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Abstract—An ever growing share of renewable energy re-
sources in the distribution grid imposes fluctuating and hardly
predictable feed-in and thus demands new control strategies.
On the other hand, combined with controllable, shiftable loads
and battery capacity, these energy units set up new flexibility
potentials for ICT-based control. So far, many approaches for har-
nessing this potential neglect the indispensable grid compliance
of scheduling results due to the high computational complexity.
We present a hybrid approach that enables distributed, agent-
based algorithms for predictive energy planning to incorporate
grid friendly behavior into agents’ decision routines. We propose
a scheme using a covariance matrix adaption evolution strategy
(CMA-ES) for deciding on grid compliant solutions in a many-
objective approach. The integration with an agent-based greedy
algorithm for decentralized predictive scheduling is demonstrated
and the effectiveness of the approach is shown by several
simulation experiments.

I. INTRODUCTION

The future smart energy grid demands for new control
paradigms that are able to incorporate a huge number of
rather small, distributed and individually configured energy
resources. In order to allow for a transition of the current
central market and network structure to a decentralized smart
grid, self-organization concepts are expected to become in-
dispensable as an efficient management approach [1]. Small
units will frequently pool together to coalitions for joint
orchestration and better market potential. As the smart grid will
have to delegate many control tasks to small and distributed
energy resources (DER), control algorithms will have to cope
with large problem sizes and with distributed and only locally
available information.

Virtual power plants (VPP) are a well-known instrument
for aggregating and controlling DER [2]. Concepts for several
use cases (market-related as well as technical) have been
developed. A frequent use case commonly emerging within
VPP control is the need for scheduling the participating DER.
Independently of the specific objective at hand, a schedule for
each DER has to be found such that the schedule that finally is
assigned is operable without violating any technical constraint.
Ensuring the feasibility of a VPP scheduling solution is a
crucial task [3], but has already been addressed by several
approaches [3], [4], [5] at least with regard to being operable
for the units.

Different from classical approaches, surprisingly low effort
has so far been spent on integrating criteria for grid compliance
or grid friendly behavior especially in distributed planning

approaches, although due to the (electrically) distributed nature
of the generators this is a fortiori necessary.

Without integration of grid constraints there is no guarantee
that a solution that has been found by a self-organized group
of distributed energy resources can be implemented when it
comes to product delivery. Thus, at least objectives for a grid
friendly plan should be integrated for a robust scheduling that
minimize the need for control power or other grid management
interventions. Without obeying higher-level requirements for
stable grid operation, acceptance of new, decentralized algo-
rithms within the smart grid will be hardly reached.

The rest of the paper is organized as follows. We start with
an introduction to related approaches and a general outline of a
distributed greedy approach that is going to be extended here.
We continue with a description of the new decision approach
that incorporates an evolution strategy for local decisions on
suitable schedule assignments based on grid objectives. We
evaluate the approach with several simulation studies and
conclude with an outlook on future research directions.

II. RELATED WORK

The problem of optimal power flow (OPF) is in general
well-defined since the 1960s [6]. OPF is concerned with
minimizing fuel cost of (classical) generators. Whereas the
classical economic dispatch problem incorporates grid con-
straints merely as a single power balance constraint, OPF also
is concerned with additional grid constraints like voltage and
phasor angle bounds, e. g. [7]. Though, both approaches have
the same objective of minimizing fuel (and thus operation)
cost. Distribution of OPF has so far been scrutinized in terms
of supporting different, competing grid operators in charge of
different regions of the grid [6], [8] and/ or operate on specific
grid topologies [9]. An extension to decentralized, negotiating
agents on a per unit basis has so far not been comprehensively
scrutinized.

Within the framework of today’s (still mostly centralized)
operation planning for power stations, different heuristics are
already harnessed. Examples from the research sector are for
instance shown in [10] or in [11]. This task of (short-term)
scheduling of different generators is also known as unit com-
mitment problem and assigns (in its classical interpretation)
discrete-time-varying production levels to generators for a
given planning horizon [12]. It is known to be an NP-hard
problem [13] and determining an exact global optimum is not
possible until ex post due to uncertainties and forecast errors.



