
Broken Bikes Detection Using
CitiBike Bikeshare System Open Data

Rémi Delassus∗†, Romain Giot†, Raphael Cherrier∗, Gabriele Barbieri ∗ and Guy Mélançon†
∗QUCIT, parc Newton, 213 cours Victor Hugo, 33130 Bègles, France
†Univ. Bordeaux, CNRS, LaBRI, UMR 5800, F-33400 Talence, France

Abstract—It seems necessary to detect a broken bike rooted at
a station in near realtime as the number of bikes within bikeshare
systems has reached more than a million in 2015. Indeed, a bike
that cannot be moved is not cost effective in terms of number
of trips. This brings frustration to users who were expecting
to find a bike at that station without knowing that it is actually
defective. We thus propose a methodology from feature extraction
to anomaly detection on a distributed cloud infrastructure in
order to detect bicycles requiring a repair. Through a first step
of K-means clustering, and a second step consisting of spotting
samples that do not clearly belong to any cluster, we separate
anomalies from normal behaviors. The proposal is validated on
a publicly available dataset provided by Motivate, the operator
of the New-York bikeshare system. The number of distinct bikes
that have been classified by this algorithm as broken at least
once during a month is close to the number of repairs given in
monthly reports of Motivate.

I. INTRODUCTION

Bikeshare systems generally refer to a set of stations,
maintained by an operator, within a city in which bikes can be
picked up and dropped off. As of 2015, more than one million
bikes have been shared within more than 700 bikeshare systems
worldwide [1]. Each one of those bikes has been heavily used,
traveling up to an average of ten times a day in Barcelona as
reported by Bikesharing Napoli [2]. The high number of bikes
as well as the high usage level make breakdowns very likely to
happen. Hence, many bikes are broken, waiting to be repaired,
immobilized in a station.

This is so common that bikeshare users have picked up
the habit of turning the saddle backwards when encountering
a broken bike, thus signaling to others that it is not worth
renting [3]. Thanks to this personal investment, other users
avoid waisting time on renting and returning unusable bikes.

In the city of New York, although CitiBike’s maintenance
staff regularly performs roundtrips to inspect each bike’s state,
an alert system has been setup. Each dock has a button that can
be pressed in order to alert that the docked bike is broken [3].
The need for such a system proves that rounds are not efficient
enough and operators are aware of it.

Bikes are repaired on site whenever possible (for example
when the tire is deflated). Otherwise, the maintenance staff
picks up the faulty bike and brings it to a specialized workshop
that will fix it.

In a previous work, we have shown that as a bikeshare
system sees its number of stations doubled, the number of bike
trips is multiplied by three [4]. Therefore the number of trips
in an expanding bikeshare system grows fast, implying that the

number of failures and the number of users wanting to rent a
bike will also quickly grow. This leads to a greater number of
frustrated users that are in a situation where the only available
bikes are broken.

To overcome this problem, we propose a model to classify,
for each day, the status of a bike, deciding if it needs repairing
or not. Our classification would let maintenance staff know
whether a bike needs to be repaired so they could optimize their
rounds. Moreover, it could be used within mobile applications
where users can plan their trips, displaying the number of bikes
not only available, but also usable.

The originality of our study relies on the fact that it is
bike centered. This means for example that if a broken bike
stays immobile a long time in a station, it is more relevant
to study the fact that the bike is not moving rather than the
fact that the station is not emptying. In order to follow each
bike we work with the New York trips data [5] shared by
Motivate, the company operating the CitiBike bikeshare system.
Most of bikeshare systems operators have a website displaying
the number of bikes and the number of free docks available
at every station, which is used by the users to plan their
trips. Few operators share their trips data (station and time of
departure and arrival of identified bikes) and none of them
share their maintenance data. Motivate exposes nearly three
years of trips [5], along with monthly reports stating, among
others informations, the number of repaired bikes in their
workshops [6]. We propose a machine learning process to
detect broken bikes. First we extract features from the trips
dataset, and then perform an anomaly detection on the extracted
features. At that point we use the data from the monthly reports
as labels. Those labels are an aggregation of the repairs over a
month. Since there is not a one-to-one correspondence between
the features and the labels, but a many-to-one correspondence
between the features and aggregated labels, we face a problem
of Aggregated Output Learning [7].

