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Abstract—Artifacts such as voluntarily and involuntarily mus-
cle movements are usually seen as a source of noise in EEG
signals. In this paper, we see artifacts as a source of information
in a signal. For example, eye movements can generate a traceable
change in the EEG signals. We use eye movements as an
effective marker for direction of movement. We propose two
experiments for classification of four eye movement directions
(left, right, up and down). In the first experiment, we utilize
feature partitioning method based on J48 decision tree to tackle
the effect of concept drift in the training dataset resulting
from dynamic non-stationarity characteristics of EEG signals.
Afterward, we feed the extracted partitions to three different
classifiers: multilayer perceptron (MLP) (with 10 hidden layers),
logistic regression (LR) and random forest decision tree (RFDT)
respectively, while comparing their classification accuracy. In the
second experiment, we explored an ensemble learning mechanism
as an alternative criterion to deal with the dynamic nature EEG
signals. We trained the last three classifiers simultaneously on
each training example, followed by a voting method to determine
the dominant class label. The ensemble approach increased
classification accuracy from 86.2% in the first experiment to
90.1% in the second.

[. INTRODUCTION

Brain-computer interfaces (BCIs) are changing the com-
munication theme between humans and machines. With the
opportunity of controlling computers using a form of thoughts,
the technology can be considered as the future of human-
computer communication that enables the computers to un-
derstand and respond to the human mind’s cognitive state. A
brain-computer interface can be defined as a system that aims
to reinterpret the output of the central nervous system (CNS)
in order to replace, restore, enhance, supplement or improve
the interactions with the internal or external environment [1].
To intercept the output of the CNS, BClIs utilise two primary
methods. First, invasive methods, which work by surgically
implanting electrodes in the target tissue for recordings, such
as brain tissue or muscle tissue. Second, non-invasive methods,
which are based on recording CNS activities without implant-
ing electrodes inside the target tissue.

Electroencephalography (EEG) is one of the most appli-
cable, non-invasive methods utilized by BCI applications to
record brain electrical activities [2]. EEG works by placing
electrodes on the scalp that can detect and record electrical
potential reflected from neurons firings in the brain surface
tissue [3]. The EEG signal spectrum consists of five basic
bands [4]: delta waves (0.5-3.5 Hz) usually generated during
deep-sleep in adults, Theta waves (3.5-7.5 Hz) associated
with drowsiness or idling, Alpha waves (7.5-12 Hz) reflecting

cognitive relaxation such as thinking of something peaceful
with eyes closed, Beta waves (12-30 Hz) generally associated
with active thinking and Gamma waves (30-100+ Hz) repre-
senting the highest frequency that can be recorded from brain
activity. Gamma waves are associated with memory matching
activities.

Signal analysis techniques for EEG utilize various methods
such as event-related potentials (ERPs), frequency-domain
analysis or time-domain analysis. These methods were sum-
marized by [5] into four groups: first, P300 evoked potentials,
which is a positive potential generated about 300ms after a
subject is exposed to specific stimuli such as a flashlight.
Second, Steady State Visually Evoked Potentials (SSVEP),
reflected from visual stimulation at specific frequencies. When
the retina is excited by a visual stimulus with a specific
frequency, the brain generates electrical activity at the same
(or multiples of) frequency of the visual stimulus. Third, Slow
Cortical Potentials (SCP) commonly referred to as brainwaves
(alpha, beta, mu, and gamma rhythms). These rhythms involve
the synchronisation of a ring of large numbers of neurons
and are associated with changes in the state of consciousness
such as attention and sleep. Fourth, Sensorimotor Rhythms
(SMR), they are oscillations [8-12] Hz and [18-26] Hz in
the EEG recorded signals over the sensorimotor cortices. The
sensorimotor cortices are an area of the cerebral cortex which
is involved in the processing of sensory information, planning,
control, and execution of voluntary movements.

Control BCIs have wide potential applications. On the one
side, it can help people suffering from movement disabilities to
interact with their environment by intercepting their sensory-
motor electrical activity and decoding into control commands
for control [6]. On the other side, it can be used to augment
the human’s controlling capabilities with additional resources,
such as controlling a robotic arm or a drone only by thoughts
[7].

