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Abstract—DIRECT is known for balancing the exploration
and exploitation of a search space. This paper seeks to explore
the improvement of diversity among solutions through the use
of qualitative indicators in multi-objective DIRECT framework.
Three different indicators - Hypervolume (HV), Epsilon (EPS),
R2 indicators are used in this study. The three variants of indi-
cators are tested on the Black-box Multi-objective Optimization
Benchmarking (BMOB) Platform. The results are presented and
some insights in the choice of selection operator are provided.
Overall, HV indicator performs the best followed by R2, then
EPS. EPS indicator performs worse than HV and R2 in uni-
modal problems. Also, HV indicator achieves notably better
results at high dimensions. R2 performs better than EPS in non-
separable problems.

I. INTRODUCTION

Multi-objective optimization problems (MOPs) are often
modeled as black-box problems because the actual optimal
solution in real life applications is almost always unknown.
Most of the time in reality, we often settle for an approximate
solution that is better than the rest of the solutions. Unlike
single objective problems, where the best solution is the
solution with minimum objective value (in the case of a
minimization problem), the best solution in MOPs can not be
determined as easily. Due to the conflicting objectives, MOPs
have a set of optimal solutions instead of a single best solution
because one cannot conclude if solution 1 is better or worse
off than solution 2, if solution 1 has a higher value in objective
1 and lower value in objective 2 compared to solution 2. The
ultimate best solution is dependent on the preference of the
user. In a bi-objective problem, the set of solutions can be
compared through a visualisation of their objective values in a
2D plot easily. However, in a many-objective problem, this can
not be done as easily. In order to compare solutions, there is a
need for us to measure the quality of solutions quantitatively
to find out which solutions are better than the rest.

There are various qualitative indicators [1] that seeks to
measure the quality of the solutions such as HV, EPS,
generational distance, error ratio. Up to today, there is no
clear indicator that is deemed superior to the others. On
the other hand, there are studies [2], [3] that analyzes the
correlation between these indicators, studying the similarities
and differences. Six indicators, generational distance, EPS,

spread, generalized spread, inverted generational distance and
hypervolume were studied in [2]. The authors conclude that
the six metrics show high consistencies when Pareto fronts are
convex and certain contradictions on concave Pareto fronts.

With the surge of these indicators, the idea of using these
indicators as selection operators too emerged. Popular metrics
that were used include HV in HypE[4] and SMS-EMOA[5]
and R2 in R2-EMOA[6] and R2-IBEA[7]. The metric EPS
is also used in combination with HV in FV-EMOA [8]. HV
returns a positive value of a non-dominated solution based on
all the objectives and its neighboring non-dominated solutions,
providing an accurate indicator on the diversity of all non-
dominated solutions. Moreover, it has been previously verified
that HV-based algorithms do perform better than classical
methods experimentally [9].

Almost all, if not all, indicator-based algorithms were imple-
mented in Evolutionary Algorithms (EAs). With the growing
interest in mathematical-based algorithms, known for their
mathematical tractability and convergence, we look to imple-
ment the use of qualitative indicators in mathematical-based
algorithms such as MO-DIRECT [10]. Previously, the HV
indicator has been implemented in the MO-DIRECT frame-
work [11] and displayed better results than classical strategies.
HV, despite performing well, requires a large computational
time, which increases with the dimensions of the problem.
Therefore, in this study, we extend the use of indicators in the
MO-DIRECT framework [10] to the EPS and R2 indicator.
These variants would be tested on the BMOB platform [12]
and the results would be analyzed.

The rest of the paper is organized as follows. Section II
briefly introduces the three indicators (HV, EPS and R2). Sec-
tion III provides the background on MO-DIRECT framework.
Section IV-A provides details on the experimental setup and
the test suite. Section IV-B analyzes the results generated from
the experiment. Section V provides a conclusion and some
suggestions for future work.

II. QUANTITATIVE INDICATORS

This section briefly introduces the three indicators that has
been chosen as selection operators for MO-DIRECT and how



they are implemented. Section II-A, II-B and II-C will cover
the HV, EPS and R2 indicators respectively.