Centralized approaches have long time dominated the dis-
cussion also for renewables’ integration. [14], not least because
a generator may achieve slightly greater benefit if optimization
is done from a global, omniscient perspective [15]. The same
holds true for OPF. Centralized methods are discussed in the
context of static pools of DER with drawbacks and restrictions
regarding scalability and particularly flexibility.

Recently, distributed approaches gained more and more
importance. Different works proposed hierarchical and de-
centralized architectures based on multi-agent systems and
market based computing [16], [17]. Newer approaches try
to establish self-organization between actors within the grid
[18], [19], [20]. Two examples for fully decentralized agent-
based approaches are a greedy agent approach [21] and the
combinatorial optimization heuristics for distributed agents
(COHDA) [22].

An important aspect in smart grid control algorithms is
constraint handling, as infeasible solutions that cannot be
implemented afterwards by the energy units are worthless.
Modeling constraints was rather simple for past easy con-
trollable, large power plants. Versatile, small, individually
embedded and operated energy generators and controllable
consumers on the contrary have individual, often non-linear
and complex constraints that restrict operations and define the
flexibility that is offered to control algorithms for predictive
planning. Some approaches have been developed to handle
such individual constraints [3], [4]. In [21] and [23] a decoder
approach based on support vector models has been integrated
into agent-based approaches for predictive scheduling.

Although approaches for integrating many-objective opti-
mization into smart grid planning procedures exist [22], [24],
low effort has so far been spent on integrating grid compli-
ance as constraint or grid friendly behavior as optimization
objective into decentralized smart grid scheduling algorithms.
On the other hand, for integrating electrical distance (as an
indicator for the grid usage) [25] developed a metric that
allows analysing grid related changes using graph theory.
The metric can be used to compare different rescheduling
options regarding grid usage for both dynamic clusters of
distributed energy resources and for rescheduling static clusters
like virtual power plants.

In the following, we propose a first integration scheme
for grid objectives into the decision routine of agent-based
predictive scheduling algorithms.

III. A DISTRIBUTED GREEDY ALGORITHM FOR
SCHEDULING

As opposed to the usual time series, we regard a schedule
as real valued vector p = (p1, . . . , pd) ∈ Rd with each element
pi denoting mean active power generated (positive values) or
consumed (negative value) during the i-th of d time intervals.
Starting time and width of each time interval are assumed to be
known from context information. The feasibility of a schedule
p is defined by sets of unit specific technical and economic
constraints.

One of the crucial challenges in operating a VPP arises
from the complexity of the scheduling task due to the large
amount of (small) energy units in the distribution grid [26].

In the following, we consider predictive scheduling, where the
goal is to select exactly one schedule pi for each energy unit
Ui from a search space of feasible schedules with respect to a
future planning horizon, such that a global objective function
(e. g. resembling a target power profile) is optimized by the
sum of individual contributions [27]. A basic formulation of
the scheduling problem is given by

δ

(
m∑
i=1

pi, ζ

)
→ min; s.t. pi ∈ F (Ui) ∀Ui ∈ U . (1)

In equation (1) δ denotes an (in general) arbitrary distance
measure for evaluating the difference between the aggregated
schedule of the group and the desired target schedule ζ.
In order to compare results and for scalability reasons we
used the mean absolute percentage error (MAPE) δ(x, ζ) =
1
d

∑d
i=1

∣∣∣ ζi−xi

ζi

∣∣∣.
To each energy unit Ui exactly one schedule pi has

to be assigned. The desired target schedule is given by ζ.
F (Ui) denotes the individual set of feasible schedules that
are operable for unit Ui without violating any (technical)
constraint. Solving this problem without unit independent
constraint handling leads to specific implementations that are
not suitable for handling changes in VPP composition or unit
setup without having changes in the implementation of the
scheduling algorithm [22].

