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Instituto Politécnico Nacional, CIC

Av. Juan de Dios Batiz S/N
Col. Nueva Industrial Vallejo

Ciudad de México, 07738
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Abstract—Dendrite morphological neurons are a type of arti-
ficial neural network that work with min and max operators
instead of algebraic products. These morphological operators
allow each dendrite to build a hyper-box in classification N -
dimensional space. In contrast with classical perceptrons, these
simple geometrical representations, hyper-boxes, allow the pro-
posal of training methods based on heuristics without using
of an optimisation method. In literature, it has been claimed
that these heuristics-based trainings have advantages: there are
no convergence problems, perfect classification can always be
reached and training is performed in only one epoch. This paper
shows that these assumed advantages come with a cost: these
heuristics increase classification errors in the test set because
they are not optimal and learning generalisation is poor. To solve
these problems, we introduce a novel method to train dendrite
morphological neurons based on stochastic gradient descent for
classification tasks, using these heuristics just for initialisation
of learning parameters. We add a softmax layer to the neural
architecture for calculating gradients and also propose and eval-
uate four different methods to initialise the dendrite parameters.
Experiments are performed based on several real and synthetic
datasets. Results show that we can enhance the testing accuracy
in comparison with solely heuristics-based training methods. This
approach reaches competitive performance with respect to other
popular machine learning algorithms. Our code developed in
Matlab is available online.

I. INTRODUCTION

Morphological neural networks are an alternative way to
model pattern classes. Classical perceptrons divide the input
space into several regions, using hyper-planes as decision
boundaries. In a case where more layers are presented, percep-
trons divide the input space using a hyper-surface. In contrast,
morphological neurons divide the same space by several
piecewise lines that together can create complex non-linear
decision boundaries, allowing separation of classes with only
one neuron. This is not possible with a one-layer perceptron
because it is a linear model. The morphological processing
involves min and max operations instead of multiplications.
These comparison operators generate the piecewise boundaries
for classification problems, and have the advantage of being
implemented easier in logic devices than classical perceptrons.

This paper focuses on a specific type of morphological
neuron which is called a Dendrite Morphological Neuron
(DMN). This neuron has dendrites, and each dendrite can be
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Fig. 1. We illustrate a classification problem where DMN outperforms a
two-layer perceptron network (MLP). The decision boundaries are in blue-
green (solid line). Although a double spiral with 10 laps follows a simple
mathematical pattern, MLP cannot separate these classes. Both models were
trained by SGD, but learning parameter initialisation is the key advantage for
DMN.

seen as a hyper-box in high dimensional space (and a box
in 2D). These hyper-boxes have played an important role in
the proposal of training methods. The common approach is to
enclose patterns with hyper-boxes and label each to the right
class. There are many training methods have been reported to
exploit this approach. However, most of them are heuristics
and are not based on the optimisation of learning parameters.
Heuristics can be useful when numerical optimisation is com-
putationally very expensive or impossible to compute. In this
paper, we show this is not the case. A learning parameters
optimisation can be computed in a reasonable time and can
improve the classification performance of DMN over solely
heuristics-based methods.

The most important training method in the scope of clas-
sical perceptrons has been gradient descent [1]. Even though
morphological networks have more than 25 years of devel-
opment and backpropagation is the most successful training
algorithm, most of the training methods for morphological
neurons are based on intuition instead of on gradient descent.
The extension of this approach is not trivial due to the problem
of non-differentiability of morphological operations. We deal
with this problem by adding a softmax layer [2], calculate
the gradients and evaluate four different methods to initialise



dendrite parameters. Fig. 1 shows a simple example where our
proposal outperfoms classical multilayer perceptrons, using
stochastic gradient descent (SGD) to train both models.

The contributions of this paper are:
• To the best of our knowledge, for the first time, a DMN

architecture is extended with a softmax layer to be trained
by SGD for classification tasks.

• We propose and evaluate four different methods based on
heuristics to initialise dendrite parameters before training
by SGD.