There are many challenges for the development of reliable
EEG-based control BCIs such as low signal-to-noise ratio,
non-stationarity, training phase can be demanding for subjects
and high dimensionality [5]. The feasibility of any classifica-
tion method of EEG signals can be significantly affected by its
ability to deal with these challenges. Accordingly, we took into
consideration the need to deal with the dynamic nature of EEG
signals during the design of our classification experiments.

Literature used to deal with eye movements and eye blinks
as pervasive sources of noise that affect the quality of EEG
signals. However, we find eye movements a rich source of



information that can be useful for EEG control BClIs. In this
paper, eye movements are used as an effective indicator of the
direction of movement to develop an EEG-based control BCI.

The main contribution of this paper can be summarized in
three main points. First, it proposes eye movements as an infor-
mation marker for the movement intention, that can be used
in EEG-based BCI applications. Second, it selects effective
EEG features that can provide sufficient discrimination for the
direction of eye movements. Finally, it introduces two classi-
fication methods that can classify direction of eye movements
from EEG signals with high classification accuracy.

The rest of this paper is organized as follows: Related Work,
introduces the literature in the field of EEG-controlled BCI;
Experimental design, describes the design and flow of the
experiment used to collect the data; Methods, illustrates the
EEG data pre-processing and processing procedures; Discus-
sion, explains the research findings; finally, the conclusion
summarizes the findings and indicates directions for future
work.

II. RELATED WORK

An algorithm for game control was introduced in [8], the
authors focused on the alpha rhythm as an indicator for
attention along with Electrooculography (EOG) signals that
come from four electrodes placed around eyes to identify
movements and blinks. Authors hypothesized that the identifi-
cation of eyes state in terms of movements or blinks can give
insights on the level of subject’s attention. Wireless hardware
for measuring EEG and EOG signals was proposed. Through
estimating the sight angle of the subject using EOC, the
proposed architecture could identify the movement direction
with an average accuracy of 96%.

A hybrid BCI from EEG and electrooculography (EOG) was
introduced in [9]. Authors used continuous wavelet transform
(CWT) to detect the time domain characteristics for five eye
movement classes (left, right, up, down and centre). The exper-
imental design involved five subjects (4 males and 1 female)
with an average age of 26.2 years. During the experiment, the
subjects were asked to move a ball centred on the screen to the
four basic directions using their eye movements and to change
the colour of the ball by eye blinks. The experiment involved
10 runs per each subject, divided into 2 settings: 5 runs with
the eye open and 5 runs with eye closed. Each run takes 60
seconds to execute, starting by 10s for fixation on the centre
of the screen, then 10 trials to move the ball in four directions
(up, down, right and left) each trial takes 4s, then the last 10s
the subject is asked to blink his eyes three times to change
the colour of the ball from white to yellow. In the eye closed
runs, the subject is directed to imagine the needed movement
direction using voice commands. The results summarized over
both settings showed an average 95% of classification accuracy
for left, right and centre commands and 50% for up and
down based on an experiment of controlling a 2D computer
game. The authors designed the game to be controlled by three
eye movements commands (left, right and stop) probably to
overcome the low classification accuracy of Up and Down
commands by the proposed algorithm.

While utilization of EOC sensors can increase the accuracy,
it limits the real-life application for disturbing the subject as
it requires placing electrodes around the eyes to detect facial
muscle movements.

A 2D game was designed by [10] to help people with severe
disabilities to control mouse and keyboard of a computer.
The mu rhythm sometimes called signal rhythm was utilized
to identify the movement potential. It can be observed in
the central derivations of the motor band, C3, and C4 of
the international 10-20 electrode location system. Authors
used Butterworth filtering followed by FFT to prepare the
signal that comes from 4 channel EEG device with recording
periods lasting 1000ms every 125ms. The proposed algorithm
used thresholds learned through a training phase to identify
three basic movements Up, Down and No Movement. The
experiment done on 4 subjects showed a minimum accuracy
of 80% and a maximum of 92.6%. Although the proposed al-
gorithm achieved high classification, it depends on thresholds
acquired from initial training phase. Due to the non-stationary
characteristic of EEG signals, the thresholds values can deviate
from its learned configuration over time, a situation that will
cause a decrease in classification accuracy.

