are returned from the
customer and restored to “like new” conditions through a series
of actions, e.g., dis-assembly, cleaning, refurbishing etc. [35].
In contrast to this, recycling is the recovery of raw materials
or parts of used products, e. g., copper, by dis-assembly of
products. Moreover, we differentiate between in-line and off-
line rework: in-line rework uses the same workstations as
regular production, so that their utilization raises with rework;
see Figure 2.
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Fig. 2. In-line production and rework system including external returns

The storage of reworkables is filled with items that have
acquired a defect in production or passed their useful lifetime
while waiting to be processed together with external returns
of used items that might be reworked or finally disposed; ; see
also [36] for a Wagner Whitin model with remanufacturing.
Assumptions on the point of origin of reworkables raises the
complexity of the system, especially when amounts of return
flows are unpredictable and/or uncertain. Moreover, return
flows increase inventory costs and machine utilization, but
decrease the need for replenishment of new parts or materials
and, therefore, is both an environmentally friendly strategy and
in favor of profit increases due to decreases of procurement
costs [2].

In this paper we consider a single-stage production-rework
system with a single workstation. A multi-stage setting in-
volving multiple workstations is much more complex due to
queuing effects and thus subject to further research.

D. The Optimization Model

The following notation is used to state the optimization
model.

Parameters:
sci Setup cost factor for product i.
rsci Rework setup cost factor for product i.
hi Inventory holding cost factor of item i.
hr
i Rework inventory holding cost factor of item i.

ϕi Disposal cost factor for discarding product i.
ϕr
i Disposal cost factor for discarding reworkable

product i.
η Costs factor for planned consumed capacity.
Git Known external return flows of item i in period t.
pcuf

b Fixed cost term of interval/sector b of utilization.
pcuv

b Variable cost term of interval/sector b of utilization.
oci Overtime cost factor for product i.
dit Demand of product i in period t.
ΘL

i Lifetime of product i.
Capt Available capacity in period t.
ξi Resource consumption factor to produce one entity

of product i.
sti Setup time for product i.
rsti Rework setup time for product i.
dk Cumulative demand, i. e.,

∑T
t=1

∑N
i=1 dit.

xmin
i Minimal lot size for product i.

Variables:
δit Setup variable for product i in period t.
δrit Setup variable for reworking product i in period t.
Iit ≥ 0 Inventory holding of product i in period t.
Irit ≥ 0 Rework inventory holding of product i in period t.
IDit ≥ 0 Amount of spoiled items of product i in period t.
IDr
it ≥ 0 Amount of spoiled reworkable items of product i

in period t.
ybt Binary variable for interval selection regarding

load dependent utilization costs with breakpoints
b = 1, . . . , B for every time period t.

Ot Overtime used in period t.
xit ≥ 0 Production amount of product i in period t.
xr
it ≥ 0 Amount of reworkables of product i in period t.

zit Setup state for production defined as binary.
zrit Setup state for rework defined as binary.

Indices:
i, u ∈ N Indices denoting products.
t = 1, . . . , T Time periods.
b = 1, . . . , B Set of breakpoints for piecewise linear terms.

We include return flows in relation to demand of items i in
the modified CLSP:

Git = (1− αR
i ) · dit (8)

where αR
i is the assumed fraction of items that return from the

customer. We add constraints calculating returned perishable
items as follows:

IDr
it ≥

t−ΘL
i∑

u=1

(
Git + IDit

)
−

t−ΘL
i∑

u=1

xr
iu−

t−1∑
u=1

IDr
iu ∀ i, t (9)

The possibility to rework items is restricted by the returned
item lifetime ΘL

i as shown in the first term of Inequalities



(9). We further integrate a rework/remanufacturing inventory
balance equation to characterize the flow of remanufacturing
stated as follows:

Irit = Iri,t−1+Git+IDit −xr
it−IDr

it ∀ i, t = 1, . . . , T (10)

The returned items/rework inventory balance is given by re-
turned items that were already in inventory since previous peri-
ods t− 1, by new external returns Git and internally perished
items IDit less those items that are reworked/remanufactured
to serve for demand satisfaction and those that are discarded,
because there is no demand in the range of their lifetime
restrictions. After remanufacturing of items, they regain full
quality standards, so that they are indistinguishable from regu-
lar produced products and enter FGI. Rework/remanufacturing
of returned items is further restricted by the amount of returns:

xr
it ≤ Git ∀ i, t = 1, . . . , T (11)