Flexibility modelling can be understood as the task of
modelling constraints for energy units. Apart from global
VPP constraints, constraints often appear within single energy
components; affecting the local decision making. Since these
constraints are not of a distributed nature, they can be solved
locally using central approaches. A widely used approach is
the introduction of a penalty into the objective function that
devalues a solution that violates some constraint [28]. In this
way, the problem is transferred into an unconstrained one
by treating fulfillment of constraints as additional objective.
Another popular method treats constraints or aggregations of
constraints as separate objectives, also leading to a transfor-
mation into a (unconstrained) many-objective problem [29].

For optimization approaches in smart grid scenarios, black-
box models capable of abstracting from the intrinsic model
have proved useful [30], [31]. The original models do not need
to be known at compile time. A powerful, yet flexible way of
constraint-handling is the use of a decoder that gives a search
algorithm hints on where to look for schedules satisfying local
hard constraints (feasible schedules) [32], [31].

For our experiments, we used a decoder as described in
[33]. Here, a decoder γ is given as mapping function

γ : Rd → Rd; γ(p) 7→ p∗. (2)

With p∗ having the following properties:

• p∗ is operable by the respective energy unit without
violating any constraint,

• the distance ‖p− p∗‖ is small; where the term small
depends on the problem at hand and often denotes the
smallest distance of p to the feasible region.



With such decoder concept for constraint handling one can
now reformulate the optimization problem as

δ

(
m∑
i=1

γi(pi), ζ

)
→ min, (3)

where γi is the decoder function of unit i that produces
feasible, schedules from p ∈ [0, pmax]d resulting in schedules
that are operable by that unit. Please note, that this is a
constraint free formulation. With this problem formulation,
many standard algorithms for optimization can be easily
adapted as there are no constraints (apart from a simple box
constraint p ∈ [0, pmax]d) to be handled and no domain
specific implementation (regarding the energy units and their
operation schedules) has to be integrated. Equation (3) is used
as a surrogate objective to find the solution to the constrained
optimization problem equation (1).

With these preliminaries, in [21] a distributed agent-based
greedy approach has been proposed for solving the scheduling
problem Eq. (3). This section briefly introduces the distributed
approach which is then extended to incorporating grid com-
pliance.

One type of agent is assumed: the control agent Ai of a
single energy resource Ui with the following responsibilities/
capabilities:

• Simulating the underlying physical device in order to
determine operable example schedules for training the
decoder.

• Determining the schedule for one’s own physical
device that minimizes the overall loss.

The procedure for optimizing the aggregated schedule is the
one depicted in Fig. 1.

A ← List of all agents
if is initiator then
pΣ ← zeros(d)

else
pΣ ←aggregated schedule
//decide on own contribution
po ← pΣ − pA //schedule of all other agents
pA ← γ(ζ − po)
pΣ ← pΣ − po + pA
if no stop criterion met then

choose random agent A ∈ A
send message with pΣ to A

else
publish solution pΣ

end if
end if

Fig. 1. Greedy algorithm that each agent repeatedly executes for successive
solution improvement starting from a zero solution pΣ denoting the aggregated
overall solution and pA denoting the individual current contribution of the
agent [21].

Within a group of agents A, one agent is randomly chosen
to start the procedure. In the greedy approach, each agent
is in charge of controlling one DER and participates in the
distributed procedure of determining schedules for each DER

such that the aggregated schedule best fits a given objective
schedule. An initiator initializes the solution with all values to
zero. Then, solution improvement begins. An agent adds up
all schedules (known from a received message) from all other
agents. This is equivalent to subtracting one’s own schedule
from the aggregated solution. In a next step, the difference
vector ∆p = ζ − (pΣ − pA) of this sum to the desired
target schedule is determined. This difference represents the
optimal schedule for the current agent in the following sense:
if this schedule could be delivered by the respective DER
without violating technical constraints, the target could be
reached exactly. Therefore, the agent now determines the
nearest schedule to ∆p that is actually operable by the device.
This nearest schedule can be easily calculated with the help of
the mapping γ that has been described in the previous section.
Function γ maps an arbitrary schedule (in our case difference
schedule ∆p) into the region of feasible schedules and delivers
the respective operable schedule that is nearest to ∆p, because
it uses the shortest trace to the feasible region.

