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Abstract—Recently, the speed of order matching systems on
financial exchanges has been increasing due to competition
between markets and due to large investor demands. There is an
opinion that this increase is good for liquidity by increasing the
number of traders providing liquidity. On the other hand, there
is also the opposite opinion that this increase might destabilize
financial markets and increase the cost of such systems and of
investors’ order systems. We investigated price formations and
market efficiency for various “latencies” (length of time required
to transport data); while other settings remained the same, by
using artificial market simulations which model is a kind of
agent based models. The simulation results indicated that latency
should be sufficiently smaller than the average order interval for
a market to be efficient and clarified the mechanisms of the direct
effects of latency on financial market efficiency. This implication
is generally opposite to that in which the increase in the speed
of matching systems might destabilize financial markets.

I. INTRODUCTION

Recently, the speed of order matching systems on financial
exchanges has been increasing due to competition between
markets and due to large investor demands. There is an opinion
that this increase is good for liquidity by increasing the number
of traders providing liquidity [1].

On the other hand, there is also the opposite opinion that
this speed increase might destabilize financial markets by high-
frequency traders (HFTs) and increase the cost of such systems
and of investors’ order systems [2], [3]. In fact that IEX which
is an alternative trading system started from 2013 in USA
intentionally delays to provide price data to all traders for 350
microseconds [4].

The most important factor regarding this speed increase is
“latency”; the length of time required to match orders and
transport data. When latency is smaller, a matching system is
faster. Such latency is very difficult to discuss only using the
results of empirical studies. Because so many factors cause
price formation in actual markets, an empirical study cannot
be conducted to isolate the direct effect of latency to price
formation. Furthermore, empirical studies cannot be conducted
to investigate situations that have never occurred in actual
financial markets.

We usually discuss whether changing market systems’ spec-
ification such as latency is good or bad for the market on
the basis of their effects on price formation. An artificial
market, which is a kind of agent based models, can isolate
the direct effect of changes in matching systems, such as
the speed increase to price formation, and can treat situations
that have never occurred. These are strong advantages for an
artificial market simulation, and the effects of several changing
regulations have been investigated by using such simulations
[5]–[8].

Not only academies but also financial regulators and stock
exchanges are recently interested in agent based models such
artificial market models to investigate regulations and rules
of financial markets. Indeed, the Science article by Battiston
et al. [9] described that ‘since the 2008 crisis, there has
been increasing interest in using ideas from complexity theory
(using network models, agent based models, and so on) to
make sense of economic and financial markets’.

Many studies have investigated the effects of several chang-
ing regulations and rules by using artificial market simulations,
for example, investigating effects of short selling regulations
[10], [11], transaction taxes [12], financial leverages [11], [13],
circuit breakers [14], price variation limits [15]–[17], cancel
order tax [18], tick sizes [19], frequent batch auctions [20],
and dark pools [21]–[23]. Of course, many artificial market
simulation studies investigated the nature of financial markets,
for examples, market impacts [24], [25], financial market crush
[26]–[28], interaction between option markets and underlying
markets [29], [30], effects of leveraged ETF [31] and effects
of market makers and passive funds [32].

Indeed, effects of high-frequency traders (HFTs) [33]–[38]
and of arbitrage trading between markets that have different
latencies [39] to price formation were investigated using
artificial market simulations. However, the direct effect of
latency to price formation, its mechanisms, and how much
of an increase in speed is needed for market efficiency have
not been investigated.

Therefore, in this study we investigated the direct effects
of latency on financial market efficiency by using an artificial



market model. We also implemented latency to the model by
Mizuta et al. [23] and investigated price formations and market
efficiency for various latencies; while other settings remained
exactly the same.

II. ARTIFICIAL MARKET MODEL

We constructed a simple artificial market model in which
the latency was additionally implemented onto Mizuta et al.’s
model [23], which was constructed on the basis of the model
of Chiarella and Iori [40].

Mizuta et al.’s model [23] replicates high-frequency micro
structures, such as execution rates, cancel rates, and one-tick
volatility, which cannot be replicated with Chiarella and Iori’s
model [40]. Chiarella and Iori’s model [40] is very simple
but replicates long-term statistical characteristics observed
in actual financial markets: fat-tail and volatility clustering.
The simplicity of the model is very important for this study
because an unnecessary replication of macro phenomena leads
to models that are over-fitted and too complex and such models
would prevent our understanding and discovering mechanisms
affecting the price formation because of related factors increas-
ing. We explain the basic concept for constructing our artificial
market model in the Appendix.