• The code for our approach is available at [3].
The rest of the paper is organised as follows. Section 2
provides a review of morphological neural networks. Section
3 introduces our approach to training DMN based on SGD.
We present the experiments and results, as well as a short
discussion in section 4 to show the effectiveness of our pro-
posal. Finally, section 5 gives our conclusions and directions
for future research.

II. PREVIOUS WORK

Davidson and Ritter proposed the morphological neurons
in the seminal paper [4] for template learning in dilation
image processing. Sussner and Ritter studied their computing
capabilities in [5], [6]. The DMNs were proposed as an ex-
tension in [7], taking into account that information processing
occurs also in dendrites. Each dendrite represents a hyper-
box in classification space. Improved neural architectures have
also been proposed, using rotated hyper-boxes [8], hyper-
boxes with softened corners [9] and the argmax operator as
an activation function [10], [11], [12]. This last creates more
complex non-linear boundaries and is used in this paper. In
Fig. 2, we show the different types of decision boundaries that
morphological neural networks can build to classify patterns.

A key issue of DMNs is training. We need to determine
automatically the number of dendrites and the dendrite weight
values. Several training approaches have been proposed [7],
[14], [15], [16], [10], [12]. Most of them are based on heuris-
tics to manipulate hyper-boxes. Only two proposals use opti-
misation to train morphological neural networks. 1) Morpho-
logical/rank/linear neural networks (MRL-NNs) [13] combine
classical perceptrons with morphological/rank neurons. The
training is based on gradient descent. They can solve complex
classification problems such as recognising digits in images in
shorter training times than MLPs. 2) Increasing morphological
perceptron (IMP) [17] is a neural model similar to DMN but
with a linear activation function. This has been applied to
regression problems and is also trained by gradient descent.
The drawback of these two training methods is that the
number of hidden units must be tuned as a hyper-parameter.
The advantage of creating more units during training is lost.
Our approach in this paper preserves this advantage using
heuristics-based training methods as pre-training. Particularly,
our work differs from IMP in three ways: 1) we focus on
classification problems instead of regression problems, 2) we
reuse some heuristics to initialise hyper-boxes before training
and 3) we extend the neural architecture using a softmax

Fig. 2. We show the types of decision boundary for different morphological
neural networks. (a) Single-Layer MP [5] uses semi-infinite hyper-boxes that
are parallel to Cartesian axes. (b) Two-Layer MP [6] separates classes by
hyper-planes parallel to Cartesian axes. (c) Multilayer MRL-NNs [13] classify
data by general hyper-planes. Note that the decision boundaries for the next
three networks are closed surfaces. (d) SLMP [7] uses hyper-boxes parallel to
Cartesian axes. (e) OB-LNN [8] uses rotated hyper-boxes. (f) L1, L∞-SLLP
[9] uses polytopes. (g) MP/CL [10] and DMNN [12] present complex non-
linear surfaces as decision boundaries due to dendrite processing and argmax
operator as activation function. In general, morphological neural networks
have superior classification ability to classical single-layer perceptrons, and
some morphological networks such as (c) and (g) have at least the same
capability as multilayer perceptrons. Even so, morphological neurons are
less popular than classical perceptrons among practitioners, engineers and
researchers. We hope this work can help them to see the benefits of
morphological neurons, particularly dendrite morphological neurons (g). Note
that all acronyms are defined in the references.

layer. Futhermore, our approach differs from MRL-NNs in the
neural architecture, incorporating only morphological layers
(no linear layers); and MRL-NNs uses no hyper-boxes which
is a great difference because hyper-boxes make it easier to
initialise learning parameters for gradient optimisation.

III. DMN TRAINED BY SGD

This section presents our proposal. First, we describe the
neural architecture of a conventional DMN. This architecture
is modified to be trained by SGD [18]. The SGD training
method is presented in some detail for practitioners who are
interested in using this method. The code and a demo of the
training algorithm are online at [3].