Constraints (11) prevent the system from phantom reworked
items that come “out of nowhere.” These constraints might
further serve as a cutting plane to speed up the solution
process. A further option is to constrain the perishables
(Restriction (13)) from above, so that in case of zero external
return flows, reworkables are not forced to be zero as well.
Reworked/remanufactured items either serve to satisfy demand
dit in period t or they enter regular inventory Iit until they
are used for demand together with regularly produced items
xit stated in the following constraint:

Iit = Ii,t−1+xit+xr
it−dit− IDit ∀ i, t = 1, . . . , T (12)

Disposals at this stage may only be caused by minimal lot
size constraints on regular production, because optimization
models as the presented one avoid wastage in the first place
as this imposes costs; see also [2,28]. As stated elsewhere,
we solely constrain regular production to comply to a specific
minimal lot size. Disposals of regular and/or reworked items
are determined as follows:

IDit ≥
t−ΘL

i∑
u=1

(xiu + xr
it)−

t∑
u=1

diu −
t−1∑
u=1

IDiu ∀ i, t > ΘL
i

(13)
The modification of the disposal constraint is done in the first
term where reworked items that are now as good as new are
restricted by the regular lifetime of item i.

The complete model including LDLT via production
smoothing, setup-carry overs, minimal lot size constrains,
overtime, as well as rework and remanufacturing is stated as

follows:

min
N∑
i=1

T∑
t=1

(sci · δit + rsci · δrit) (14)

+

N∑
i=1

T∑
t=1

(
hi · Iit + hr

i · Irit + ϕi · IDit + ϕr
i · IDr

it

)
+

T∑
t=1

[
B∑

b=1

(pcuf
b · ybt + η · pscubt − pcuv

b · ybt · bb)

]
+ oci ·Ot

subject to

Iit = Ii,t−1 + xit + xr
it − dit − IDit ∀ i, t = 1, . . . , T

Irit = Iri,t−1 +Git + IDit − xr
it − IDr

it ∀ i, t = 1, . . . , T

xr
it ≤ Git ∀ i, t = 1, . . . , T

IDit ≥
t−ΘL

i∑
u=1

(xiu + xr
it)−

t∑
u=1

diu −
t−1∑
u=1

IDiu ∀ i, t

IDr
it ≥

t−ΘL
i∑

u=1

(
Git + IDit

)
−

t−ΘL
i∑

u=1

xr
iu −

t−1∑
u=1

IDr
iu ∀ i, t

Capt +Ot ≥
N∑
i=1

(ξi · xit + sti · δit) (15)

+

N∑
i=1

(t · ξri · xr
it + rst · δrit) ∀ t = 1, . . . , T

xit ≤
(
dk + Capt

)
· (δit + zit) ∀ i, t = 1, . . . , T

(16)

xr
it ≤

(
dk + Capt

)
· (δrit + zrit) ∀ i, t = 1, . . . , T

(17)
N∑
i=1

(zit + zrit) ≤ 1 ∀ t = 1, . . . , T

(18)
zit ≤ δi,t−1 + zi,t−1 ∀ i, t = 1, . . . , T

(19)
zrit ≤ δri,t−1 + zri,t−1 ∀ i, t = 1, . . . , T

(20)

xit ≥ xmin
i · (δit + zit) ∀ i, t = 1, . . . , T

(21)
Ii0 = IiT = 0 ∀ i

(22)
Iri0 = IriT = 0 ∀ i

(23)

pscubt ≤ ybt · bB ∀ b = 1, . . . , B, t = 1, . . . , T

pscubt ≥ bb · ybt ∀ b = 1, . . . , B, t = 1, . . . , T

pscubt ≤ bb+1 · ybt ∀ b = 1, . . . , B − 1, t = 1, . . . , T



δit, δ
r
it, zit, z

r
it, ybt ∈ {0, 1} ∀ i, t = 1, . . . , T

(24)

xit, x
r
it, Iit, I

r
it, I

D
it , I

Dr
it , Ot ≥ 0 ∀ i, t = 1, . . . , T

(25)

