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Abstract—The use of mass spectrometry imaging (MSI) tech-
niques has become a powerful tool in the fields of biology,
pharmacology and healthcare. Next generation experimental
techniques are able to generate 100s of gigabytes of data from
a single image acquisition and thus require advanced algorithms
in order to analyse these data. At present, analytical work-flows
begin with pre-processing of the data to reduce its size. However,
the pre-processed data is also high in dimensionality and requires
reduction techniques in order to analyse the data. At present,
mostly linear dimensionality reduction techniques are used for
hyper-spectral data. Here we successfully apply an autoencoder to
MSI data with over 165,000 pixels and more than 7,000 spectral
channels reducing it into a few core features. Our unsupervised
method provides the MSI community with an effective non-linear
dimensionality reduction technique which includes the mapping
to and from the reduced dimensional space. This method has
added benefits over methods such as PCA by removing the need
to select meaningful features from the entire list of components,
reducing subjectivity and significant human interaction from the
analysis.

I. INTRODUCTION

Determining the structure and distribution of unlabelled
molecules within a sample is an area of interest in material,
pharmaceutical, biological, healthcare, and forensic sciences.
Mass spectrometry (MS) techniques are able to determine the
relative abundance of these molecules and thus the composi-
tion of a material. MS now includes a wide range of meth-
ods, e.g. matrix-assisted laser desorption/ionisation (MALDI)
[1], desorption electrospray ionization (DESI) [2] and sec-
ondary ionisation mass spectrometry (SIMS) [3]. In all cases
molecules are desorbed and ionised from a surface and the
resulting ions are separated according to their mass-to-charge
ratio (m/z) in a mass analyser. The resulting intensity spectra,
referred to as mass spectra, contain peaks that characterise
particular compounds, or fragments of them, in the material.

Mass spectrometry imaging (MSI) techniques provides a
powerful means of imaging the chemical content of a sample.
That is, each pixel in a MS image corresponds to a mass
spectrum; a 3D object where the x and y dimensions relate
to spatial location, and the z dimension corresponds to the
spectrum of m/z values, an illustration of this is given in Fig. 1.
Using these data it is possible to build false colour images of a
sample based on the intensity at each pixel for a particular m/z,
i.e x, y slices along the z dimension in Fig. 1. These hyper-

spectral data enable the determination of both the location and
distribution of a particular compound in a sample. MSI can
therefore provide both qualitative and sometimes quantitative
differences in the chemical composition of a sample under dif-
ferent conditions. The ability to capture material composition
and distribution has made MSI techniques extremely useful
in analysing biological samples as they can identify drugs [4],
[5] lipids [6], [7] peptides [8] proteins [9] and metabolites [4],
[5] from many different tissues.

One significant, and growing, issue in the area of MSI
is the size of the data. Depending on spatial and mass
resolution, which can vary with not only techniques but also
instrumentation, MSI data can range from gigabytes to a
few terabytes for large image areas [10]. Analysis of such
large data becomes problematic and rapidly prohibitive for
computational techniques that require data to be stored in
memory. Owing to the ever increasing data size in MSI, there
is a growing need for collaborations with mathematicians
and computer scientists. Recently the community has made
important strives forward in the analytics of large datasets.
For example, open source data repositories [11], studies of
replicate datasets [12], the development of visualisation tools
[13], [14] and concepts [15], and new scalable algorithms [16],
[17]. Despite this progress, larger efforts are required to tackle
the increasing data issues in MSI. These problems require
multi-disciplinary solutions between physical and life sciences,
with a focus on large-scale memory-efficient algorithms for
data analysis.

This paper investigates the use of autoencoders for un-
supervised non-linear dimensionality reduction of MSI data.
We demonstrate how the autoencoder can extract the core
features of a MALDI dataset in to a single hidden node that
compares well to annotated reference material. The rest of the
paper is organised as follows: Section II outlines in brief the
MSI technique used to acquire the data in this work, and an
overview of the analytical tools currently used by the MSI
community. In Section III we describe how we apply the
autoencoder to MSI data. Section IV introduces the dataset
used in this work, with the results presented in Section V.
Finally we conclude our investigation in Section VI.
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Fig. 1. Hyper-spectral mass spectrometry image data. So-called ion images
are created by taking pixel intensity values at specific m/z values providing
localisation and distribution of chemical species.