A. Neural Architecture

1) Conventional DMN: A DMN has been shown to be
useful for pattern classification [11], [12], [10]. This neuron
works similarly to a radial basis function network (RBFN)
but uses hyper-boxes instead of radial basis functions and has
only one layer. Each dendrite generates a hyper-box and the
dendrite that is most active is the one whose case is closer to
the input pattern. The output y of this neuron (see Fig. 3) is
a scalar given by

y = arg max
c

(dn,c) , (1)

where n is the dendrite number, c is the class number and
dn,c is the scalar output of a dendrite given by
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Fig. 3. We show: (a) the architecture of a conventional DMN; (b) an example
of a hyper-box in 2D generated by its dendrite weights. A dendrite output is
positive when the pattern is in the green region (inside the corresponding
hyper-box), it is zero when the pattern is in the red region (within the hyper-
box boundary), and it is negative in the white region (outside the hyper-box);
(c) an example of DMNs hyper-boxes for a classification problem; (d) the
decision boundaries generated by a DMN for the same classification problem
in (c). Note that decision boundaries can be non-linear and a class region can
consist of disconnected regions. These properties allow a DMN to solve any
classification problem separating classes by a given tolerance [15].

dn,c = min (min (x−wn
min,w

n
max − x)) , (2)

where x is the input vector, wmin and wmax are dendrite
weight vectors. The min operators together check if x inside
the hyper-box is limited by wmin and wmax as the extreme
points, according to Fig. 3. If dn,c > 0, x is inside the hyper-
box; if dn,c = 0, x is somewhere in the hyper-box boundary;
otherwise, it is outside. The inner min operator in (2) compares
elements of the same dimension between the two vectors,
generating another vector; while the outer min operator takes
the minimum among all dimensions, generating a scalar. The
activation function is given by thearg max operator proposed
by [10] instead of the hard limit function that is commonly
used in SLMP [7]. This argmax operator allows the building
of more complex decision boundaries than simple hyper-boxes
(see Fig. 3). It is worth mentioning that if (1) produces several
maximums, the argmax operator takes the first maximum as as
index class to which the input pattern is assigned. Qualitatively
speaking, this occurs when x is equidistant to more than one
hyper-box.

2) DMN with Softmax Layer: The principal problem in
training a conventional DMN by SGD is in calculating the
gradients when we have an argmax function in the output
because argmax is a discrete function. This can be easily
overcome by using a softmax layer instead of the argmax

function. The softmax layer normalises the dendrite outputs
such that these outputs are restricted between zero to one and
can be interpreted as a measurement of likelihood Pr so that
a pattern x belongs to the class c, as follows:

Prc (x) =
exp (dc(x))∑NC

k=1 exp (dk(x))
, (3)

The assigned class is taken based on these probabilities by

y = arg max
c

(Prc (x)) , (4)

We propose making dendrite clusters dc in order to have
several hyper-boxes per class, as in [17], [19]. In Fig. 4,
we show our proposed neural architecture. If a particular
classification problem has Nc classes, then we would need Nc

dendrite clusters, one per class. Each dendrite cluster output
takes the maximum among their dendrites h, as follows

dc(x) = max
k

(hk,c(x)) , (5)

where a dendrite k of a cluster c is given by

hk,c(x) = min (min (x−wk,c,wk,c + bk,c − x)) , (6)

Note that we change the way to codify a hyper-box mathe-
matically. In conventional DMN, a hyper-box is represented by
its extreme points wmin and wmax. However, here a hyper-
box is represented by its lowest extreme point wk,c and its
vector bk,c which determines the hyper-box size for each
dimension.

B. Training Method

A key issue of morphological neural networks is their
training. We need to determine automatically the number of
hyper-boxes for each dendrite cluster, and the dendrite param-
eters wk,c and bk,c. This is a great difference with respect
to classical perceptrons where only the learning parameters
are determined during training. Several training approaches
for morphological neurons have been proposed, as shown in
section 2. This paper proposes to initialise the hyper-boxes
based on heuristics and optimise the dendrite parameters by
SGD [18]. Section 4 shows that this method is better than
training based only on heuristics.