A. Hypervolume (HV) indicator

nadir

A

B

C

D

Fig. 1. Illustration of HV calculation

The HV indicator utilizes the nadir point of the optimal
Pareto front as a reference point and calculates the amount
of area that the set of solutions cover as illustrated in Figure
1. The bigger the area, the better the set of solutions. Thus,
the bigger the value of the HV indicator, the better the set
of solutions. In Figure 1, the value of hypervolume of all the
solutions (A,B,C,D) is given by the combination of the shaded
area (both blue and yellow).

However, in order to use the HV indicator as a selection
operator, we require the HV contribution of each solution. We
illustrate an example in Figure 1 as follows. To obtain the HV
contribution of a solution (B), the HV of the set of solution
excluding the solution (A,C,D) would be calculated, giving us
the yellow area. This area would then be subtracted from the
value of HV of the whole set (blue and yellow), giving us
the HV contribution of the solution B in blue. Applying this
concept on all the solutions would give only non-dominated
solutions positive values of HV. All dominated solutions would
be given a value of zero.

As the nadir point is unknown in a black-box optimization,
it is estimated using the maximum value of the approximate
set of solutions on the Pareto front, where its value is 110%
of the value of the maximum value of each objective.

B. Epsilon (EPS) indicator

The EPS indicator used here is the unary additive EPS
indicator, which requires a reference set to compare the
approximate set of solutions. In a set of solutions, the value
of EPS indicator is calculated as follows

eps =
B

max
i=1

A
min
j=1

nObjs
max
k=1

(approx(j, k)− ref(i, k)) (1)

where eps is the scalar EPS indicator, B is the number of
points in the reference set, ref , A is the number of solutions

in the approximate set, approx and nObjs is the number of
objectives.
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Fig. 2. Graphical illustration of EPS calculation of each solution in the
approximate set

In order to calculate the EPS value of each solution, the
approx is replaced with the solution instead. Figure 2 illus-
trates a simple example of EPS calculation graphically. In this
2-objective problem, the reference set is made up of 3 points
(indicated by the circles) derived from the ideal and nadir
points. The approximate set is made of the solutions A,B,C,D.
Taking into consideration one solution (of the approximate set)
at a time, the EPS value takes the maximum distance from
the solution to the reference set, considering each objective
separately. This in turn returns us the EPS value of 5,3,4,5 to
solutions A,B,C,D respectively. The solution with the smallest
EPS value is closest to the reference set, hence the best
solution in the approximate set.

In a black-box optimization, the values of reference set,
ideal and nadir points are unknown, thus they have to be
estimated. The nadir point is estimated using the maximum
value of the approximate set of solutions, where the nadir
point is 110% of the value of the maximum value of each
objective. The ideal point, on the other hand, is estimated using
the minimum value of the approximate set of solutions, where
the ideal point is 90% of the value of the minimum value
of each objective. The reference set is then built based on the
nadir and ideal point, where the ideal point is one of the points
on the reference set and the other points are created through
switching the value of one objective of ideal point with the
nadir point. For example in the problem illustrated in Figure
2, the ideal point is (0,0) and the nadir point is (6,6). The
reference set would consists of (0,0) (ideal point), (0,6) and
(6,0) (through the switching of points).

C. R2 indicator

The R2 indicator uses a set of weights that reflects the
relative importance of each objective. The weights can be
adjusted based on the preference of the user. In this case, we



vary the weights from 0 to 1 for each objective with equal
increments, consisting of different combinations.

R2 first calculates the distance of each solution from the
ideal point, then utilizes the different combinations of weights
to generate a set of different values that measures the minimum
distance from the set of solutions to the ideal point. From this
set of values, the average is returned as the R2 value. This can
be formally represented as

r2 =

∑N
a=1(minAj=1 maxnObjs

k=1 (distance ∗weight))

N
(2)

where r2 is the value of the R2 indicator, N is the number of
combinations of different weights in the vector weight, A is
the number of solutions in the approximate set, nObjs is the
number of objectives and distance is a vector consisting the
distance between each solution in the approximate set and the
ideal point.
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Fig. 3. R2 calculation

For example, given the weights for objective 1 and 2 in
Figure 3 is 0.5 each, the value for this set of weights would
be 1.5 (0.5 ∗ 3 coming from solution B).