A game control BCI was introduced in [11]. It is based on
Steady-State Visual Evoked Potential (SSVEP) of the signal.
SSVEP working procedure is based on demanding the user to
focus on a visual stimulus that flickers at a sufficiently high
rate, which will drive the individual transient visual responses
to overlap, resulting in a steady state signal observable mostly
in the occipital area [12]. During the game, a flickering
stimulus was shown on the left bottom corner of the screen,
every 2 seconds a movement option will be shown to the user
(right, left, up or down) to select a specific option. The user
has to focus on the stimulus, so SSVEP can be detected on the
EEG signal. To robustly detect the presence of SSVEP signal,
authors adapted an approach by An Luo and Thomas Sullivan
[13] called Stimulus-Locked Inter-trace Correlation (SLIC).
This approach determines the presence of SSVEP signal in
the time domain based on correlation analysis of independent
components (ICs) of the time window. The SSVEP is an
effective method for building BCIs, however, it has a limitation
as it needs to provide the control interface with a separate
graphical user interface (GUI) for the visualization of the
flickering effects. For example, if the SSVEP BCI objective is
to control a game, the game interface will need to adapt the
GUI for flickering effects visualization.

Among different BCIs methods, P300-based BCIs [14] are
very common. a P300-based BCI is working by making
the subject face a screen on which visual events, used as
stimuli, appear at specific locations. The subject can target
any of the screen’s locations by focusing on or counting the
visual stimulus (e.g., flashes or changes in color and size)
on this location. that occur there. This strategy will result in
detection of the target location as it will generate a higher
amplitude P300 than untargeted locations. Then the command
represented by the target location is executed.

Mugler et al. [15] proposed a BCI for controlling a web
browser based on P300 ERP. The proposed BCI was tested
on 10 healthy subjects and three subjects with paralysis. The



design of the browser was implemented based on Mozilla’s
Firefox. The EEG data was recorded using an EEG-Cap with
16 channels. During each trial, the web page’s links were orga-
nized in way symmetric to P300 speller pattern. Classification
of P300 ERPs was done using step-wise linear discriminant
analysis (SWLDA) algorithm implemented in Matlab. The
average classification accuracy for healthy subjects was 90%
and for paralyzed subjects was 73%. Although the proposed
methodology achieved reasonably high classification accuracy,
but authors did not show how their proposed classification
methods can adapt with dynamic nature of EEG signals.

In the BCI-controlled game (MindGame) poropsed by Finke
et al. [16], the subject moves an object from one location to
another on a 3D game board. The magnitude of the object’s
movement depends on the magnitude of a P300 classifier
output, with a stronger ERPs to target flashes leading to larger
movements and the faster achievement of game objectives,
which is to move a set of objects to a preplanned set of loca-
tions on the board . In opposite to common P300 BCI spellers,
the visual stimuli are not organized in cross-wise (rows and
columns) but, they were organized one at a time. Principal
component analysis (PCA) was utilized for dimensionality
reduction and Fisher discriminant analysis (FDA) classification
was applied to averaged, single-trial data.The authors reported
a 66% of average classification accuracy.

In Brain Invaders BCI game [17], participants can destroy an
alien invader by concentrating on him. The placement of aliens
on The second experiment’s classification accuracy ercentage
using ensemble learning classification per each subject.the
screen was in two settings: grid or arbitrary. The movement
of aliens was symmetric to the original Space Invaders arcade
game layout. The target alien is marked with a change in
color and enlargement of size stimulus, for other aliens, only
the brightness is increased. The selection of target aliens
was done randomly by the game software. If the target alien
was destroyed from the first trial, it will be removed from
the screen. Otherwise, the game continues, until either the
target alien or all aliens are destroyed. The EEG data was
spatially filtered using the xDAWN algorithm [18], then a
Linear discriminant analysis (LDA) was used for classification.
The game required a calibration phase for 3 minutes.

P300 is an effective BCI method however, it requires the
subject to focus on a screen to be able to parse the target
command, which may be impractical for some real world
applications such as controlling a wheelchair because the
subject will have to focus on his way.