II. MATRIX ASSISTED LASER DESORPTION/IONISATION
(MALDI) MASS SPECTROMETRY IMAGING

MALDI is a semi-quantitative MS technique can be used
to generate ions of small and large molecules directly from
complex samples. An incoming laser causes ablation and
desorption of material from the surface of a sample. The
desorbed material then forms positive and negative ions in
the gas of ablated material, which are passed to a mass
analyser to generate a mass spectrum. As both positive and
negative ions are produced during the ionisation process,
MALDI experiments can generate a mass spectrum based on
the negative or the positive ions.

Typical samples are prepared into sections a few cm2 in area
and are 5-20 µm thick. The sample is then covered by a thin
layer compound, typically a low molecular weight organic acid
known as a ‘matrix’. This compound is designed to increase
absorption of the incoming laser energy, aid desorption /
ionisation of the sample, and ultimately, increase the ion yield
detected by the mass analyser.

When using MALDI to acquire an image of a sample,
as with other MSI techniques, a mass spectrum is generated
from each pixel location. This enables the spatially resolved
detection of large in-tact molecules within the sample. Typical
data acquisition is a few hours for a MALDI image, though
will vary with image size and instrumentation.

A. Current Mass Spectrometry Imaging Analysis

Mass spectra are typically recorded over a large range of
mass to charge ratios relative to the spectral resolving power
of the instrument. As a result the raw data are typically sparse
with narrow peaks containing both Poison and Gaussian noise
components, as illustrated by the m/z dimension in Fig. 1.
Preprocessing techniques exploit the sparsity of the data and
reduce it to typically a few thousand m/z channels. This
method is referred to as ‘peak picking’ where, due to the
complexity of the data and the large number of spectra, several
methods are used. Common peak picking work-flows are based
on the mean spectrum for all pixels [18], removing peaks that
appear in less than 1% of pixels [19], or based on a region of
interest [20].

For MSI, even the peak picked data are complex and high
in dimensionality. For example, a MS image with 100x100
pixels can contain 5,000-10,000 m/z values (and corresponding
intensities) after peak picking for each pixel. This results
in 100,000,000 values and file sizes of 10s of gigabytes.
Therefore, the first process in most MSI work flows is an unsu-
pervised dimensionality reduction technique. The most popular
method is through principal component analysis (PCA) as it
is able to separate features in the data based on decreasing
variance. The largest source of variance, captured in the first
few components, typically separates the data in to sample and
substrate.

However, there are several issues with PCA. Firstly, it is a
linear method. This is problematic as MSI data are complex
due to the presence of non-linearities in the ionisation process
and also the phenomenon of enhancement and suppression
of detected ion intensity caused by the surrounding material
[21]. Therefore, analytical methods that can account for non-
linear behaviour are essential to better understand MSI data.
Secondly, PCA separates the data in to orthogonal components
of decreasing variance, and there is no way of knowing a
priori how many components are required to separate the
noise and the sample. This issue is compounded as the number
of components that separate the sample and substrate varies
between experiments. Moreover, as the number of components
is related to the dimensionality of the dataset, many of the
principal components are trivial, and there is no automated
method of determining which ones provide insight. It is also
unclear how many components are needed to reconstruct the
data to a reasonable approximation. Currently investigators
are required to search through the principal components in
order to manually discover which ones contain features of
the sample. This introduces subjectivity in to the analysis.
Finally, as the data is transformed into linear combinations
of the original data, interpretation of the components is not
straight forward [22] (owing to abstract orthogonal, rather than
meaningful chemical, factors), and particularly challenging for
higher order components [23]. Specifically for MSI, negative
scores are difficult to relate to mass spectral intensity [18],
[24].

Others algorithms such as non-negative matrix factorization
(NMF) are also used for dimensionality reduction and feature
extraction of MSI data [25]. Although successful, like PCA,
this method is linear, and the selection of the number of
features k, is an unknown parameter. Random projection is
a fast algorithm that can also reduce dimensionality [26],
though results in the loss of information. Clustering techniques
are used for spatial segmentation, however methods such as
hierarchical clustering are limited to datasets with a small
number of spectra as they require an p by p distanced matrix,
where p is the number of pixels, to be stored in memory. Some
efforts have been made to develop memory efficient algorithms
in order to deal with the computationally prohibitive data size
[10], though more effort is required.