This paper is organized as follows. Section II presents
the existing work in anomaly detection applied to bikeshare
systems. Section III describes the proposed method, including
the feature extraction and the anomaly detection modules.
Section IV depicts the protocol, such as the parameters
selection and the infrastructure used. Finally sections V and
VI respectively details the results of our method and discusses
its limits.

II. EXISTING WORK

Although Bikeshare systems have been heavily studied [1],
there is a lack of work related to anomaly detection. In an
example of such a proposition [8] Kaspi et al. use the same trips
we are using to simulate the behavior of a station. This study
is thus station centered. A stochastic model is then described.
This model is parametrized by the probability of failure of
bikes which must be known a priori. It is supposed that users
do not rent bikes that are broken, which is only true if there
are other possibilities. This model has not been confronted
to the reality so we cannot know if the assumptions made to
make a model were detrimental.

Bertens et al. defined a co-occurrence anomaly [9] as
two normal events occurring together where they are usually
exclusive. They tried to detect such anomalies in a bikeshare
system. They used rental data as well as weather data.
Unfortunately, the only co-occurrence anomaly they found
was a very rare co-occurrence of low real temperature and high
perceived temperature.

As far as we know, no machine learning algorithm has been
applied to bikeshare systems with the intent of detecting broken
bikes, which is the focus of our work. One explanation for this
lack of studies is that no label is available to train machine
learning models. There is no operator that shares detailed
maintenance data, such as the dates and nature of reparations
of each bike.

However some operators, such as Motivate, share the number
of repairs that occur each month. Musicant et al. [7] described
machine learning models that can use such an aggregated output
to be trained instead of usual labels.

Also, Fanaee et al. [10] explain how without any prior
label, they were able to label events with bikeshare data. But
the events labeled did not occur within the bikesare system.
The bikeshare system is rather used as an event detector and
background knowledge retrieved from Google is used to provide
labels.

III. PROPOSED METHOD

The method can be applied in two independent steps. The
first step consists to extract features from the raw data, while
the next one uses this enhanced and reshaped data to detect
anomalies. A diagram recapitulating the process is presented
in Figure 1.

A. Features extraction

The features extraction step is strongly linked to the available
source of information. So far of our knowledge, only Motivate
proposes data that could be used for fault detection. This data
is an aggregation of the desired labels, which leads us an
Aggregate Output Classification problem.

1) Raw data: We have at our disposal two kinds of data.
(i) The first one is massive and accurate; it describes the

trips done with the CitiBike bikeshare system which can be
downloaded on CitiBike’s website [5]. Each trip is characterized
by heterogeneous data described in Table I. We refer to that
table as the trips dataset.

(ii) The second one is rather small and imprecise. It consists
of a set of monthly reports [6] describing the activities of
both the operator and the users during the month. It provides
various informations such as the average number of daily trips
per bike, the number of users, the respect of the service level
agreement and, the one we use to optimize our model, the
number of bicycle repairs. We refer to that set as the ground
truth dataset. Note that we do not know what happens when
a bike has been repaired twice in a month (does it counts for
one or two bicycle repairs ?). We do not know how bad the
breakage has to be to lead to the bike being picked up by the
maintenance team.

We use the trips dataset to build a set of features and the
ground truth dataset to train and evaluate our model.