In this way, each DER agent chooses a schedule that is
a compromise of being feasible (automatically ensured by
mapping γ) and doing one’s own best in bringing forth the
overall solution towards the wanted adaption to the target
schedule as much as possible each time when it is the respec-
tive agents turn. By one after another, the overall solution (the
aggregated schedule) is successively improved. Applicability
to asynchronous update has been shown in [21]. If the objective
is to adapt to a given target schedule, the only information that
has to be passed around (or made globally available) is the
aggregated overall solution (as sum of all local solutions) and
the desired target schedule. This is sufficient as each agent may
remember his own local schedule that has been determined
previously. All other information can be determined by local
information.

So far, neglecting grid requirements is the major drawback
of this approach. The same holds true for many other algo-
rithms even in many-objective cases, e. g. [34], due to the high
computational complexity of this objective. Evaluating grid
compliance as objective encompasses solving complex load
flow computations in every evaluation of a schedule choice
during the main scheduling task.

IV. CMA-ES FOR DECIDING ON GRID OPTIMAL
SCHEDULES

In the field, power quality comprises a wide range of
criteria and effects starting from high-frequent, transient effects
[35]. We will focus here on steady state criteria using the
example of voltage band restrictions and maximum current.
Although our approach is not restricted to a specific timely
resolution, our simulations are conducted in 15-minute time
slots with averaged power as usual in contemporary energy
markets.

In steady state, power flow analysis is used for calculating
nodal voltage and currents based on nodal power (demand and/
or feed-in). When the grid is operating in steady state, power
flow analysis gives insight into power flow under specified
conditions described by a set of non-linear equations [36].
Usually, iterative methods are used for solving the system of
equations. Given are active and reactive power for each node



Fig. 2. Example result for a scenario with 50 chp and 96-dimensional schedules. The top chart shows target and aggregated (optimization result) schedule.
The second chart emphasizes the residual error (absolute deviation to the target). The lower charts show the individual schedules and the resulting temperatures
in the thermal buffer store. Allowed ranges defined by several constraints are highlighted by the grey area.

loop
wait for message
if message then
PA ← pAin

, denoting the so far selected schedules of all agents A ∈ A
po ←

∑
PA − pA

initialize CMA-ES
while no stopping criterion met do

generate new solution population S after CMA-ES sampling
for all x ∈ S do

calculate genotype px ← γ(x)
determine error δp = δ(po + x, ζ)
P ′

A ← PA; P ′
A[i]← x

calculate grid objective δG = g(G,P ′
A) with Newton-Raphson

evaluate solution candidate x by weighting error δp and objective δG
end for
update covariance matrix and step sizes according to CMA-ES approach

end while
send best found solution to neighboring agents

end if
end loop

Fig. 3. Improved decentralized greedy with grid objectives for decision.

in the grid. The goal is to obtain angle and magnitude of the
voltage for each node. Based on the voltage information, power
flow can be determined in a subsequent step. The Newton-
Raphson approach [37], [38] starts with an educated guess
for the unknown voltage parameters and by constructing the
following system of linear equations:(

∆θ
∆|V |

)
= −J−1

(
∆P
∆Q

)
, (4)

Where ∆P and ∆Q are given by Taylor series with N terms

∆Pi = −Pi +

N∑
k=1

|Vi| · |Vk| · (<Ȳik cos θik + =Ȳik sin θik)

∆Qi = −Qi +

N∑
k=1

|Vi| · |Vk| · (<Ȳik sin θik −=Ȳik cos θik)

(5)

With <Ȳik and =Ȳik denoting real and imaginary part of
the respective entry in the nodal admittance matrix Ȳ . The
Jacobian J is used to iterate the solution towards the root
with the Newton-Raphson iteration scheme [36]. For solving
the load flow problem, several solvers are readily available
[39], [38], [40], [41], [42].