R2 contributions of each solution, however is computed
differently. The R2 contribution of a solution is essentially, the
sum of the set of values that measures the minimum distance
from the set of solutions excluding the solution to the ideal
point. This is formally represented as

r2p =

N∑
a=1

(
C

min
j=1

nObjs
max
k=1

(distance ∗weight)) (3)

where r2p is the value of the R2 contribution of solution p, N is
the number of combinations of different weights in the vector
weight, C is the number of solutions in the approximate set
excluding solution p, nObjs is the number of objectives and
distance is a vector consisting the distance between each
solution in the approximate set (excluding solution p) and the
ideal point. Therefore, the greater the value of R2 contribution,
r2p, the better the solution p is.

Similarly, the ideal point is estimated using the minimum
value of the approximate set of solutions, where the ideal point
is 90% of the value of the minimum value of each objective.

III. MO-DIRECT FRAMEWORK

Section III-A first explains the paritioning procedure of
hyperrectangles used in MO-DIRECT. Then, Section III-B
provides the framework of MO-DIRECT. Finally, Section
III-C proposes a formal algorithm to implement the different
indicators.

A. Partitioning Procedure

MO-DIRECT starts with the whole solution space as a
single hyperrectangle, sampling the point in the centre. Then,
it follows a unique partitioning procedure to split the solution
space into smaller hyperrectangles. MO-DIRECT first samples
2 points in each dimension of the problem such that the 3
points (including the initial center point) in each dimension
is equally spread out. After all the points are sampled, the
algorithm divides the solution space equally into one-thirds
one dimension at a time, starting with the dimension with the
lowest value of

wj =
1

mink∈{1,−1} ||f(ci + k · δ · ej)− f(ci)||
, (4)

where wj represents the inverse of spread/diversity between
the newly sample solution and the original solution. The
measure of diversity is measured using the minimum distance
between the objective values of a newly sampled solution
f(ci + δ · ej) and the original solution f(ci). The partitioning
then continues to the dimension with the highest wj .

In other words, a hyperrectangle is divided such that the
biggest produced hyperrectangles contain the distant solutions
from that of the hyperrectangle, increasing the likelihood of
visiting unexplored regions of the function space.

B. MO-DIRECT Framework

The framework of MO-DIRECT provided in Algorithm 1
essentially consists of two parts: the process of selecting
potentially optimal hyperrectangles and dividing them into
smaller hyperrectangles using the partitioning procedure in
Section III-A. In this paper, we focus on the process of
selecting potentially optimal hyperrectangles using different
indicators. Besides the indicators, the size of the hyperrectan-
gles, represented by σi, too plays a role in the selection to
ensure that there is some exploration of the search space. σt
is a parameter that is set by the user, representing the smallest
size the hyperrectangle can get.



Algorithm 1 MO-DIRECT framework adapted from [10]
Input: vectorial function to be minimized f ,

search space X ,
evaluation budget v,
hyperrectangle threshold σt

Output: approximation set of minx∈X f(x), Yv
∗

Initialisation : H1 = {X}
1: while evaluation budget v is not exhausted do
2: Evaluate all the new hyperrectangles ∈ Ht.

Choose potentially optimal hyperrectangles using indi-
cators introduced Section II.
Partition the hyperrectangles in It according to the
procedure outlined in Section III-A using Eq. (4).
Ht+1 ← Ht \ It ∪ {It’s newly generated
hyperrectangles}
t← t+ 1