Recently, t-distributed stochastic neighbour embedding
(tSNE) [27] has been used for non-linear dimensional reduc-
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Fig. 2. The autoencoder consisting of an input layer, an encoding layer and
an output layer where the input data is reconstructed from the encoded layer.

tion of MSI data [28]. Although in the original implementation
the complexity scales with the number of pixels, p, squared,
and becomes computationally prohibitive for large MS images.
A more recent implementation uses the Barnes-Hut approxi-
mation and can scale with p log p after appropriately tuning an
algorithmic parameter [29]. Currently, however, this method
requires an initial dimensionality reduction of the data using
PCA to alleviate the high computational costs.

Support vector machines (SVM) [30], genetic algorithms in
combination with k-nearest neighbours [31], and SVM with
neural networks [32] have also been used to analyse MSI data,
though these have been used in only a few studies for the
classification problems.

III. METHOD

The autoencoder is a class of neural network that are
structurally symmetric, see Fig. 2, with the same number
of nodes in the input and output layers. The input data is
first encoded into the hidden layer, then reconstructed in the
output layer. Typically, neural networks match an input to an
classification and require explicit labelling of the data, i.e.
supervised training, to assess the performance. As the aim
in the autoencoder is to reconstruct the input data we have
these labels implicitly. Therefore the necessary encoding and
decoding transformations can be learned in an unsupervised
manner.

The input vector x is encoded to the latent variable space
z by applying a weight matrix W and bias vector b followed
by applying an activation function, σ,

z = σ(Wx + b) . (1)

Typically σ is a sigmoid function, hyperbolic tangent or linear
transform. Here we use a sigmoid activation function in all
cases. By encoding the input data into a reduced number
of neurons it is possible to identify latent variables, i.e.
generalised features, in the data characterised by z.

The latent variables z are then decoded by applying another
weight matrix (W′), bias vector (b′) and activation function,
σ′,

x′ = σ′(W′z + b′) . (2)

Beginning with random elements in W, b, W′ and b′ we
can define an unsupervised optimisation problem. The goal is
to determine the elements in W, b, W′ and b′ that minimise
the difference between x and x′. Typically this reconstruction
error (ε) is defined as the squared difference between x and
x′

ε = ||x− x′||2 = ||x− σ′(W′(σ(Wx + b)) + b′)||2 . (3)

The elements of W, b, W′ and b′ can be iteratively updated
via gradient decent and back propagation.

A. Regularised Sparse Autoencoders

In order to avoid over-fitting the training data we employ a
standard L2 norm weight regularisation for wij , the elements
of W. This is calculated for L hidden nodes, n training
examples and k variables in the training data, here the spectral
channels.
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1
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Additionally we include sparsity regularisation using the
Kullback-Leibler (KL) divergence based on a desired level of
sparsity ρ, given as

Ωs =

D′∑
i=1

ρ log

(
ρ

ρ̂i

)
+ (1− ρ) log

(
1− ρ
1− ρ̂i

)
, (5)

where D′ is the number of reduced dimensions and ρ is set
to 0.5. Putting Eq. (3), with Eq. (4) and Eq. (5) yields a cost
function of

E =
1

n

n∑
j=1

εj + λΩw + βΩs (6)

to be minimised. Here εj is the outcome of Eq. (3) for the
jth training example. We set the weight (λ) and sparsity (β)
penalties to be 0.01 and 0.5 respectively.

B. Related Work

Autoencoders have been used in medical studies to classify
data [33], [34], and extract features from times series data
[35]. In these investigations, the training set consisted of a
number of images where each image pixel is a single intensity
value as opposed to hyper-spectral data. A very recent survey
by Galli et al [25] reviewed the use of machine learning
techniques in MALDI MSI data, though does not include
autoencoders.