Let the grid be defined by G = (N,L) with the set of
nodes N and a set of lines L = (`, R,X,C) with length
`, resistance R, reactance X and capacity C. Each node
Ni is characterized by the power drawn from or fed into
the grid at node Ni. We extend the mere check for grid
compliance to optimizing grid friendly behavior of the group
of units. As this is a rather vague requirement, we introduce
an additional objective δG = g(G,PA) that is to be minimized
alongside with objective Eq. (3). PA is a matrix with each row
corresponding to the schedule of one agent, thus defining feed-
in for each node for each time interval. Objective g may reflect
the number (and height) of grid compliance violations. For our
experiments we have chosen to minimize deviations from the
voltage band and minimize current flow on specific lines. In
general, other definitions of g can be easily exchanged within
the agent-based approach. In this work we focus on issues of
technical integration into the distributed algorithm.

Thus, we extend the decision procedure of an agent from
mere determining a nearby feasible schedule next to the
theoretical optimal one (cf. Fig. 1) to an internal optimization
problem. Let x ∈ Rd be an arbitrary schedule as an internal
representation (genotype); x does not obey any constraint.
Then the new schedule selection of an agent is determined
by

pA ← arg min d(x) = w ·δ(po+γ(x), ζ)+(1−w) ·g(G,PA)
(6)

Here, parameter w ∈ [0, 1] denotes a weighting of both
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Fig. 4. Sensitivety to the weight w for balancing power balance and grid criteria. On the left: relative error (residual error relative the case of zero weight with
completely disregarding the respective criterion) for different weightings when integrating weight merely into objectiv function; in the middle: relative residual
error of each criterion for extended decision functions; on the right: the case of minimizing current flow.

objectives. The first term denotes resemblance of the given
aggregated schedule (sum of the aggregation of all others’
schedules and a candidate schedule x chosen form the re-
spective flexibility by γ) to the desired target schedule ζ. The
second term incorporates a grid objective (e. g. voltage band
violation or max. current exceed) described by function g.
Both are to be minimized with different emphasis described
by weighting w.

Optimization problem Eq. (6) has to be solved for every ob-
jective decision procedure. Due to the non-linear character of
g, a heuristics is most suitable for solving. As the formulation
contains no constraint due to the usage of a decoder function γ,
in general any evolutionary algorithm may be used. We decided
to use the covariance matrix adaption evolution strategy [43],
[44] (CMA-ES), because of its proved efficiency. CMA-ES as
strategy for solving the decision problem is known to perform
well while using only a small number of objective evaluations
[45], [46].

CMA-ES aims at learning lessons from previous successful
evolution steps for future search directions. A new population
is sampled from a multi variate normal distribution N (0,C)
with covariance matrix C which is adapted in a way that
maximizes the occurrence of improving steps according to
previously seen distributions for good steps. Sampling is
weighted by a selection of solutions of the parent generation. In
a way, the method learns a second order model of the objective
function and exploits it for structure information and for reduc-
ing calls of objective evaluations. An a priori parametrization
with structure knowledge of the problem by the user is not
necessary as the method is capable of adapting unsupervised. A
good introduction can for example be found in [47]. Especially
for non-linear, non-convex black-box problems, the approach
has shown excellent performance [47]. CMA-ES is initially
not designed for integrated constraint handling in constrained
optimization. Nevertheless, some approaches for integrating
constraint handling have been developed. In [48] a CMA-ES is
introduced that learns constraint function models and rotates
mutation distributions accordingly. In [49] an approximation
of the directions of the local normal vectors of the constraint
boundaries is built by accumulating steps that violate the
respective constraints. Then, the variances of these directions
are reduced for mutation.

Unfortunately, these approaches are not applicable for in-
tegration into agent-based decisions as the optimization model

has to be built on the fly and fully automatically according to
information that is received by the agent. Thus, we employed
the decoder technique.

In the original implementation, the greedy agent algorithm
decides on the best possible schedule for its own energy unit by
using a decoder and thus delegating the internal optimization
(finding the best from the own set of flexibility) to a single
decoder function call. The same holds true e. g. for COHDA.
Searching the best feasible schedule from own flexibilities
including grid objectives, on the other hand, involve solving a
complete optimization problem. In this way, in each call of the
decision routine of an agent, and thus for each evaluation of the
objective function of the predictive scheduling (3) an internal
optimization problem has to be solved; making evaluation
rather slow. For this reason, an optimization approach is
needed that draws performance from substituting objective
function calls from quicker surrogate models. Fig. 3 shows the
general process for a single agent participating in the extended
approach using CMA-ES for local decisions.