3: end while
4: return nondominated

(
{f(ci)}i∈Ht

)
C. Indicator-based Algorithm

Previously in [11], it has been experimentally verified
that using HV indicator would reduce the exploratory nature
of MO-DIRECT, hence causing it to be stuck in the local
optimum. To avoid this situation, we propose to use the
MO-DIRECT-hv algorithm [11] and adapt it for the use of
other indicators. The generic algorithm is formally presented
in Algorithm 2. More details on the rank strategy (Line 6)
can be found in [11]. In order to determine when to use the
rank strategy, the indicator value of the whole set is required
in each iteration (t), which is represented by indicatorP,t. In
relation to the previous examples in Section II, HVP,t would
be the total area (blue and yellow) in Figure 1, epsP,t the
value returned by Equation 1 and r2P,t is the value returned by
Equation 2. The indicator value of each solution is represented
by indicatorj . Similarly, HVB would be the area in blue
in Figure 1, epsj the values illustrated in Figure 2 and r2j
returned by Equation 3.

IV. NUMERICAL EXPERIMENTS

A. Setup
The numerical experiments are set up according to [12],

where each algorithm is run on 100 multi-objective prob-
lems categorized over seven groups: low-dimensional, high-
dimensional, separable, non-separable, uni-modal, multi-
modal, and mixed categories.

The procedure for assessing the solution quality of an
algorithm is based on recording its runtime: the number of
function evaluations required by the algorithm for its solution
to reach a specific (target) quality value. The recorded runtimes
are then expressed in terms of data profiles, which capture
various aspects of the algorithms’ convergence behavior. For
more details, one can refer to [12].

B. Results
The results in Figure 4 indicates that the HV indicator

performs the best overall, followed by R2 and EPS indicator.

Algorithm 2 Indicator-based MO-DIRECT

Input: vectorial function to be minimized f ,
search space X ,
evaluation budget v,
hyprrectangle threshold σt

Output: approximation set of minx∈X f(x), Yv
∗

Initialisation : H1 = {X}
1: while evaluation budget v is not exhausted do
2: Evaluate all the new hyperrectangles ∈ Ht.

P ← f(ci) : i ∈ Ht , σi ≥ σt.
3: if size (P) > 2 then
4: Calculate indicatorj : j ∈ P and indicatorP .

It ← nondominated({(indicatorj , σj) : j ∈ P }).
5: if small change in indicatorP,t and indicatorP,t−1

then
6: ranki = nondominatedsort({f(ci) : i ∈

Ht , σi ≥ σt}).
It = nondominated({(ranki), σi) : i ∈ H , σi ≥
σt}).

7: end if
8: else
9: It = P

10: end if
11: return It.

Partition the hyperrectangles in It according to the
procedure outlined in Section III-A using Eq. (4)
Ht+1 ← Ht \ It ∪ {It’s newly generated
hyperrectangles}
t← t+ 1

12: end while
13: return nondominated

(
{f(ci)}i∈Ht

)

The main difference in the calculation of individual indicator
values between HV, EPS and R2 is that HV and R2 considers
the whole set of approximate solutions when calculating
indicator values of each solution while EPS only takes into
account the solution that is being evaluated with respect to the
reference set. By not taking into consideration its neighbouring
solutions, the indicator does not take into account the spread of
the solution set. This may in turn lead selecting many solutions
and wasting evaluations. This is reflected in the overall results
where EPS does not perform as well as HV and R2.

The results are then analyzed following the classification of
problems in terms of

• Modality:
Looking at the uni-modal plots in Figure 6, EPS reflected
the worst performance out of the three indicators. Going
back to how EPS indicator is formulated in Section II-B,
it can be agreed that there is a bias in the selection of
the best solution towards the middle of the Pareto front.
This in turn reduces the probability of finding solutions
at the ends of the Pareto front as EPS would always
indicate the solutions in the middle of Pareto front as
better solutions. When it reaches the real Pareto front



(when change in EPS is small), the algorithm samples
new solutions using the rank strategy instead, leading to
less efficient sampling compared to the other indicators.
On the other hand, a similar data profile is observed for all
indicators in the multi-modal plots of Figure 6. In multi-
modal problems, the spread of solutions tend to be in
clusters, requiring more global search, in other words, the
use of the rank strategy. This in turn reduces the effect of
the comparably less efficient sampling of EPS in search of
solutions at the ends of the Pareto front. Hence, allowing
EPS to perform as well as HV and R2.