2) Extracted Features: This study is not trip centered so it
does not characterize a trip to know if it is a broken bike’s trip
or not. Indeed the lack of trip can be a sign of abnormality.
Instead, it builds a sample per day and per bike, then determine
if at a given day, a given bike was broken or not. For each of
those samples, the tailored features are statistics on the life of
the bike during a given interval of T days. They characterize
the last of those days. By sliding a window of T days for each
bike, several millions of samples are computed. If during the
duration of a window (of period T) a given bike has not been
used at all, then this sample is not created.

The features extracted are as follow: number of trips made,
number of distinct departure stations, number of distinct arrival
stations, number of loop trips (same arrival and departure
station), average distance traveled over the trips, maximal
distance traveled over the trips, minimal distance traveled over
the trips, average duration over the trips, maximal duration
over the trips, minimal duration over the trips.

That means that each sample exists in a 10 dimensions space,
each of those features being one of those dimensions.

Those features are chosen based on three criteria. Firstly,
they are an easy way to aggregate several days of trip for a
bike. Secondly, once the classification has been made, it is
possible to define heuristics to check the coherence of the
classification. For example, a broken bike would not make a
lot of long trips across the city compared to other bikes. Lastly,
the shape of the distribution of each feature is either Gaussian,
or at least with a long tail of outliers events, see Figure 2. This
shape is desirable for anomaly detection since it allows us to
easily separate rarely occurring events from normal ones.

B. Anomaly detection

After the extraction of the features for each dichotomy of day
and bike, it is necessary to classify them into one of the two
categories: normal if the bike is running smoothly, abnormal
if the bike has to be picked up by the maintenance.

Musicant et al. [7] proposed algorithms to perform machine
learning on aggregated outputs such as these. However there
is a major difference with their data that makes their solution
not directly applicable. In their case the aggregated output is
the sum of the output they would normally use. For example,
given a set of five balls, classify each ball as a blue ball or

set

Repairs
count

(ground truth)

Trips
distributed

data

Distributed
extraction

Parameters
sets

Distributed
features

Parameters set
(K, delta)
seletion

K-means
parallel

computation

Last
parameters

set

No

Best
parameters set

selection

Anomaly
detection
parallel

computation

Features extraction

Validation set

Data split
train-test / validation

sets
Distributed process

 Yes

Best
parameters

k_i, δ_i

Grid search

K-means
parallel

computation

Cost function
computation

Anomaly
detection
parallel

computation

Validation

Cross Validation

Training and
testing sets

fold 1

Training and
testing sets

fold 2

Training and
testing sets

fold N
...

Parameters set
(K, delta)
selection

Average error
for each

parameters

Training sets

Fig. 1. Process overview. We can see here the two main distinct processes; first the features extraction creates a features set from raw data. Then the cross
validation process that trains and evaluates the model. During the grid search an error is computed for each parameters set and each fold. An averaged error
over the folds is then computed for each set of parameters and the one with the smallest error is selected. It is then used to perform a classification on the
validation set which are features that have never been used to train the model. The error obtained on the validation set is an indactor of how well our model
can generalize to new data.

TABLE I
RAW DATA DESCRIPTION

Feature Name Description Frequency
Departure location Departure station coordinates Always
Arrival location Arrival station coordinates Always
Departure station Departure station name Always
Arrival station Arrival station name Always
Departure date Departure timestamp Always
Arrival date Arrival timestamp Always
Bike Bike unique identifier always
Birth User birth year When the user is a subscriber
Gender User gender When the user is a subscriber
Repairs Reported repairs number Once a month

a red ball, given that there are 3 blue balls and 2 red balls.
The aggregated output is the sum of balls of a given color.
However, in this work, the aggregated ouptut is the sum of the
repairs that occurred during each month. Thus their method
would be directly relevant if we were trying to classify each
day of a bike’s life as being one where a repair occurred. In
this case, each day classified as a repair day would be counted
and the resulting sum should approach the aggregated output.