It can be noticed that there is a need to design an EEG-based
BCI that can be adapted with better user comfort, minimum
changes on the current application/system to be controlled
and to be agile to the non-stationarity characteristic of EEG
signals.

Eye movements cause variations in the EEG signal, es-
pecially in the frontal cortex. While it is widely considered
an artifact by the majority of the literature, we claim that
eye movement can serve as an invariant marker to the user’s
intended direction of movement from EEG signals. In the
following section, we introduce our EEG experimental design
that is based on user’s eye movements as an indicator of the

intended direction of movement in four basic directions left,
right, up and down respectively.

III. EXPERIMENTAL DESIGN
A. Hypothesis

Eye movements will pose a detectable change on EEG
signals that can be used as an indicator for the intended motor
direction from four basic directions of movements: left, right,
up and down.

B. Data Acquisition

EEG recording was done by MindMedia™ QEEG device
NeXus-32. The configured sampling rate is 2048Hz for 19
channels. Serial port communication was used to send EEG
raw data to the experiment’s PC for processing. This machine
is running two applications. The first application controls the
experiment flow including generating a new experiment profile
for the subject, generating a task execution plan randomly,
executing each experiment’s task and saving the EEG raw data
for each task. The second one is responsible for monitoring
and visualizing the EEG signal quality for all electrodes.
Figure 1 shows a photograph of the experimental environment.

Figure 1: A photograph representing the experimental environ-
ment. The subject is placed by 80cm from the experiment’s
screen (on the left side). The second (on the left side) screen
was used to continuously monitor the electrodes signal quality.

C. Task Design

Two basic tasks were executed during the experiment: the
baseline task and the eye movement task.

During baseline task, the subject was asked to close his/her
eyes for 2 minutes and focus on his/her breathing then open
his/her eyes for 2 minutes and relax by focusing on a white
sheet.

While in eye movement task, which last for 6 seconds, the
subject focused on a screen showing a cross shape with vertical
and horizontal bars. In the middle of the screen, there is a
black spot. At the beginning of task’s execution, the subject
was asked to focus for 2 seconds on the black spot until a
direction is randomly selected by the experiment’s application.
When a direction, which is divided into 8 equally sized and
spaced dimmed bars, is selected its bars start to be illuminated



one by one till it reaches the edge of the screen. This takes 4
seconds. The subject is asked to move his/her eyes with the
illuminated bar without moving his/her head or blinking.
Each experiment session consisted of 60 eye movement
tasks with 15 tasks for each direction left, right, up and down
respectively. Figure 2 illustrates the task’s layout design.

Figure 2: Eye movement task’s layout design. At the middle,
there is a cross shape. Each direction’s branch consists of 8
bars that are illuminated one by one when the direction is
selected.

D. Sample Size

The experiment’s sample size is 10 subjects (Sm, 5f) who
were recruited on a voluntary basis. All subjects were from the
graduate student community of our university’s campus. The
age range of the subjects was 25+4 years old. All subjects
had no visual or hearing disabilities. The experiment has been
approved by the university’s Human Research Ethics Commit-
tee. We provided each subject with a printed participation and
consent form.

E. Environment

The environment setup procedure for each subject included:
placing the EEG cap on the subject’s scalp, injecting the
conductive gel in each electrode, calibrating the signal quality
of all electrodes and adjusting the distance between the subject
and the screen to be 80cm. This procedure was the same for
all subjects.

IV. METHODS
A. Signal Normalization

The EEG recordings received from the device are offsets.
Equation 1 shows the voltage (1:V') calculation by referencing
to the ear lobe channels (Al and A2).

X(t) = X(t) - 2080 vy —q 2 T (1)

Where X () represents one channel signal on time point t .
After voltage calculation, each channel signal is normalized by
common averaging normalization. FFT algorithm is utilized
to filter out frequencies outside the range [0-42] Hz with
three basic bands utilized: theta [4-8]Hz, alpha [8-12]Hz
and beta [12-32]Hz respectively. Only the first second after

eye movement was considered. Figure 3 shows the signal
normalization progress on a sample from subject 1’s data.
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Figure 3: Preprocessing stages of the EEG signal using a
sample from subject 1 data set. (a) Signal’s raw offsets, (b)
Signal’s normalized voltage, (c) Signal filtered in frequency
range [0-42]Hz.