A. Latency Model

The model treats only one risk asset and non-risk asset
(cash). The number of agents is n. First, agent 1 orders to buy
or sell the risk asset; after that, agent 2 orders, then agents
3, 4, , , n. After the last agent n orders, the cycle is repeated.

Time t increases by δt (the time interval of an order) every
time an agent gives an order to the matching system. In
this study, we assumed an order obeys the Poisson process.
Therefore, δt is determined by random exponential variables
distributed in an average agent order interval δo. Many previ-
ous empirical studies for various financial assets [41] showed
that a δt roughly obeys an exponential distribution; however,
they also showed that there is some separation from the
distribution.

As we mentioned in Section I, latencies exist in actual
financial markets when information of an order is transported
to a matching system from investors, orders are matched in the
system, order-book information is updated, and information is
transported to the investors through the information delivering
system. Shortening latencies of a matching system reduces
time from an investor ordering to him/her receiving order-
book information. In this study, for simplification, latencies
are zero when information of an order is transported to a
matching system from investors, orders are matched in the
system, and order-book information is updated. Finite latency
only exists in the transportation of traded price information
from a matching system to an agent1 (Figure 1). In other
words, agents observe the market price before δl from the
true market price. Shortening δl reduces the time difference

1Finite latency existing in other places is not considered to affect essential
simulation results. Only the total latency for all places is important for the
market price formation.
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Fig. 1. Our latency model.

between true price and observed price. We define P t as an
agent’s observed market price at time t.

B. Trading Market Model
Our market model adopts a continuous double auction to

determine the market price of a risk asset. A continuous double
auction is an auction mechanism in which multiple buyers
and sellers compete to buy and sell some financial assets and
where transactions can occur at any time whenever an offer
to buy and an offer to sell match. The minimum unit of price
change is δP . The buy order price is rounded off to the nearest
fraction, and the sell order price is rounded up to the nearest
fraction. When an agent orders to buy (sell), if there is a lower-
priced sell order (a higher-priced buy order) than the agent’s
order, dealing is immediately done. We call this a “market
order”2. If there is not, the agent’s order remains in the order
book. We call this a “limit order”.

C. Agent Model
When an agent j has a turn at ordering, the agent determines

an order price P t
o,j and buys or sells as follows. Agents always

order only one share. The quantity of holding positions is
not limited, so agents can take any shares for long and short
positions to infinity.

Agent j determines an order price and buys or sells as
follows. Agents use a combination of a fundamental value and
technical rules to form expectations on a risk asset’s returns.
An expected return of agent j is

rte,j =
1

w1,j + w2,j + uj

(
w1,j log

Pf

P t
+ w2,jr

t
h,j + ujϵ

t
j

)
,

(1)
where wi,j is the weight of term i of agent j and is indepen-
dently determined by random variables uniformly distributed
in the interval (0, wi,max) at the start of the simulation for
each agent, uj is the weight of the third term of agent j and is
also independently determined by random variables uniformly
distributed in (0, umax) at the start of the simulation for each
agent, Pf is a fundamental value that is constant3, P t is an
observed market price of the risk asset at t4, as we mentioned

2Note that this definition is slightly different from a practical definition in
actual trading markets.

3We focused phenomena in time scale as short as the fundamental price
remains static.

4When a transaction does not occur at t, P t remains at the last market
price, and at t = 0, P t = Pf
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Fig. 2. Market inefficiency Mie for various δl/δo

in Section II-A, ϵtj is noise determined by random variables
of normal distribution with an average 0 and a variance σϵ,
rth,j is a historical price return inside an agent’s time interval
τj , and rth,j = log (P t/P t−τj ), and τj is independently
determined by random variables uniformly distributed in the
interval (1, τmax) at the start of the simulation for each agent5.

The first term of Eq. (1) represents a fundamental strategy:
an agent expects a positive return when the market price is
lower than the fundamental value, and vice versa. The second
term of Eq. (1) represents a technical strategy: an agent expects
a positive return when historical market return is positive, and
vice versa.

After the expected return has been determined, the expected
price is

P t
e,j = P t exp (rte,j). (2)

An order price P t
o,j is determined by random variables nor-

mally distributed in an average P t
e,j and a standard deviation

Pσ, where Pσ is a constant.
Buy or sell is determined by the magnitude relationship

between P t
e,j and P t

o,j , i.e.,
when P t

e,j > P t
o,j , the agent orders to buy one share,

when P t
e,j < P t

o,j , the agent orders to sell one share6.
The remaining limit order, which an agent ordered c times

before, is canceled.