But this is not the classification that is performed because
the aim of this work is to classify each day of a bike’s life as a

day where it was broken or not. Since there is no information
if a bike can be repaired several times in a month, or how that
would impact the given number of repairs, it is assumed here
that a bike is only repaired once a month. The aggregation
function used is thus a count of the distinct bikes that have
been classified as broken each month. In consequence, the
algorithms proposed by Musicant et al. can not be used.

The classification methodology is done in two steps. (i) First
step consist in computing a clustering that separates the features
in different groups representing different normal behaviors of a

0 10 20 30 40 50 60 70 80 90
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
number of trips

0 10 20 30 40 50 60 70 80
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
number of distinct departure stations

0 10 20 30 40 50 60 70 80
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
number of distinct arrival station

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6
number of loop trips

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18
average distance in km

0 2 4 6 8 10
0.00

0.02

0.04

0.06

0.08

0.10
max distance in km

0.0 0.5 1.0 1.5 2.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
min distance in km

0 200 400 600 800 1000 1200 1400 1600
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
average duration in seconds

0 1000 2000 3000 4000 5000
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
max duration in seconds

0 100 200 300 400 500
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
min duration in seconds

features probability distribution

Fig. 2. Probability distribution of all tailored features

bike, (ii) then the second steps consists in identifying samples
that do not clearly belong to a cluster. They are the one that
are too far from the closest cluster center.

1) Clustering: First, we suppose that a bike has a different
behavior depending of its situation. For example, a bike docked
near a green area such as a park or a water plan is not used
in the same way than a bike parked near a residential area.
The former is more likely to be used for a stroll, finishing in
the same station it started. The latter might be used early in
the morning to go to a working area and in the evening, to go
back to a living area.

This leads us to perform a clustering on our samples to
separate different normal behaviors. To make this clustering,
we use the K-Means algorithm [11]. K, the number of clusters
and thus the number of relevant normal behaviors, being a

parameter of our model. Each sample belongs to a cluster k,
with clusters indexed by k ∈ [1;K] of size Mk. Each sample
of a cluster k is designated by Ski , i ∈ [1;Mk]. Each cluster
possesses a centroid, Ck, which is the average position of
all the points of the cluster k. We can place a centroid in
our multidimensional space by defining each of its features
{Ckj }, j ∈ [1;n] as the average of the values of this feature

for the samples belonging to this cluster; Ckj =
∑Mk

i=1 S
k
ij

Mk .
2) Distance from cluster center: Once the samples have

been assigned to a cluster, we still have to determine which ones
are not normal. Since our clusters are supposed to represent
different normal behaviors, we assume that the abnormal ones
are those that are not clearly in a cluster. We consider that
a sample is not clearly in a cluster when its distance to the
centroid is significantly larger than the one of the other members
of the cluster to the same centroid.

This distance is defined as follow:

dist(Ski , C
k) =

√√√√ n∑
j=1

(
Skij − Cjk

)2
(1)

Then we can define the function that is used to label sample
as normal or abnormal as

anom(Si) =

{
1 if dist(Ski , C

k) > δ ∗ σk
0 else

(2)

where anom is a function that returns 1 if the sample Si is
abnormal (the bike is supposed to be broken) and 0 if it is
normal (the bike is not broken), σk is the standard deviation
of the distances to the centroid, δ is another parameter of our
model, it is used to modulate the distance from the centroid at
which a sample is considered abnormal.

IV. EXPERIMENTAL PROTOCOL

We describe here the protocol followed to train and evaluate
our model.

1) Parameters optimization: We are left with two parameters
to optimize; K the number of clusters (i.e., the number of
relevant behaviors) and δ the factor of the standard deviation
of the distance from the centroid at which a sample is classified
as an anomaly. T , the number of days used to build the features
is not optimized here but fixed to seven.