B. Feature Extraction

Nineteen channels were selected (C3, C4, Cz, F3, F4, F7,
F8, FP1, FP2, Fz, O1, 02, P3, P4, Pz, T3, T4, T5 and T6) to
extract features of eye movement in each trial. For each chan-
nel, we calculate 4 features: Theta-Beta Ratio (TBR) which is
the ratio between average theta band amplitude and the average
beta band amplitude (see Equation 2), Average Theta Power
(ATP), Average Alpha Power (AAP) and Average Beta Power
(ABP). In addition, we have two features that are calculated
over a whole trail period, trapezoid area under the difference
curve between right hemisphere (FP1,F3,F7,C3,T3,P3,T5,01)
and left hemisphere (FP2,F4,F8,C4,T4,P4,T6,02) channels
(D) and trapezoid area under signal average curve over the
19 channels (DD). Therefore, each trial will be represented
by a total of 78 features.

AV G(ThetaAm
TBR = AVG((BetaAmpp)) (2)

C. Feature Selection

For each subject dataset (60 training examples), a J48
decision tree [19] was trained by providing a training example
that consists of 78 feature vector and the assigned class label
representing the direction of movement. Implementation of the
decision tree was done using the WEKA data mining toolkit
[20]. Ranking for all selected features among the 10 trained
J48 decision trees (one per each subject) was performed by
calculating the occurrence of each selected feature across all
trees. Results of feature selection phase showed that TBR
features had the highest ranking overall features, so we use
TBR features only in the classification phase. Table I presents
the ranking results indicating that TBR features accounted for
approximately 90% of the selected features by the J48 decision
trees.

Table I: Final feature ranking across all the trained J48
decision trees.

Feature | Rank  Occurrence (%)
TBR 1 87.59
ATP 2 4.14
ABP 3 2.76
D 4 2.76
AAP 5 2.07
DD 6 0.69

For further investigation of the effectiveness of TBR fea-
tures, Figure 4 shows topographical heat maps of the average
TBR values for the 19 selected channels per each direction
trials (15 trials per each direction) for subject 1. The maps
provide a visual prove of the discrimination ability of TBR
features that is identified by four different patterns that can be
clearly noticed from the graphs.

D. Experiment 1

As a preprocessing step, we partitioned each subject’s
dataset samples (training and testing) in a way that makes
each partition has the same statistical distribution of the feature
vector and the same class label. The partitioning phase en-
hances the discrimination ability of the classifier in the case of

TBR Left

Figure 4: Topographical heat maps of the average TBR over
the 19 selected channels for subject 1. (a) Left and Right eye
movement trials, (b) Up and Down eye movement trials

introduction of signal’s concept drift [21]. This phase utilizes
an unpruned J48 decision tree to aggregate similar observation
into a partition according to its likelihood probability [22].
After this initial step, we applied three different classifiers:
multilayer perceptron (MLP) (with 10 hidden layers), logistic
regression (LR) and random forest decision tree (RFDT).
All classifiers run with cross-validation with 10 folds. The
classifiers were implemented with WEKA toolkit. Table II
summarizes the results according to classification accuracy
percentage for each subject.

Table II: The first experiment’s classification accuracy percent-
age across three classifiers summarized per each subject.

Subject | MLP(%) LR(%) RFDT(%)

1 86.6 86.6 88.3
2 81.6 80.0 81.6
3 93.3 93.3 93.3
4 81.6 80.0 78.3
5 81.6 83.3 83.3
6 83.3 83.3 83.3
7 90.0 90.0 85.0
8 91.6 91.6 91.6
9 86.6 86.6 86.6
10 88.3 90.0 88.3

AVG 86.45 86.47 85.96

STD 4.3 4.7 4.6

The average achieved accuracy for the three classifiers was



86.45%, 86.47% and 85.96 respectively across all subjects.