III. SIMULATION RESULTS

Mizuta et al. [23] searched for adequate model parameters
verified by statistically existing stylized facts and market micro
structures. They found parameters to replicate both long-term
statistical characteristics and very short-term micro structures
of actual financial markets. We explain how they verified their
model in the Appendix. In this study, we set δo = 1 and had
the other parameters remain the same as those of Mizuta et
al.’s model [23]. When δl = 0, our model and that of Mizuta
et al.’s model [23] are exactly the same. Specifically, we set

5However, when t < τj , rth,j = 0.
6However, during t < c×n = 20, 000, when Pf > P t

o,j , the agent orders
to buy one share, when Pf < P t

o,j , the agent orders to sell one share.
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Fig. 3. Mie when δl/δo = 0.001 and error bars for various δl/δo
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Fig. 4. The relationship between time evolution of the observed prices and
that of the true prices when δl/δo > 1 (top) and δl/δo ≪ 1 (bottom).

n = 1, 000, w1,max = 1, w2,max = 10, umax = 1, τmax =
10, 000, σϵ = 0.06, Pσ = 30, c = 20, δP = 0.1, and Pf =
10, 000. We ran simulations until every agent ordered 10, 000
times. We define te as the end of the simulation.

We compared several statistical values of
the simulation runs for various δl/δo =
0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5,
and 10 not only under other parameters that were fixed but
also the same random number table. We simulated these runs
100 times, changing the random number table each time, and
used averaged statistical values of 100 runs.

A. Market Efficiency

We introduced the parameter “market inefficiency” Mie for
directly measuring market efficiency,

Mie =
1

te

te∑
t=1

|P t − Pf |
Pf

, (3)
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Fig. 5. Bid-ask spreads for various δl/δo

where || is an absolute value. The Mie is always greater than
zero, and Mie = 0 means a market is perfectly efficient7. The
larger the Mie, the less efficient the market8.

Figure 2 shows Mie for various δl/δo. When δl/δo < 0.5,
Mie is very stable; however, when δl/δo > 0.5, Mie increases,
which means the market is less efficient. This indicates that δl
should be sufficiently smaller than δo in order for the market to
be efficient. Figure 3 shows differences in Mie when δl/δo =
0.001 and error bars (one standard deviation) for 100 runs
for various δl/δo. When at least δl/δo ≥ 2, the market is
significantly less efficient than when δl/δo = 0.001.

Figure 4 illustrates the relationship between time evolution
of the observed prices and that of the true prices when
δl/δo > 1 (top) and δl/δo ≪ 1 (bottom). When δl/δo > 1
(top), sometimes δl > δt (see the yellow middle arrows). In
this case, an agent might decide a different order than when
the observed price is the same as the true price. Therefore,
when δl/δo > 1, it is expected that price formation might be
different from the case without latency, δl = 0, because the
observed price is sometimes different from the true price. On
the other hand, when δl/δo ≪ 1, it is almost δl < δt, and an
agent usually knows the true price. Therefore, it is expected
that price formation might be almost the same when δl = 0.

B. Bid-ask Spread and Execution Rate

In this section, we discuss mechanisms in which the latency
is larger and a market is less efficient. Figure 5 shows bid-ask
spreads for various δl/δo. We define a bid-ask spread S as

7Even though we calculated the market inefficiency, we did not intend to
discuss about efficient market hypothesis. In our model the market is not
efficient because of existence of the technical strategy in Eq. (1) and we
discussed how inefficient more is the market by the latency.

8This index is sometimes used in experimental financial studies of people, in
which this market inefficiency is sometimes called relative absolute deviation
(RAD) [42]. Many indications for measuring market efficiency have been
proposed [43]. A feature of Mie is that it is calculated directly using a
fundamental price Pf , which is never observed in empirical studies. We can
also use Mie in simulation and experimental studies because we can exactly
define Pf .
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Fig. 6. Execution rates for various δl/δo

S = (Pbb − Pba)/Pf
9, where Pbb is the highest limit buy

order on an order book, and Pba is the lowest limit sell order
on an order book. When δl/δo > 0.5, S is wider.

Figure 6 shows the execution rates for various δl/δo.
We define the execution rate as the number of market or-
ders/number of all orders (market and limit orders). When
δl/δo > 0.5, execution rates are also increasing. These suggest
that increasing the execution rate reduces the limit orders
to near the market price, the bid-ask spread becomes wider,
and the market becomes less efficient. In the next section,
we discuss a mechanism that increases the execution rate by
latency.