The parameter selection is controlled by a process of cross
validation. The selection has been made over a year and a
half, start from June 2013 down to June 2014. Then once
the parameters have been fixed, we performed a classification
over a period of 15 months, start from January 2015 down to
March 2016, which is our validation set. During the selection
phase, the features dataset has been separated five times in a
training set and a testing set (5-folds cross validation). Each
time all months from June 2013 to December 2014 are used,
80% of them for the training and 20% of them to compute an
error (the result of the cost function described in Equation 3)
on the testing set. As for now we are using the Root Mean
Square Error (RMSE). The error of a set of parameters being

the average testing error of the five different folds. Then the
parameters set with smallest average error on the testing set is
selected and the classification can be run on the validation set.

We find the best set of parameters thanks to a grid search
since the space search is little enough to perform an exhaustive
search. K is searched between 1 and 5; 1 means that there
is no need for a clustering step, 5 is high enough so several
behaviors may appear and low enough so the computation time
is reasonable. If the error would have presented a tendency to
decrease as K increases we would have had to push this limit
farther but it has not been the case. δ is searched between 1
and 3, with steps of 0.25. That’s because many of our features
have a Gaussian-like shape, so we know that with σ < 1 we
have too many abnormal samples and with σ > 3 we have too
few of them. In order to judge if a set of parameters is better
than an other one, we define a cost function (equation 3) that
the models have to minimize. It measures the distance between
the number of distinct bikes that have a sample detected as
abnormal during a month and the number of repairs reported
for this month.√√√√ 1

N

N∑
i=1

(AnomaliesK,δ(i)−Repairs(i))2 (3)

with AnomaliesK,δ(m) the number of distinct bikes that have
been classified as broken at least once during the month i and
N the number of months used. This particular cost function is
called Root Mean Square Error (RMSE)

The domains of the extracted features are different which
could lead the computed distance between two vectors of this
multi-dimensional space to depend almost exclusively of the
difference between one of their dimensions. It is necessary to
reduce and center them, so every feature has the same average
and a similar value range.

2) Execution platform: This procedure has been imple-
mented with Spark [12] 2.6.0. We ran the feature extraction
and the parameters selection on both a desktop machine with
an 8 cores i7 CPU, 32GB of RAM, and 100GB SSD hard drive
and a cluster of 15 machines, each one with 50 GB of RAM
and 48 cores, using the data stored in Hadoop Distributed File
System. The configuration allocates 50 workers with 5 cores
per worker (there are more than one worker per machine) and
the possibility to use 5GB of RAM per worker.

V. RESULTS

This section presents for the results obtained with the optimal
set of parameters.

This optimal set of parameters is K = 1 and δ = 2.25 as
illustrated in Figure 4. These parameters provide us a model
that performs better with the chosen features and cost function
on unseen data.

Equation 3 presents to minimize. It implies that we are trying
to minimize the distance between two values; the given number
of repairs for each month and the number of distinct bikes that
have been detected as broken at least once during said month.
Figure 3 presents the evolution of those values. The training

period where we performed cross validation ends in December
2014. The validation period starts in January 2015. During the
latter we perform a classification on data that we have never
seen before. Using the root mean square error (RMSE), we
compute an error depending of the distance between the two
curves.

On the training set the RMSE is 852 and on the validation
set 1304. Since these two RMSE values are of the same order,
there is no overfitting.

We computed a normalized cross-correlation (Equation 4)
between the two curves during the training period and the
validation period. The closer it is to 1, the more our classi-
fication and the ground truth follow the same variations The
normalized cross-correlation is defined as follows:

1

n

∑
x

(f(x)− f)(t(x)− t)
σfσt

(4)

where t(x) is the value of index x in the vector containing the
values of the green curve, f(x) is the value of index x in the
vector containing the values of the red curve, n is the number
of months in t(x) and f(x), f is the average of f and σf is
the standard deviation of f .

The normalized cross-correlation during the training period
is 0.47 and during the validation period 0.35. Having low values
for both the RMSE and the correlation metrics indicates that
the selected δ is helpful to fit the average number of repairs,
but does not enable us to predict the variability.