Recently studies have used autoencoders to extract features
from hyper-spectral data [36], [37]. However, these data
contained a comparable number of pixels, but only 100-
200 spectral values, compared to the 1000s in MSI data.
Furthermore, they use PCA to reduce the data to the first
few principal components prior to using the autoencoder to
learn spectral features in the data. However, as discussed in
Section II-A, for MSI data the first principal component often
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Fig. 3. (a) Principal component analysis (PCA), (b) non-negative matrix factorisation (NMF) and (c) Latent variables from the autoencoder of the mouse
brain dataset. (d) Normalised colour intensities in range from 0 (copper) to 1 (black) for all methods for clarity of visualisation. Note features in each case
have been ranked in order of decreasing variance.

separates the sample from the substrate so does not necessarily
contain information about the sample features unlike other
hyper-spectral data.

In this work we consider one 409x404 pixel image where
each pixel is a mass spectrum containing 7036 m/z values.
The spectral domain in the studies listed above are less than
2% of this size, with a comparable number of pixels. As
autoencoders do not discard information during compression
[38] it is preferential to use this technique without a prior
reduction to avoid the loss of information that may be presents
in high order principal components.

We train our autoencoder on the spectral data in order to
identify the features that correspond to the regions in the ion
images. That is we encode the 7036 intensities that make up a
mass spectrum for each pixel, for which we have 165,236
(409x404) training examples. Our autoencoder consists of
7036 input nodes and 15 hidden nodes, taking each of the
165,236 pixels as a training example. We train the autoencoder
only in an unsupervised manor and do not use supervised fine
tuning.

IV. DATA: MOUSE BRAIN

We apply our autoencoder to a MALDI MSI dataset of a
transverse section of a mouse brain. The data were acquired
from a Waters Synapt G2-Si and pre-processed using Spec-
tralAnalysis [39]. The raw data are processed such that the
spectral channels undergo zero filling based on the set of
union of all m/z bins to create a consistent axis, followed by
Savitzky-Golay smoothing to reduce noise [10]. The spectra
are then ‘peak picked’ based on a noise threshold. After pre-
processing the dataset contains 409X404 pixels each with mass
spectrum of 7036 m/z intensity values yielding a dataset of
8GB.

It is common to normalise or scale the data, though var-
ious techniques exist and there is no consensus in the field.
The resulting analysis depends on the differing normalisation
techniques, which can significantly affect the outcome [24],
[40], [41]. A standard method of normalisation is based on
the total ion count in the spectra and is used here prior to any
dimensional reduction.



V. RESULTS

The ion images here are viewed in a colour scheme in order
to avoid over or under emphasising features in the data fol-
lowing the recommendations in Race et al. [42]. We compare
the results of our autoencoder to that of principal component
analysis (PCA) and non-negative matrix factorisation (NMF).
In order directly compare the methods, we normalise the
reduced dimensional data to the most intense feature in each
pixel. That is, the colour (intensity) of the lower dimensional
images range from 0 to 1 for all pixels in all methods.

The scores for PCA are given in Fig. 3(a) for the first
15 components, which explain 99.37% of the variance in the
data. However, the first 5 components account for 82.28%,
12.83%, 3.21%, 0.62% and 0.44% of the variance respectively.
Note that the results of PCA produce positive and negative
scores. As the negative scores are difficult to interpret, we
show only the positive scores for PCA. Figure 3(b) shows
the results for the NMF algorithm with 15 factors. NMF is
able to extract separate the features in the dataset and has
the additional benefit of the corresponding spectra for each
feature. These spectra contain peaks of varying intensities so
yields normalisation issues as mentioned in Section IV. If one
normalises to the most intense peak to provide a comparable
range with other methods, the over all ion image becomes very
bight as it is dominated by a few pixels. As a consequence
the analysis of these images is not straight forward and may
be difficult to interpret in general.

The results of the dimensional reduction using the au-
toencoder described in Section III are given in Fig. 3(c).
Similarly to PCA and NMF, the autoencoder generates several
uninformative features in the data. Recall Section IV where
many peaks exist in the spectral dimension, though only a few
of them correspond to the sample. Many of the other spectral
peaks are related to the substrate or to the matrix used in the
MALDI sample preparation. As a result, many of the features
in the data are due to ‘noise’ and are uninformative. Even the
peaks corresponding to the matrix can be considered noise
in this context as the signal is approximately uniform over all
pixels (this is a direct result of the matrix being sprayed evenly
over the sample in the experimental preparation). This also
explains why many of the features in PCA are also trivial in the
context of the sample. The frequency of trivial features may
be due to the high levels of redundancy in spectral information
[37], with multiple sources of noise leading to several ‘noise’
features. We note the autoencoder generates uniformity image
intensities for these trivial features thus automated detected
and removal of these features for larger studies would be
straightforward.