The objective function minimizes total costs of regular
production and rework setups, inventory, and rework inventory
holding where the latter is less costly, disposal of regularly
produced items and returned items, load dependent utilization
costs, and overtime. Setup times are taken into account ad-
ditionally to the unit times of nominal capacity included in
the utilization term, so that setup variables are set correctly.
Constraints (12) denote the inventory balance equation of
regular production with the modification of the rework of
returned items i that are available for demand satisfaction in
period t. Constraints (10) state the returned items inventory
balance equation that are composed by returned items i that
were in inventory in previous periods t − 1, returned items
Git and internally perished items IDit , less those items xr

it that
are reworked and disposal of returned items IDr

it . Constraints
(11) require that the amount of reworked items can never be
greater than returns. Inequalities (13) and (9) determine the
items that are disposed due to lifetime restrictions of regular
or returned items and according to demand requirements.
Returned items can stay in returned inventory until their
lifetime expires. Constraints (15) present the regular capacity
restrictions including capacity consumption due to waiting
time dependent rework and rework setups. These are stated as
upper bounds as in the classical CLSP. LDLT are accounted for
regarding the planned smoothed utilization. Constraints (16)
and (17) give the setups for regular or rework batches that
can be carried over from/to the next period in both cases.
Nevertheless, the machine state requires to be set up exactly
for one product of regular production or rework presented by
Constraints (18). Inequalities (19) and (20) determine the setup
carry overs of machine states zit. Inequalities (21) present
the minimal lot size requirements that are required only for
regular production. This can be easily modified for the specific
practical case. The remaining Constraints (22), (23), (24), and
(25) denote initial and ending inventory levels, binary variables
regarding setups, and non-negativity constraints.

E. Numerical Study

The model is implemented in Xpress-IVE calculating test
instances on a computer with an Intel Core(TM) 2 Duo
CPU processor with 1.60 GHz and 1.6 GB RAM. Large test
instances are calculated employing 20 products and 50 time
periods. As stated by [37], test instance sizes with less than
10 items and up to 20 periods may already be of practical
relevance.

1) Test Instances: Table I states parameters that are equal
to all test instances and mainly define relations of parameters
of returns. Returns are calculated as in Equation (8) where
a fraction of αR

i = 0.06 is assumed, so that the return rates
are high with 94%. Return rates for fashion clothes at catalog
retailers may be less high, but in comparison to other products

still high [38] with around 60%. The ratio concerning the use
of new/reclaimed wafers versus recycled ones can be assumed
with 78% [4]. Other authors report return rates from customers
to be approximately 6%, but such rates significantly vary by
industries [39]. Therefore, we study two cases employing very
high return rates of 94% and very low rates of 6%. We assume
capacity consumption costs with η = 1.

TABLE I
LIST OF TIME-INFINITE REMANUFACTURING/REWORK PARAMETERS FOR

ALL PRODUCTS i

Product rsci rpci rhi ϕr
i ξri ΘL

i

i sci/10 pci/100 hi ϕi ξi/10 4

The intervals/borders and costs for utilization are given in
Table II. The borders need to be modified according to capacity
and expected use of overtime.

TABLE II
COST PARAMETERS OF UTILIZATION INTERVALS

Cost factor Interval borders b

0 700 850 900 5000

pcuf
b 1 42 83 238 523

pcuv
b 1 8 17 48 65

A number of 6·4·4·4·5 = 1920 test instances are generated
combining different parameter profiles and variations [2].
Lifetimes are assumed to be equal for all products. A value
of ΘL

i = 0 means that the item cannot be stored, thus it must
be consumed in the same period as production takes place,
otherwise it must either be reworked or discarded. They are
varied assuming different parameter values. Other variations
are executed for machine load profiles, time-between-orders
(TBOs), minimal lot sizes, and demand profiles as follows:

• number of products := 20,
• number of periods := 50,
• five different demand profiles assuming a Gamma distri-

bution,
• lifetimes ΘL

i := 0, 1, 2, 3, 5, 10,
• machine loads := 0.75, 0.8, 0.9, 1.0,
• TBO profiles := 1, 2, 3, 4,
• minimal lot sizes := 0, 20, 50, 100,

The distribution of demand profiles on products is assumed
to be rather low in order to create solvable test instances.
Nominal capacities are fixed to 1.000 time units that are
used by the instance generator to calculate product coefficients
and setup times for all products. Setup times are randomly
generated numbers that take into account available capacity
that is not exceeded. The same is valid for the generation
of production coefficients that checks capacity utilization in
order to create multiplicators that emend processing rates,
accordingly. The mean TBO is further determined using the
classical economic order quantity formula. It expresses the
frequency of demands for specific products. For instance, the



TBO = 1 denotes that the related product is demanded in
every time period.