We first explain the optimisation stage. The objective func-
tion is the cost J resulted by the softmax layer, as follows

J = −
Q∑

q=1

NC∑
c=1

1 {tq = c} log (Prc (xq)) , (7)

where Q is the total number of training samples, q is the
index for a training sample, tq is the target class for that
training sample, and 1 {·} is the indicator function so that
1 {true statement} = 1, and 1 {false statement} = 0. The
SGD method minimises this cost (7) by the gradients dJ

dwk,c

and dJ
dbk,c

, which are given by
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Fig. 4. Neural architecture for a DMN with a softmax layer. Each class
corresponds to one dendrite cluster dc.

dJ

dwk,c
= −

Qbatch∑
q=1

[
0 . . . 0 fwk,c

0 . . . 0
]T
, (8)

dJ

dbk,c
= −

Qbatch∑
q=1

[
0 . . . 0 fbk,c

0 . . . 0
]T
, (9)

where

fwk,c
=


0

− (1 {tq = c} − Prc (xq))

1 {tq = c} − Prc (xq)

k 6= k∗
k = k ∗ ∧j∗ = 1

k = k ∗ ∧j∗ = 2

,

(10)

fbk,c
=

{
0

1 {tq = c} − Prc (xq)

k 6= k ∗ ∨j∗ = 1

k = k ∗ ∧j∗ = 2
,

(11)
where k∗ is the dendrite index that generates the maxi-

mum response in the dendrite cluster c, j∗ is the column
in the matrix [x−wk,c,wk,c + bk,c − x] showing the min-
imum and the position of fwk,c

and fbk,c
in the vectors

(8) and (9) is determined by the row number in the matrix
[x−wk,c,wk,c + bk,c − x] showing the minimum. Due to
the min and max operators in DMN, most gradient elements
are zero. This means that only one parameter of wk,c and bk,c

and one dendrite in each cluster is updated by the gradient
descent method when the cost is calculated by only one
training sample. However, in practice, we prefer to apply the
gradient descent in batches with Qbatch training samples taken
randomly.

We explain the different initialisation methods for dendrite
parameters. Unlike classical MLP where learning parameters
are initialised randomly, here DMN allows us to propose
different initialisation methods because dendrite parameters
have a clear geometrical interpretation: they are hyper-boxes.
Hence, we can reuse training methods based on heuristics to
give a first approximation at the beginning of the gradient
descent iterations. This paper proposes the following four
initialisation methods, showing an illustration of these methods
in Fig. 5.

• HpC initialisation [10]. Each training set for the same
class is enclosed by a hyper-box (Hyper-box per Class)
with a distance margin M ∈ (−0.5,∞). This is the
most simple way to initialise dendrites. The drawback
is that it restricts the maximum number of dendrites
to be equal to the number of classes, and sometimes
the pattern distribution may require a greater number of
dendrites. Therefore, we propose the following methods
that generate more hyper-boxes per class to capture the
data structure.

• dHpC initialisation. This method divides each hyper-box
which was previously generated by the above method.
The number of hyper-boxes produced by this method is
equal to 2ndNc, where nd is the number of dimensions
that are divided. For example, if nd = 1, the algorithm
divides the hyper-boxes in half with respect to the first
dimension, producing 2Nc hyper-boxes. If nd = 2, it
divides the hyper-boxes in half with respect to the first
and second dimensions, producing 4Nc hyper-boxes, and
so on.

• D&C initialisation [12]. The dendrite parameters are set
equal to the dendrites produced by the Divide and Con-
quer training method proposed in [12]. This algorithm
encloses all patterns in one hyper-box with a distance
margin of M ∈ [0,∞) and divides this hyper-box into
2N sub-hyper-boxes if there is misclassification. This last
procedure is called recursively for each sub-hyper-box
until each pattern is classified with a given tolerance error
E0. This method is computationally more expensive but it
captures the data distribution in a better way. This paper
deploys an improved version of this algorithm which can
avoid the curse of dimensionality and overfitting. This
new algorithm will be published later (Guevara & Sossa,
2016, Personal Communication).

• K-means initialisation. The classical k-means algorithm
is applied to obtain S clusters for each training set of
the same class. The k-means clusters are transformed to
hyper-boxes, and we use these to set dendrite parameters
(we do the inverse process proposed in [19]). We use



Fig. 5. We illustrate the four initialisation methods. The HpC method
initialises dendrite parameters, enclosing each class with a hyper-box with a
margin (even negative). dHpC is the same as the previous method but allows
division of hyper-boxes in half with respect to some dimensions, generating
more hyper-boxes per class. The D&C method is specifically to use D&C
training to initialise dendrites. The k-means method first makes a clustering
to define where to put the initial hyper-boxes using the classical k-means
method.