C. Mechanism that Increases Execution Rate

In this section, we discuss a mechanism that increases
the execution rate due to the latency using the results when
δl/δo = 0.001 and 10. Figure 7 shows execution rates for
various true prices. For large latency δl/δo = 10, the execution
rates are larger than those for no latency δl/δo = 0.001,
especially near Pf = 10, 000. Table I lists the execution
rates for the two cases and the averages of the estimated
return rte,j of all agents. We broke down the execution rates
into cases in which a market buy order matches a limit sell
order and a market sell order matches a limit buy order. For
δl/δo = 10, we broke down the execution rates into cases
in which observed price Povs is smaller than the true price
Ptr and Povs is larger than Ptr. For δl/δo = 10, when Povs is
smaller than Ptr, there are more market buy orders than market
sell orders and the average estimated return is positive. When
Povs is larger than Ptr, the opposite occurs.

Figure 8 shows that this mechanism is consistent with
results in Table I. Eq. (1) shows that, when a market price
is near the fundamental price (P t ∼ Pf ), the second term
(the technical strategy term) is more dominant than the first
term (the fundamental strategy term) in the estimated return

9In practical, bid-ask spread is defined as (Pbb − Pba)/((Pbb + Pba)/2)
exactly. In our simulation this is almost same as S because both Pbb and Pba

is similar to Pf .
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Fig. 7. Execution rates for various true prices when δl/δo = 0.001 and 10.

of agents (rte,j). The technical strategy term indicates a pos-
itive (negative) estimated return when the historical return is
positive (negative). On the left side of Figure 8 (the case in
which an observed price is lower than the true price), the
market price has upward momentum because the true current
price is higher than past. Therefore, the technical strategy term
is positive and the estimated returns of agents are frequently
positive. Note that from Eq. (3), when P t

e,j is much higher
than the true price, a buy order tends to become a market
order. We discuss the case in which the upward trend has
actually finished. If the agents knew the true price, their
estimated returns would be almost zero because the technical
strategy term would be almost zero, and they would not make
market buy orders. However, if agents actually observe the
past upward momentum because of the large latency, then they
make market buy orders. On the right side of Figure 8 (the
case in which an observed price is higher than the true price),
the case in which an observed price is larger than the true
price, the opposite occurs. These cases increase the execution
rates, as shown in Table I and Figure 7.

If the latency is large, agents cannot quickly change their
estimated prices when the market trend has finished. Agents
then make unnecessary market orders, and such market orders
increase the execution rate. As we mentioned in Section III-B,
increasing the execution rate reduces limit orders to near the
market price, widens the bid-ask spread, and makes the market
becomes less efficient. This mechanism causes a market to be
inefficient when δl/δo > 1.

IV. CONCLUSION AND FUTURE WORK

We constructed a simple artificial market model in which the
latency was also implemented onto Mizuta et al.’s model [23]
and investigated price formations and market efficiency for
various latencies; while other settings were maintained exactly
the same.

We discussed how much of an increase in speed is needed
for market efficiency. The simulation results indicated that
latency should be sufficiently smaller than the average order
interval for a market to be efficient. This implication is

Agents then make unnecessary market orders. 

But, agents cannot quickly change their estimated prices. 

Observed Price > True Price Observed Price < True Price 

Too High Estimated Price 
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⇒ Market Sell order 

The trend has actually finished. 

They would not make the orders if the agents knew the true price. 

Fig. 8. Mechanism that increases execution rate due to the latency

generally opposite to that in which the increase in the speed
of matching systems might destabilize financial markets.

We clarified the mechanisms of the direct effects of latency
on financial market efficiency. If the latency is large, agents
cannot quickly change their estimated prices when the market
trend has finished. Agents then make unnecessary market
orders, and such market orders increase the execution rate. We
argued that increasing the execution rate reduces limit orders
to near the market price, widens the bid-ask spread, and makes
the market becomes less efficient. This indicates that latency
should be sufficiently smaller than the average order interval
for a market to be efficient.

For future work, we will investigate the case of a large
amount of orders for less than one minute after very important
news. We did not consider this case for specific and very short
spans in the simulations of this study. We implemented only
normal agents replicating general investors; however, latency
was more important, especially for HFTs whose investment
strategies are market maker, arbitrage, and so on. We should
discuss the latencies for different types of agents for future
work.