The maximum solving time for each test instance is fixed
to 60 seconds, so that optimality gaps are prevalent. All test
instances are feasible and at least one solution is found.

2) Results: Regarding test instances with return rates of
94%, we observe the following: test instances with lowest
optimality gaps are those with items having a zero lifetime
and zero minimal lot size constraints; see Table III. In fact,
this implies a lot-for-lot policy meaning that a plan is created
that matches production and demand in each time period, so
that no inventory is building up that is restricted by the lifetime
constraint and the workstation has to be set up in every time
period for each product with demand in that period. This
has already been experienced with similar models and small
numerical examples [40].

TABLE III
TEST INSTANCES WITH LOWEST OPTIMALITY GAPS AND RETURN RATES

OF 94%

Nr. of optimality
test instance gap in % ΘL

i TBO load xmin
i

1919 0.15 0 4 1 0
1435-1439 0.71 0 3 1 0
1916-1918 0.81 0 4 1 0
475 0.83 0 1 1 0
1915 0.84 0 4 1 0
476-479 0.86 0 1 1 0
955 0.99 0 2 1 0
956-959 1.02 0 2 1 0
355-359 1.45 0 1 0.9 0

On the other hand, test instances with highest optimality
gaps are those that have rather high values regarding minimal
lot size values while characteristics regarding lifetime loads
and TBOs do not provide a clear picture; see Table IV. At least
one can conclude from these limited results that incorporating
minimum lot sizes seems to influence the solvability of the
model more than lifetime constraints.

TABLE IV
TEST INSTANCES WITH HIGHEST OPTIMALITY GAPS AND RETURN RATES

OF 94%

Nr. of optimality
test instance gap in % ΘL

i TBO load xmin
i

222-224 35.28 0 1 0.8 100
220-221 35.29 0 1 0.8 100
1765-1769 35.99 10 4 0.9 50
1540 40.94 0 4 0.75 100
810-814 41.06 10 2 0.9 20
1541-1544 41.32 0 4 0.75 100
1290-1294 41.38 10 3 0.9 20

Test instances with return rates of 6% are mostly solved
to optimality in the given time. Highest optimality gaps are
reported in Table V. The tables clearly show the influence of
the return rate on complexity and the solution process.

TABLE V
TEST INSTANCES WITH HIGHEST OPTIMALITY GAP AND RETURN RATES

OF 6%

Nr. of optimality
test instance gap in % ΘL

i TBO load xmin
i

1856-1859 0.53 3 4 1 0
842 0.54 1 2 1 100
1810-1814 0.54 1 4 1 20
840-844 0.56 1 2 1 100
856-859 0.56 1 2 1 0
850-853 0.57 1 2 1 20
855-858 0.57 1 2 1 0
1320-1324 0.58 1 3 1 100

III. CONCLUSION

We present a discrete deterministic production and lot
size model for aggregate production planning that takes into
account lead times that are dependent on the planned workload
of the production resource by smoothing production around
the turning point of utilization where lead times significantly
grow with small increases of utilization. Up to date, production
smoothing is rather accounted for on the operational planning
level regarding scheduling decisions mainly in the environment
of synchronized assembly lines. No model approaches have
been proposed so far for the tactical level. Besides, there are
only few model approaches that account for the link between
order releases, planning and capacity decisions to lead times
taking into account the system workload as well as lot sizing
and sequencing decisions. We contribute with our model to fill
this gap. Moreover, we take into account sustainability issues
and the effects of LDLT on the quality of items and consider
lifetime constraints of items as well as their rework in case of
exceeding their useful lifetime. Remanufacturing is included
as well. Results clearly show that return flows of used items
significantly influence the solution process. We will further
analyze this issue also with respect to those test instances that
had significant optimality gaps.

Further research will be directed to deterioration of products
and seasonality thus changing lifetimes if items depending on
environmental factors as well as their overall system effects.
Moreover, practical case studies should be targeted analyzing
and determining practical instances to test real cases and the
working of the model. The development of network flow
models including the presented issues is interesting as well
and their comparison regarding complexity and efficiency of
solution finding to the proposed model. According to this, we
raise again complexity studying multi-stage systems.
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