The implementation on a cloud architecture is justified by the
size of the data. On a regular machine the features extraction
requires 25 minutes of processing while the optimisation of the
parameters is done in 2 hours without cross validation, and can
not be performed with cross validation executed with a parallel
Spark implementation: after several hours of computation, the
disk is full and the process stops. On the cluster the features
extraction is performed in 2 minutes and 30 seconds, the
optimization without cross validation in 17 minutes and with
the cross validation 2 hours.

VI. DISCUSSION

Since K = 1 is the best parameter, we failed to separate
multiple normal behaviors. Three explanations are possible.
Firstly, it is maybe not optimal to try to separate these behaviors
and no solution with k > 1 can be better. Secondly, the most
probable explanation is that the chosen features do not allow
the behaviors to be separated. Indeed, we have not been able
to visualize a separation between the clusters obtained with the
Kmeans algorithm: scatter plots on each pair of dimensions
do not separate them. We have to find other features that will
lead to a meaningful clustering.

We could use t-sne [13] or other advanced techniques for
high dimensional data visualization in order to distinguish
them. If it is not possible we will train a linear model on our
features with our classification as target in order to analyze the
parameters of such a model. We will then gain some insight
into what makes a feature more susceptible to separate clusters.

Sep 2013 Jan 2014 May 2014 Sep 2014 Jan 2015 May 2015 Sep 2015 Jan 2016 May 2016

months

0

1000

2000

3000

4000

5000

6000

7000

co
u
n
t

number of distinct bikes classifie as anormal

reported number of repairs

limit between training and validation sets

d

Fig. 3. Classification versus ground truth. The red dotted curve shows the number of repairs that have been reported each month. The green curve represents
the number of distinct bikes that have been classified as abnormal at least once this month. The training period goes from the beginning to December 2014.
The validation set starts on January 2015. They are separated by a black vertical line.

1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5

δ

1

2

3

4

5

k

grid search RMSE

900

1200

1500

1800

2100

2400

2700

3000

3300

Fig. 4. Best parameters. This represents the average error on the 5 testings
sets with each set of parameters. The lighter the color, the smaller the error.
The minimum error is reached at K = 1 and δ = 2.25.

The third possibility is that the cost function does not favor
such a separation. Several clues indicate that this function is
currently suboptimal. For example, if it is not unusual to see
a bike being repaired several times a month, and if we are
sure that every broken bike is repaired during the month, then
the distinct number of broken bikes our model outputs should
always be lower than the registered number of repairs. We will
thus heavily penalize the opposite case in our cost function.
On the other hand, the correlation is expected to be high and
will be rewarded. Finally, a bike being detected as broken
only one day or all days of the month makes no difference. A
regularization term will help maintaining the overall number
of anomalies lower.

Another limitation of our approach is that we cannot yet
figure out if the detected anomalies match broken bikes. The
curve which represents the performance of our classification
(green curve) can fit very closely to the curve representing the
real number of repairs (red curve), without representing broken
bikes.

One impactful thing to do can be using a classic Aggregate
Output Classification algorithm to try to detect for each bike /

day pair if this is a day at which the bike has been taken by the
maintenance team for a repair. The count of these occurrences
is supposed to be exactly the given aggregated labels. Thus we
know that those Aggregated Output Classification algorithms,
designed for this very case, will have better performances. This
also unambiguously handles the case when a bike is picked up
more than once. So we will be trying to fit a number of repairs
to the given number of repairs, which will be less prone to error
of modeling or error of interpretation. Then if that new model
is good enough, we can use its output as unaggregated new
labels. It will be necessary to have a new way of measuring the
correctness of this model so we will be able to use it as a new
"ground truth" giving for each bike the pick-up time. Using
this new information, we will have a better way to determine
how our current model is performing. All the anomalies we
detect should occur just before the bike has to be picked up.