For more detailed discussions, we should compare the sim-
ulation results to those from studies using other methods, e.g.,
empirical studies and theoretical studies. An artificial market
can isolate the direct effect of changes in market systems
to price formation, and can treat situations that have never
occurred. However, outputs of artificial market simulations
may not be accurate or credible forecasts in actual markets.
It is an important for artificial market simulations to show
possible mechanisms affecting price formation through many
runs and gain new insight; conversely, a limitation of artificial
market simulations is that their outputs may, but not certainly,
occur in actual financial markets.



TABLE I
EXECUTION RATES FOR TWO CASES AND AVERAGES OF ESTIMATED RETURNS rte,j OF ALL AGENTS

Execution Rates
Buy Market Sell Market Avg.

δl/δo Sum Sell Limit Buy Limit Estimated
Orders Orders Return

10 Povs < Ptr 32.5% 28.9% 3.5% 0.28%
Povs > Ptr 32.5% 3.6% 28.9% −0.27%

0.001 — 31.2% 15.6% 15.6% 0.00%

APPENDIX

A. Basic Concept for Constructing Model

An artificial market, which is a kind of agent based models,
can isolate the pure contribution of these system changes to the
price formation and can treat the changes that have never been
employed [5]–[8]. These are the strong points of the artificial
market simulation study.

However, outputs of the artificial market simulation study
would not be accurate or credible forecasts of the actual future.
The artificial market simulation needs to show possible mech-
anisms affecting the price formation by many simulation runs,
e.g. searching for parameters, purely comparing before/after
the changing, and so on. The possible mechanisms shown
by these simulation runs will give us new intelligence and
insight about effects of the changes to price formation in actual
financial markets. Other study methods, e.g. empirical studies,
would not show such possible mechanisms.

Indeed, artificial markets should replicate macro phenomena
existing generally for any asset and any time. Price variation,
which is a kind of macro phenomena, is not explicitly modeled
in artificial markets. Only micro processes, agents (general
investors), and price determination mechanisms (financial ex-
changes) are explicitly modeled in artificial markets. Macro
phenomena are emerging as the outcome interactions of micro
processes. Therefore, the simulation outputs should replicate
general macro phenomena at least to show that simulation
models are probable in actual markets.

However, it is not a primary purpose for the artificial market
to replicate specific macro phenomena only for a specific
asset or a specific period. An unnecessary replication of
macro phenomena leads to models that are over-fitted and too
complex. Such models would prevent our understanding and
discovering mechanisms affecting the price formation because
of related factors increasing.

Indeed, artificial market models that are too complex are of-
ten criticized because they are very difficult to evaluate [6]. A
too complex model not only would prevent our understanding
mechanisms but also could output arbitrary results by over-
fitting too many parameters. Simpler models harder obtain
arbitrary results, and are easier evaluated.

Therefore, we constructed an artificial market model that
is as simple as possible and do not intentionally implement
agents to cover all the investors who would exist in actual
financial markets.

TABLE II
STATISTICS WITHOUT LATENCY

execution rate 32.3%
trading cancel rate 26.1%

number of trades / 1 day 6467
standard for 1 tick 0.0512%

deviations for 1 day (20000 ticks) 0.562%
kurtosis 1.42

lag
1 0.225

autocorrelation 2 0.138
coefficient for 3 0.106
square return 4 0.087

5 0.075

B. Verification of the Model

In many previous artificial market studies, the models were
verified to see whether they could explain stylized facts such
as a fat-tail, volatility-clustering, and so on [5]–[8]. A fat-tail
means that the kurtosis of price returns is positive. Volatility-
clustering means that the square returns have positive auto-
correlation, and the autocorrelation slowly decays as its lag
becomes longer. Many empirical studies, e.g. that of Sewell
[44], have shown that both stylized facts (the fat-tail and
volatility-clustering) exist statistically in almost all financial
markets. Conversely, they also have shown that only the fat-tail
and volatility-clustering are stably observed for any asset and
in any period because financial markets are generally unstable.

Indeed, the kurtosis of price returns and the autocorrelation
of the square returns are stably and significantly positive, but
the magnitudes of these values are unstable and very different
depending on asset and/or period. The kurtosis of price returns
and the autocorrelation of the square returns were observed
to have very broad magnitudes of about 1 ∼ 100 and about
0.01 ∼ 0.2, respectively [44].

For the above reasons, an artificial market model should
replicate these values as significantly positive and within a
reasonable range as we mentioned. It is not essential for the
models to replicate specific values of stylized facts because
these stylized facts’ values are unstable in actual financial
markets.