• Dimensionality:
In the high-dimensional plots of Figure 6, it can be
observed that HV generally outperforms R2 and EPS in-
dicators. R2 and EPS are distance-based indicators, which
only takes into consideration the distance that has the
maximum distance from the ideal point or reference set in
that particular objective. On the other hand, HV calculates
a more accurate measure, returning the hypervolume con-
tribution of each solution, which takes into account the
distance in every objective in the problem which in turn
provides a more complete representation of the quality of
each solution. The benefits of this increased accuracy is
clearly reflected in high-dimensional problems.

• Separability:
Another observation that can be made in Figure 6 is that
R2 does better than EPS in non-separable problems. Non-
separable problems are problems that are not separable
in their objectives. R2 takes varying weights between
the objectives, hence better able to handle non-separable
problems compared to EPS.

From Figure 6, we also observe that there is a sudden jump
in the proportion of targets met between 102 and 103 in all
plots except for the multi-modal plots. This observation could
account for the change in strategy for selection of potentially
optimal points when the improvement in indicator values for
the set of solutions is small. This, however, is not reflected
in the multi-modal plots as it is more likely for MO-DIRECT
to switch strategy more frequently in multi-modal problems,
allowing a smoother increase in hitting target values.

C. Empirical Runtime Evaluation

In order to evaluate the complexity of the algorithms (mea-
sured in runtime), the algorithms are run on a representative
set of the problems. The empirical complexity of an algorithm
is then computed as the running time (in seconds) of the
algorithm summed over all the problems given divided by
the total number of function evaluations used. The results for
three different evaluation budgets are shown in Figure 5. All
indicators are implemented on the MATLAB platform. HV
is implemented using an efficient method that is provided in
[8]. However, HV still requires a longer runtime due to its
relatively higher complexity in computation, which increases
with respect to the number of objectives.
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Fig. 4. Empirical cumulative distribution function of the observed number
of function evaluations in which the y-axis tells how many of 70 targets -
over the set of problems and quality indicators, have been reached by each
algorithm for a given evaluation budget (on x-axis). Data profiles aggregated
over all the problems across all the quality indicators computed for each of
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Fig. 5. A semi-log plot visualizing the runtime per one function evaluation
(in seconds) of the compared algorithms. All the algorithms were run on a se-
lected set of problems over a set of evaluation budgets, namely BK1, DPAM1,
L3ZDT1, DTLZ3, and FES3; with an evaluation budget ∈ {10, 100, 1000}
per problem on a PC with: 64-bit Windows 7, Intel(R) Xeon(R) CPU E5-
1650@ 3.20GHz with 1 processor and 6 cores

V. CONCLUSION

Different indicators are implemented as selection operators
in a deterministic algorithm, using the MO-DIRECT frame-
work. This allows a fair comparison between the use of
selection operators.

With the results, we are not able to clearly conclude which
indicator is best suited as a selection operator. However, we
are able to gain several insights on the MO-DIRECT and the
selection operators. Firstly, indicators (HV, R2) that takes into
consideration the whole approximate set of solutions tend to
perform better. EPS indicator performs worse than HV and
R2 in uni-modal problems. HV indicator performs better than
others in high dimensions. Also, R2 performs better than
EPS in non-separable problems. Last but not least, the results



too illustrate how the proposed indicator-based MO-DIRECT
searches.

Through running these variants of indicator-based
MO-DIRECT on BMOBench, some general trends were
found. However, in order to gain deeper insights and validate
the current insights, a study that allows the visualisation
of Pareto front, similar to [13], has to be performed.
Additionally, in order to get a better idea which indicator is
a better selection operator, the experiment has to be run on a
greater evaluation budget.
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Fig. 6. Empirical cumulative distribution function of the observed number of function evaluations in which the y-axis tells how many of 70 targets - over the
set of problems and quality indicators, have been reached by each algorithm for a given evaluation budget (on x-axis). Data profiles aggregated over problem
categories for each of the quality indicators computed. The symbol × indicates the maximum number of function evaluations.