Gaussians as radial basis functions for clustering:

φk,c(x) = exp(−βk,c ‖x− µk,c‖2), (12)

The cluster centre µk,c and width βk,c are used to
calculate the dendrite parameters to form a hyper-box for
each Gaussian cluster, as follows:

wk,c = µk,c −∆k,c, (13)

bk,c = 2∆k,c, (14)

∆k,c =

√
− log(y0)

βk,c
, (15)

where y0 ∈ (0, 1] determines the hyper-box size (note
that vector operations in (15) are element-wise). This
initialisation method also increases computational cost
but can create more complex learning models than HpC
and dHpC methods.

IV. EXPERIMENTS

In this section, we compare our proposal with other training
methods for DMN and popular machine learning methods
based on synthetic and real datasets for classification. The re-
sults demonstrate that our proposal obtains systemically better
accuracy than other training methods for DMNs and achieves
a similar performance to popular machine learning methods.
Furthermore, we discuss the advantages and disadvantages
of each hyper-box initialisation method for our proposal to
determine which is the best. The reader can reproduce the

experimental results of this paper by using the online code
provided at [3]. At the end of the section, we present special
experiments to show the best asset of the DMNs regarding
MLPs.

A. Synthetic and Real Datasets

Our proposed method is first applied to synthetic datasets
with high overlapping. We have chosen datasets where over-
lapping is present because overfitting is more relevant in
this kind of problem. The first synthetic dataset is called A
and is generated by two Gaussian distributions with standard
deviation equal to 0.9. The first class is centred around (0,0);
the second class is centred around (1,1). The second synthetic
dataset is called B and consists of three classes which follow
a Gaussian distribution with standard deviation equal to 1.0.
The class centres are: (-1,-1), (1,1) and (-1,2).

We also use some real datasets to test the performance
of our proposal. Most of these datasets were taken from
the UCI Machine Learning Repository [20]. We also use a
subset of MNIST [21] and CIFAR10 [22] datasets for tasks
with high dimensionality. We describe them briefly. The Iris
dataset is a classical non-linearly separable problem with
three types of iris plant and four describing features. The
Liver dataset consists of detecting liver disorder (two classes)
using six features that relate to blood tests and alcoholic
drinking. The Glass dataset has the purpose of identifying
the glass type in crime scenes using 10 properties of glass.
The number of classes is six. The Page Blocks dataset needs
to classify blocks of documents into five categories based on
10 block geometrical features. The Letter Recognition dataset
has 26 letters from different fonts which must be identified
by 16 geometrical and statistical features. The Mice Protein
expression dataset classifies mice into eight classes based on
features such as genotype, behaviour and treatment. In this
work, we only use the expression levels of 77 proteins as
features for our experiments. We apply the proposed method
to two image classification tasks taking pixels as features
(without intermediate feature extraction). The MNIST dataset
is a classical recognition task for handwritten digit recognition
(0 to 9) with an image size of 28× 28 pixels. The CIFAR10
requires recognition of 10 animals and vehicles by means of
colour images of 32×32 pixels. It is worth mentioning that in
some of these datasets we found duplicates; we deleted them
for the experiments. Table I summarises the dataset properties
in terms of number of features N , number of classes Nc,
number of training samples Qtrain and number of testing
samples Qtest.

B. Comparison with Other DMN Training Methods

This subsection analyses the performance of DMN trained
by SGD in comparison with other training methods based
just on heuristics. We also compare the performance of the
different ways to initialise hyper-boxes that we proposed in
section 3. These comparisons are made based on the datasets
described above.



TABLE I
WE SUMMARISE THE DATASET PROPERTIES.