Table II lists statistics in which there is no latency. All
statistics are averages of 100 simulation runs, and all the
following figures use the average of 100 simulation runs.
We define 20, 000 time steps as 1 day because the number
of trades within 20, 000 time steps is almost the same as
that in actual markets per day. All statistics; execution rates,



cancel rates10, standard deviations of returns for one tick and
one day11, kurtosis of price returns, and the autocorrelation
coefficient for square returns12 are of course almost the same
as the results of Mizuta et al. [23] because the models do not
differ except for the latency. Mizuta et al. [23] showed that
this mode replicated very short term micro structure, execution
rates, cancel rates, and standard deviations of returns for one
tick and replicated long-term statistical characteristics, fat tail,
and volatility clustering, observed in real financial markets.
Therefore, the model was verified to investigate the effect of
the latency on market stability.

Disclaimer & Acknowledgments
Note that the opinions contained herein are solely those of the authors and

do not necessarily reflect those of SPARX Asset Management Co., Ltd., Daiwa
SB Investments Ltd. and Osaka Exchange, Inc. This research was partially
supported by CREST, JST and JSPS KAKENHI Grant Number 15H02745.

REFERENCES

[1] J. J. Angel, L. E. Harris, and C. S. Spatt, “Equity trading in the 21st
century: An update,” The Quarterly Journal of Finance, 2015.

[2] D. Farmer and S. Skouras, “Review of the benefits of a continuous
market vs. randomised stop auctions and of alternative priority rules
(policy options 7 and 12),” Manuscript, Foresight, Government Office
for Science, UK, 2012.

[3] E. Budish, P. Cramton, and J. Shim, “The high-frequency trading
arms race: Frequent batch auctions as a market design response,” The
Quarterly Journal of Economics, vol. 130, no. 4, pp. 1547–1621,
2015. [Online]. Available: http://qje.oxfordjournals.org/content/130/4/
1547.abstract

[4] R. Ryan, “Beyond flash boys: Improving transparency and fairness in
financial markets,” in CFA Institute Conference Proceedings Quarterly,
vol. 32, no. 4. CFA Institute, 2015, pp. 10–17.

[5] B. LeBaron, “Agent-based computational finance,” Handbook of com-
putational economics, vol. 2, pp. 1187–1233, 2006.

[6] S.-H. Chen, C.-L. Chang, and Y.-R. Du, “Agent-based economic models
and econometrics,” Knowledge Engineering Review, vol. 27, no. 2, pp.
187–219, 2012.

[7] M. Cristelli, Complexity in Financial Markets, Modeling Psychological
Behavior in Agent-Based Models and Order Book Models. Springer,
2014.

[8] T. Mizuta, “A brief review of recent artificial market simulation
(multi-agent simulation) studies for financial market regulations
and/or rules,” SSRN Working Paper Series, 2016. [Online]. Available:
http://ssrn.com/abstract=2710495

[9] S. Battiston, J. D. Farmer, A. Flache, D. Garlaschelli, A. G.
Haldane, H. Heesterbeek, C. Hommes, C. Jaeger, R. May, and
M. Scheffer, “Complexity theory and financial regulation,” Science,
vol. 351, no. 6275, pp. 818–819, 2016. [Online]. Available:
http://science.sciencemag.org/content/351/6275/818

[10] I. Yagi, T. Mizuta, and K. Izumi, “A study on the effectiveness
of short-selling regulation using artificial markets,” Evolutionary and
Institutional Economics Review, vol. 7, no. 1, pp. 113–132, 2010.
[Online]. Available: http://link.springer.com/article/10.14441/eier.7.113

10The execution rate is the ratio of the number of trades to that of all orders.
The cancel rate is the ratio of the number of cancels to that of all orders +
cancels.

11In our model, though overnight returns do not exist, the standard
deviations of returns for one day correspond to intraday volatility in real
financial markets.

12We used returns for 10 time units’ intervals (corresponding to about 10
seconds) to calculate the statistical values for the stylized facts. In this model,
time passes by an agent just ordering even if no dealing is done. Therefore,
the returns for one tick (one time) include many zero returns, and they will
bias statistical values. This is the reason we use returns for about 10 time
units’ intervals.

[11] D. i. Veld, “Adverse effects of leverage and short-selling constraints
in a financial market model with heterogeneous agents,” Journal of
Economic Dynamics and Control, vol. 69, pp. 45 – 67, 2016. [Online].
Available: http://dx.doi.org/10.1016/j.jedc.2016.05.005

[12] F. Westerhoff, “The use of agent-based financial market models to
test the effectiveness of regulatory policies,” Jahrbucher Fur Nation-
alokonomie Und Statistik, vol. 228, no. 2, p. 195, 2008.