It is worth noting that the autoencoder has compressed
much of the spectral information in to a few informative
features. That is, the hidden neurons that contain information
relating to the sample capture almost all of the regions of
the brain, see Fig. 4. This is in contrast to PCA and NMF,
which tend to separate regions into different features, where
reduced dimensions need to be combined to achieve a single

(a) Brain Anatomy (b) AE latent variable (c) AE latent variable

Fig. 4. Comparison of (a) known regions of a mouse brain from the Allen
Brain Atlas [43], [44] to (b) and (c) a single hidden neurons in the autoencoder.

representation of the data. In terms of performance on this
problem, the autoencoder has reduced the MSI data into
a few components that capture the structural information
of the sample, and several components that relate to noise
(either substrate or matrix). Figure 4 illustrates the ability
of the autoencoder to separate the anatomical regions of the
brain based on unsupervised dimensionality reduction where
most regions are captured by a single hidden node. This
demonstrates the success of the autoencoder at reducing the
dimensionality of MSI data to a few m/z values that provide
structural information about the sample.

VI. CONCLUSIONS

Here we have applied the autoencoder to MSI data for
unsupervised non-linear dimensionality reduction. Only a few
investigations relate to the use of autoencoders with multi-
dimensional data. These either consist of times series datasets
that are treated as more training examples, rather than addi-
tional dimension in the data, or a small number of spectral
channels that are initially reduced via PCA. We successfully
apply an autoencoder to the mass spectrum for each pixel
in an MS image and reduce it to its core features; structural
information about the sample and noise. In contrast to the
standard PCA and NMF techniques, the autoencoder provides
a method for non-linear dimensionality reduction. Moreover,
as each pixel (containing a mass spectrum) is treated as a
training example, the whole dataset does not need to be loaded
in memory at once. Also, provided that the number of hidden
neurons is less that the number of channels in the mass spec-
trum, the autoencoder will be less computationally expensive
than t-SNE or clustering methods. This may restrict the use
of the so called over-complete representation of the data in
stochastic denoising autoencoders which can learn ‘deeper’
features in the data [45]. However, the ‘over-complete’ hidden
layer, which transforms the data it into a sparse representation,
is unnecessary for MSI as the spectral data are inherently
sparse.

Although training the weight matrix requires a large amount
of computation time (around 20hrs for the autoencoder com-
pared to 1hr for PCA and 1.5hrs for NMF), once obtained the
encoding and decoding of the data is fast (10s of seconds).
Therefore, when considering multiple samples e.g. control
studies, analysing databases, and replicates though repeated
sample acquisition [46] or serial sections, the autoencoder



will be much more time efficient than other dimensionality
reduction techniques which would need to be applied to
individual datasets. Moreover, analysing data separately with
existing methods introduces difficulties in comparison between
datasets due variations in the transform from the high dimen-
sional to low dimensional space. With a fixed mapping to and
from the reduced dimensional space, it is possible to use the
autoencoder to encode multiple datasets to the same number
of reduced dimensions, and through the same transformation,
enabling direct comparison between datasets.

The number of hidden nodes in the autoencoder could
be viewed as a tunable parameter similar to the number of
features determined through NMF. However, as demonstrated
here, the autoencoder combines informative features to a few
hidden nodes, rather than each detecting a different features
as in PCA and NMF. As a result it is not necessary to tune
the number of hidden nodes.

As the application of autoencoders to hyper-spectral data has
been largely unexplored, investigations into algorithmic perfor-
mance is an obvious starting point. Implementation of training
mini-batches [47] could significantly improve performance
when computed in parallel over multiple cores. However one
must be able to store the required data (e.g. the weight matrix)
in memory, or develop memory-efficient implementations for
this to be feasible. More investigation into the interpretation
of the encoded spectral information, and how it relates to the
sample, is essential for uptake in the MS community.
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