Finally, the factor of distance determining if a sample is too
far to its centroid to be classified as normal, δ, can be unique
for each cluster. The advantage would be that we might have
whole clusters of anomalies. Also, the parameter K will be used
to control the complexity of the model. As for now we cannot
allow this because it would make our model very complex.
With so many parameters to optimize both the computation
time and the probability of overfitting are very high.

VII. CONCLUSION

Bike sharing systems suffer of broken bikes and this paper
presents a methodology which helps to find these broken bikes.

Using the CitiBike trips data as well as the given number
of monthly repairs, we propose a method to classify each
day of each bike’s life as a day where this bike is not used,
broken or normal. We do so by building features through the
computation of statistics on the bike usage during the previous
days, applying a clustering algorithm on the obtained samples
and then detecting outliers.

We find that with the features designed and the cost function
used, the clustering is not needed. By classifying samples too
far from the average of all samples as broken bikes, we obtain
a good fit to the curve representing the number of repairs
each month. However, a small normalized cross correlation
indicates that the number of distinct bikes classified at least
once as broken during the month does not follow the same
variations than the number of repairs. That is a clue to the fact
that anomalies detected do not correspond to broken bikes.

Future work will aim at improving the model by using a
better cost function, tailoring a new set of “raw data" via the
use of standard Aggregate Output Classification methods, and
finally factoring features that will let us take full advantage of
the clustering algorithm.

ACKNOWLEDGMENT

The authors would like to thank Motivate for their open
data, since they are one of the few bikeshare operators who
are sharing their trips. This work was supported by the
CIFRE no1303/2014 of the French Association Nationale de
la Recherche et de la Technologie.

REFERENCES

[1] E. Fishman, “Bikeshare: A review of recent literature,” Transport Reviews,
vol. 36, no. 1, pp. 92–113, 2016.

[2] B. Napoli, “Bike share boom: 7 cities doing it right,”
http://www.bikesharingnapoli.it/it/best-practices/, 2013, online ;
accessed 18/02/2016.

[3] Susi, “How to be a good citi bike citizen,”
http://velojoy.com/2013/07/02/turned-bike-share-saddle/, 2013, online ;
accessed 18/02/2016.

[4] N. Bonnotte, R. Cherrier, R. Delassus, and Y. Alouini, “Real-time data
analytics and optimization of shared-vehicles networks,” in 2nd ITS
World Congres, 2015.

[5] Motivate, “System data,” https://www.citibikenyc.com/system-data, 2016,
online; accessed 15/02/2016.

[6] ——, “Nycbs monthly operating reports,”
https://www.citibikenyc.com/system-data/operating-reports, 2016,
online; accessed 15/02/2016.

[7] D. R. Musicant, J. M. Christensen, and J. F. Olson, “Supervised
learning by training on aggregate outputs,” in Seventh IEEE International
Conference on Data Mining (ICDM 2007). IEEE, 2007, pp. 252–261.

[8] M. Kaspi, T. Raviv, and M. Tzur, “Detection of unusable bicycles in
bike-sharing systems,” Omega, 2015.

[9] R. Bertens, J. Vreeken, and A. Siebes, “Beauty and brains: Detecting
anomalous pattern co-occurrences,” 2016, arXiv:1512.07048.

[10] H. Fanaee-T and J. Gama, “Event labeling combining ensemble detectors
and background knowledge,” Progress in Artificial Intelligence, vol. 2,
no. 2-3, pp. 113–127, 2014.

[11] J. MacQueen, “Some methods for classification and analysis of multi-
variate observations,” in Proceedings of the Fifth Berkeley Symposium
on Mathematical Statistics and Probability, Volume 1: Statistics, 1967,
pp. 281–297.

[12] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in HotCLoud, vol. 10,
2010, pp. 10–10.

[13] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of Machine Learning Research, vol. 9, no. Nov, pp. 2579–2605, 2008.