Dataset N Nc Qtrain Qtest

A 2 2 1000 200
B 2 3 1500 300

Iris 4 3 120 30
Liver 6 2 300 45
Glass 10 6 170 44

Page Blocks 10 5 4450 959
Letter Recog. 16 26 15071 3917
Mice Protein 77 8 900 180

MNIST 784 10 1000 200
CIFAR10 3072 10 1000 200

We measure performance in terms of the training accuracy
Atrain, the testing accuracy Atest, training time ttrain and the
model complexity NH/Qtrain. This last quantity is defined
as the ratio of the number of hyper-boxes NH by the number
of training samples Qtrain. If this ratio is equal to 1 then
the neuron uses a hyper-box for each training sample. In
this extreme case, the model is very complex. In contrast,
if this ratio is close to zero, it means that the number of
hyper-boxes is much smaller than the number of training
samples. Therefore, the model is simple. Ideally, we are
looking for a morphological neuron with relatively few hyper-
boxes (NH/Qtrain ' 0), with the greatest testing accuracy
Atest and with Atrain ∼ Atest; that is, a simple and well
generalised learning model.

We compare our proposal with the principal algorithms:
Elimination (SMLP) [15], Hyper-box per Class (HpC) (a
simplified version of the algorithm proposed in [10]), and
Divide and Conquer (D&C) [12]. Elimination training encloses
all patterns in a hyper-box and eliminates misclassified pat-
terns by enclosing them with several other hyper-boxes. HpC
training encloses the patterns of each class by using a hyper-
box. D&C training is based on a Divide and Conquer strategy;
this training begins enclosing all patterns in one hyper-box,
then divides it into 2N hyper-boxes if there is misclassification.
This last procedure is called recursively for each sub-hyper-
box until patterns are classified with a given tolerance error. It
is important to note that all these training methods are based
on heuristics, not on optimisation methods, so we could expect
that SGD training performs better. Additionally, we compare
the four initialisation methods proposed in section 3 for SGD
training, which are HpC, dHpC, D&C and k-means.

Fig. 6 summarises our results, showing that SGD training
systemically obtains greater testing accuracies for each dataset
than the other heuristics. Furthermore, it is seen that when
initialising SGD training with the dHpC method, we obtain
better testing accuracies on average than with other initiali-
sation methods. On average, the best initialisation method in
terms of the least number of dendrites is the HpC method
and in terms of least training time it is the k-means method.
We can conclude that SGD presents better results than solely
heuristic-based methods to train DMNs.
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Fig. 6. Our experimental results are summarised. (a) We show the testing
accuracies for each dataset obtained by the training methods based on
heuristics: a) SMLP, b) D&C and c) HpC; and the SGD training is executed
from four different initialisation methods: d) SGD (HpC), e) SGD (dHpC),
f) SGD (D&C) and g) SGD (k-means). (b) We show the average among
all datasets for testing accuracy Atest, model complexity NH/Qtrain and
training time ttrain. We mark the best value with blue (with asterisk). Note
that quantities are sometimes close to zero, meaning that bars disappear.

C. Comparison with Other Machine Learning Methods

This subsection compares the performance of popular
machine learning methods with our proposal: DMN-SGD.
These comparisons are made based on the datasets described
above. As popular machine learning methods, we chose two-
multilayer perceptrons (MLP) [23], support vector machine
(SVM) [24] and radial basis function network (RBFN) [25].
We summarise our results in Fig. 7, showing that DMN-SGD
obtains the greatest testing accuracies for some datasets (A, B,
Iris and Liver). For other datasets (Glass, Pageblocks, Letters
and Mice Protein), it presents accuracies close to the best
result; and for the remaining datasets (MNIST and CIFAR10),
it obtains the worst accuracy. This infers that the DMN-SGD
algorithm works better for low dimensional datasets (fewer
features) than for high dimensional datasets. On the other
hand, on average, the testing accuracy for DMN-SGD is the
second best behind the MLP model for these 10 datasets.
The main drawback is that DMN-SGD needs more model
parameters Npm than the other machine learning models, but
DMN-SGD has better training time than MLP on average. This
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Fig. 7. We compare our proposal DMN-SGD with popular machine learning
methods, summarising the experimental results. (a) We show the testing
accuracies for each dataset obtained by the following machine learning
methods: DMN, MLP, SVM and RBFN. (b) We show the average among
all datasets for testing accuracy Atest, number of learning parameters Npm

and training time ttrain. We mark the best value with blue (with asterisk).
Note that quantities are sometimes close to zero, whereby bars disappear.

concludes that DMN trained by SGD can be another useful
technique in the machine learning toolbox for practitioners,
because it obtains competitive results with respect to popular
machine learning methods for classification problems.