E. Experiment 2

As an alternative classification method that is adaptive to
non-stationarity of EEG signals, we utilized ensemble learning
concepts [23]. Using an ensemble of models can reduce
the impact of non-stationarity of the data by validating the
classification through voting over different learning hypothesis
proposed by ensemble’s models. Therefore, an ensemble of
models can provide a level of adaptability for dynamic changes
in the input data. Accordingly, for each subject’s dataset, we
divided samples into 80% for training and 20% for testing. For
each training example, we separately trained three classifiers:
multilayer perceptron (MLP) (with 10 hidden layers), logistic
regression (LR) and random forest decision tree (RFDT)
respectively. During the testing phase, we take a voting for
the dominant class label over the three classifiers estimates.
Table III summarizes the percentage of classification accuracy
for each subject.

Table III: The second experiment’s classification accuracy
percentage using ensemble learning classification per each
subject.

Subjects | Classification Accuracy (%)
1 90.0
2 86.0
3 92.0
4 86.0
5 89.0
6 88.0
7 94.0
8 92.0
9 91.0
10 93.0
AVG 90.1
STD 2.8

Through this method, we achieved an average classification
accuracy of 90.1% across all subjects.

V. DISCUSSION

The utilization of decision trees in the feature selection
phase enabled us to locate the group of features that better
discriminate between target class labels. Moreover, averaging
the feature ranking over the ten trained decision trees gives us
the best set of features that achieved high discrimination ability
among the ten subjects involved in the experiment, which will
be more invariant to changes in EEG signals between subjects.

In the first experiment, the partitioning preprocessing phase
enables deviating the effect of concept drift in the training
samples. By grouping similar samples that share the same
probability density, which may vary between training samples
over time due to non-stationarity of EEG signals, and target
class into the same partition. This way of grouping enables
the classification method to focus on the joint probability
between the input feature vector and target class label, which
is invariant over time. The effectiveness of this concept was
proved by testing the accuracy of the three deployed classifiers,
which tend to be feasibly high comparing to literature.

During the second experiment, the dependency on ensemble
learning concept enabled the three deployed classifiers to share
the discrimination abilities which depend on the mathemati-
cal model of each one [24]. Despite using a simple voting
technique, the effectiveness of ensemble learning in adapting
to non-stationarity of EEG signals was apparent from the
classification accuracy achieved by cooperation of the three
involved classifiers. A possible drawback of such methods
is the additional computation and space complexity resulting
from training multiple classifiers simultaneously. However,
this could be handled through utilizing parallel processing us-
ing graphics processing units (GPUs) which showed promising
breakthroughs in training machine learning algorithms [25],
[26], [27], [28].

VI. CONCLUSION

This paper proposed two methods for classification of four
directions of movement (left, right, up and down) based on
eye movements using EEG signals. We implemented a feature
selection method using a J48 decision tree to find the highly
ranked features across all subjects in terms of ability to
discriminate between the four classes of our experiment.

Based on our feature selection method, we found that TBR
features have the highest discrimination rank for analysing
visual tasks based on EEG signals. This means that it can be
used to sense and analyse cognitive state in BCI applications
that include similar kind of tasks.

In the first classification method, we utilized a partitioning
pre-processing phase using a J48 decision tree , then we
applied three classifiers multi-layer perceptron, logistic regres-
sion and random forest decision tree. An average classifica-
tion accuracy of 86.45%, 86.47% and 85.96% was achieved
respectively across all subjects.

In the second method, we adapted ensemble learning con-
cepts. We trained each of the three classifiers in the first
analysis method on each training example separately then,
we utilized voting technique to find the dominant class label
over the three classifiers estimates. The average classification
accuracy for this method was 90.1%.

Comparing our methodology with literature, our methods
are more applicable for two basic reasons. First, it depends
on eye movements an indicator for the direction of move-
ment, which has a clear detectable invariant effect on EEG
signals rather than imaginary motor indicators. Moreover, eye
movements are less demanding on the subject and require
no additional modifications to the interface of the application
under control rather than alternative methods such as SSVEP.
Second, depending only on EEG electrodes is less annoying
to the user comparing to electrooculography (EOG) methods
that require placing EOC electrodes on user’s face to track the
eye movements.

Future work will be to close the loop by integrating one of
our classification methods with an application to control such
as computer game or a robot.
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