[13] S. Thurner, J. Farmer, and J. Geanakoplos, “Leverage causes fat tails and
clustered volatility,” Quantitative Finance, vol. 12, no. 5, pp. 695–707,
2012.

[14] S. Kobayashi and T. Hashimoto, “Benefits and limits of circuit breaker:
Institutional design using artificial futures market,” Evolutionary and
Institutional Economics Review, vol. 7, no. 2, pp. 355–372, 2011.

[15] C. Yeh and C. Yang, “Examining the effectiveness of price limits in
an artificial stock market,” Journal of Economic Dynamics and Control,
vol. 34, no. 10, pp. 2089–2108, 2010.

[16] T. Mizuta, K. Izumi, and S. Yoshimura, “Price variation limits
and financial market bubbles: Artificial market simulations with
agents’ learning process,” IEEE Symposium Series on Computational
Intelligence, Computational Intelligence for Financial Engineering
and Economics (CIFEr), pp. 1–7, 2013. [Online]. Available: http:
//dx.doi.org/10.1109/CIFEr.2013.6611689

[17] T. Mizuta, K. Izumi, I. Yagi, and S. Yoshimura, “Regulations’
effectiveness for market turbulence by large mistaken orders using
multi agent simulation,” in Computational Intelligence for Financial
Engineering Economics (CIFEr), 2014 IEEE Conference on, march
2014, pp. 138–143. [Online]. Available: http://dx.doi.org/10.1109/
CIFEr.2014.6924065

[18] I. Veryzhenko, L. Arena, E. Harb, and N. Oriol, A Reexamination of
High Frequency Trading Regulation Effectiveness in an Artificial Market
Framework. Cham: Springer International Publishing, 2016, pp. 15–25.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-40159-1 2

[19] T. Mizuta, S. Hayakawa, K. Izumi, and S. Yoshimura, “Investigation
of relationship between tick size and trading volume of markets
using artificial market simulations,” in JPX working paper, no. 2.
Japan Excgange Group, 2013. [Online]. Available: http://www.jpx.co.
jp/english/corporate/research-study/working-paper/

[20] T. Mizuta and K. Izumi, “Investigation of frequent batch auctions using
agent based model,” in JPX working paper. Japan Excgange Group, in
press, 2016. [Online]. Available: http://www.jpx.co.jp/english/corporate/
research-study/working-paper/

[21] S. Y. K. Mo and M. P. S. Y. Yang, “A study of dark pool trading using
an agent-based model,” in Computational Intelligence for Financial
Engineering Economics (CIFEr), 2013 IEEE Symposium Series on
Computational Intelligence on, April 2013, pp. 19–26. [Online].
Available: http://dx.doi.org/10.1109/CIFEr.2013.6611692

[22] T. Mizuta, S. Kosugi, T. Kusumoto, W. Matsumoto, K. Izumi, and
S. Yoshimura, “Do dark pools make markets stable and reduce
market impacts? ～investigations using multi agent simulations ～,”
in Computational Intelligence for Financial Engineering Economics
(CIFEr), 2014 IEEE Conference on, march 2014, pp. 71–76. [Online].
Available: http://dx.doi.org/10.1109/CIFEr.2014.6924056

[23] T. Mizuta, S. Kosugi, T. Kusumoto, W. Matsumoto, and K. Izumi,
“Effects of dark pools on financial markets’ efficiency and price
discovery function: an investigation by multi-agent simulations,”
Evolutionary and Institutional Economics Review, vol. 12, no. 2,
pp. 375–394, 2015. [Online]. Available: http://dx.doi.org/10.1007/
s40844-015-0020-3

[24] W. Cui and A. Brabazon, “An agent-based modeling approach to study
price impact,” in Computational Intelligence for Financial Engineering
Economics (CIFEr), 2012 IEEE Conference on, March 2012, pp. 1–8.
[Online]. Available: http://dx.doi.org/10.1109/CIFEr.2012.6327798

[25] C. Oesch, “An agent-based model for market impact,” in Computational
Intelligence for Financial Engineering Economics (CIFEr), 2104
IEEE Conference on, March 2014, pp. 17–24. [Online]. Available:
http://dx.doi.org/10.1109/CIFEr.2014.6924049