D. DMN vs MLP

The previous subsection has shown that the DMN perfor-
mance is competitive with popular machine learning tech-
niques. In particular, MLP has marginally better classification
than DMN on average. There are some problems where DMN
far outstrips MLP. The purpose of this subsection is to show
empirically the greatest benefit of the DMNs.

According to our proposal, training both DMN and MLP
requires two steps: 1) initialisation of learning parameters in
the model and 2) optimising them. In the MLP, initialisation
is a very simple step: choose the initial parameters randomly
following some convenient probability distribution [26], [27];
rarely do these random initial values give a good decision
boundary. Therefore, optimisation should search more to find
the best parameters in MLP. Instead, in the DMN, initialisation
of dendritic weights exploits the geometric interpretation of
the weights (as hyper-boxes) to facilitate optimisation, solving
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Fig. 8. This figure illustrates why the dendritic weights initialisation is the
greatest benefit of the DMN. This initialisation: 1) makes the optimisation
step easier, reducing the number of required iterations during the optimisation
step; 2) solves problems which classical perceptrons cannot, or at least, it takes
them much more work. These properties are due to geometric interpretation
of the dendritic weights as hyper-boxes that allow intialisation methods based
on heuristics. This cannot happen with MLP.

problems that classical perceptrons cannot, or at least, at
reduced work costs. This is the greatest benefit of DMNs. Here
is where heuristic methods excel the parameter initialisation.

To illustrate this, we propose to evaluate the performance
of both models (MLP and DMN) using three synthetic classi-
fication problems: a type XOR problem, a double spiral with
two laps and a double spiral with 10 laps. In particular, the
spirals are difficult problems for MLPs because they tend to
create open decision boundaries with no laps.

The experimental results are shown in Fig. 8. It is clearly
noticeable that in all three cases, the optimisation requires
more iterations in MLPs w.r.t DMNs. We also noticed that
optimisation in DMN is just a process for refining the initial
model, while optimisation in MLP is a more decisive step
because initial models are almost always misclassified. Finally,
the most important observation is that an MLP cannot solve
the double spiral with 10 laps (or more than 10), even though
the decision boundary follows a simple mathematical pattern.
Instead, DMN initialises the decision boundary with a good
approximation by a D&C strategy, allowing the optimisation
step to refine the model after only a few iterations. Of course,
more research is needed to see in which real problems this
would happen. Here, we just pave the way towards this
research.

V. CONCLUSIONS

The main contribution of this paper is that the neural
architecture of a dendrite morphological neuron (DMN) was
extended to be trained by stochastic gradient descent (SGD)
for classification problems. This was made possible by adding
a softmax layer. We proposed and evaluated four different
methods to initialise dendrite parameters at the beginning of
training by SGD. Some of these initialisation methods are
based on heuristic-based training methods which exploit the



geometrical interpretation of dendritic weights as hyper-boxes.
We performed several experiments with standard datasets for
machine learning to compare our approach with previous
training methods for DMN, and with popular machine learning
algorithms, especially with MLP. The experiments show that
our approach trained by SGD systematically obtains better
classification accuracies than the training methods based solely
on heuristics. We show that these heuristics can be useful to
initialise dendrite parameters before optimising them. This is
an advantage over MLP where learning parameters are only
initialised randomly. In fact, we show that DMN can solve
some problems that MLP cannot, or at least, it involves a lot
more work. Furthermore, our results show that these DMNs
trained by SGD can compete with popular machine learning
algorithms like SVM, MLP and RBFN. On average, DMNs
present a better performance than SVM, a similar performance
to RBFN and are inferior to MLP. The advantage is that DMNs
spend lower computational cost because of min and max
operators instead of multiplications. This simplifies the DMN
implementation on micro-controllers and FPGAs. We think
more exploration must be done to improve results in terms
of new neural architectures and optimisation-based training in
DMNs.
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