[26] I. Yagi, T. Mizuta, and K. Izumi, “A study on the reversal mechanism
for large stock price declines using artificial markets,” in Computational
Intelligence for Financial Engineering Economics (CIFEr), 2012
IEEE Conference on, march 2012, pp. 1 –7. [Online]. Available:
http://dx.doi.org/10.1109/CIFEr.2012.6327791

[27] M. Paddrik, R. Hayes, A. Todd, S. Yang, P. Beling, and W. Scherer,
“An agent based model of the e-mini s amp;p 500 applied to flash crash
analysis,” in Computational Intelligence for Financial Engineering



Economics (CIFEr), 2012 IEEE Conference on, March 2012, pp. 1–8.
[Online]. Available: http://dx.doi.org/10.1109/CIFEr.2012.6327800

[28] T. Torii, K. Izumi, and K. Yamada, “Shock transfer by arbitrage
trading: analysis using multi-asset artificial market,” Evolutionary and
Institutional Economics Review, vol. 12, no. 2, pp. 395–412, 2015.
[Online]. Available: http://dx.doi.org/10.1007/s40844-015-0024-z

[29] S. Kawakubo, K. Izumi, and S. Yoshimura, “Analysis of an option
market dynamics based on a heterogeneous agent model,” Intelligent
Systems in Accounting, Finance and Management, vol. 21, no. 2, pp.
105–128, 2014. [Online]. Available: http://dx.doi.org/10.1002/isaf.1353

[30] ——, “How does high frequency risk hedge activity have an affect
on underlying market? : Analysis by artificial market model,” Journal
of advanced computational intelligence and intelligent informatics,
vol. 18, no. 4, pp. 558–566, jul 2014. [Online]. Available:
http://dx.doi.org/10.20965/jaciii.2014.p0558

[31] I. Yagi and T. Mizuta, “Analysis of the impact of leveraged etf
rebalancing trades on the underlying asset market using artificial market
simulation,” in 12th Artificial Economics Conference, September
2016. [Online]. Available: http://ae2016.it/public/ae2016/files/ssc2016
Mizuta.pdf

[32] K. Braun-Munzinger, Z. Liu, and A. Turrell, “Staff working paper no.
592 an agent-based model of dynamics in corporate bond trading,” Bank
of England, Staff Working Papers, 2016. [Online]. Available: http://www.
bankofengland.co.uk/research/Pages/workingpapers/2016/swp592.aspx

[33] M. Gsell, “Assessing the impact of algorithmic trading on markets:
a simulation approach,” Center for Financial Studies (CFS) Working
Paper, 2009.

[34] C. Wang, K. Izumi, T. Mizuta, and S. Yoshimura, “Investigating the
impact of trading frequencies of market makers: a multi-agent simulation
approach,” SICE Jounal of Control,Measument,and System Integration,
vol. 6, no. 3, 2013.

[35] Y. Kusada, T. Mizuta, S. Hayakawa, and K. Izumi, “Impacts of position-
based market makers on markets’ shares of trading volumes - an artificial
market approach,” in Social Modeling and Simulations + Econophysics
Colloquium 2014, 2014.

[36] Y. Xiong, T. Yamada, and T. Terano, “Comparison of different market
making strategies for high frequency traders,” in 2015 Winter Simulation
Conference (WSC), Dec 2015, pp. 324–335.

[37] S. J. Leal and M. Napoletano, “Market stability vs. market resilience:
Regulatory policies experiments in an agent based model with low-and
high-frequency trading,” Laboratory of Economics and Management
(LEM), Sant’Anna School of Advanced Studies, Pisa, Italy, Tech. Rep.,
2016. [Online]. Available: http://www.lem.sssup.it/WPLem/2016-15.
html

[38] T. A. Hanson and J. Zaima, “High frequency traders in a simulated
market,” Review of Accounting and Finance, vol. 15, no. 3,
2016. [Online]. Available: http://www.emeraldinsight.com/doi/abs/10.
1108/RAF-02-2015-0023

[39] E. Wah and M. P. Wellman, “Latency arbitrage, market fragmentation,
and efficiency: a two-market model,” in Proceedings of the fourteenth
ACM conference on Electronic commerce. ACM, 2013, pp. 855–872.

[40] C. Chiarella and G. Iori, “A simulation analysis of the microstructure of
double auction markets,” Quantitative Finance, vol. 2, no. 5, pp. 346–
353, 2002.

[41] M. Takayasu, H. Takayasu, and M. P. Okazaki, “Transaction interval
analysis of high resolution foreign exchange data,” in Empirical Science
of Financial Fluctuations. Springer, 2002, pp. 18–25.
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