V. SIMULATION RESULTS

A. Setup

As a model for distributed energy resources we used a
model for co-generation plants that has already served in
several studies and projects for evaluation [3], [33], [50], [23],
[51]. This model comprises a micro CHP with 4.7 kW of
rated electrical power (12.6 kW thermal power) bundled with
a thermal buffer store. Constraints restrict power band, buffer
charging, gradients, min. on and off times, and satisfaction of
thermal demand. Thermal demand is determined by simulating
a detached house (including hot water drawing) according to
given weather profiles. For each agent the model is individually
(randomly) configured with state of charge, weather condition,
temperature range, allowed operation gradients, and similar.
From these model instances, the respective training sets for
building the decoders have been generated with the sampling
approach from [52].

All algorithms have an individual, strategy specific set
of parameters that usually can be tweaked to some degree
for a problem specific adaption. Nevertheless, default values
that are applicable for a wide range of problems are usually
available. For our experiments, we used the following default
settings for the CMA-ES. The (external) strategy parameters



are λ, µ,wi=1...µ, controlling selection and recombination; cσ
and dσ for step size control and cc and µcov controlling the
covariance matrix adaption. We have chosen to set these values
after [47]:

λ = 4 + b3 lnnc, µ =

[
λ

2

]
, (7)

wi =
ln(λ2 + 0.5)− ln i∑j=1
µ

λ
2 + 0.5)− ln i

, i = 1, . . . , µ (8)

Cc =
4

n+ 4
, µcov = µeff , (9)

Ccov =
1

µcov

2

(n+
√

2)2

+

(
1− 1

µcov

)
min

(
1,

2µcov − 1

(n+ 2)2 + µcov

)
.

(10)

These settings are specific to the dimension N (in our case:
schedule dimension d) of the objective function. An in-depth
discussion of these parameters is also given in [53].

As grid topology, so far we considered all CHP being
on a single line (each CHP as a node, one as slack node)
and scrutinized the voltages at every node as well as the
current flows in each connecting line (specified as �120 mm2,
R=0.253 Ω/km, X=0.0804 Ω/km, Imax=240 A). Consumption
at each node was generated randomly at the level of rated
power of the CHPs and kept constant for each experiment run.
Variable feed-in is given by the CHP.

B. Results
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Fig. 5. Convergence behavior of different problem sizes and 16- 5(a) and
96-dimensional 5(b) schedules. One iteration denotes the execution of one
agents’ decision procedure.

With our simulations we first tested the effect of replacing
the decision making part of an agent with an optimization
approach. As grid objective we w.l.o.g minimized the deviation
from rated voltage at node 4. Figure 4 shows the remaining
error for each objective after optimization depending on the
value of weight w (relative to the worst result). Figure 4(a)
shows the result for integrating the new objective function
(6) merely as objective in the original agent-based approach
from [21]. Figure 4(b) shows the same experiment with the
new decision procedure based on an integrated CMA-ES
as decision procedure. As can be seen, the effect on the
(dominant) main objective of resembling the target schedule
does not degrade. Note, a weight of w = 0 denotes a complete
neglecting of the main objective; w = 1 optimizes only the
main objective. Figure 4(b) shows a way better improvement
for the grid objective for the new decision routine (up to a

residual error of 85% instead of mere 98% as in Fig. 4(a)).
Figure 4(c) shows the result for minimizing the current flow
on line 3.

Looking at convergence behavior, the algorithm with im-
proved decision procedure converges almost as quick as had
been reported for the original algorithm [21] in terms of
iterations. Figure 5(a) shows some results for different problem
sizes (number of units) and 16-dimensional schedules. The
term iteration in these simulations refers to the number of
decision procedures that are executed by the agents. Specifi-
cally for this simulation the agents are executed synchronously
to enable solution quality measurement after each decision.
The algorithm converges quick because the decoder takes
over a share of the optimization work by delivering good
solutions directly without a need for unsupervised search.
Regarding achievement of the main objective (resembling the
wanted target schedule), the same seems to hold true for the
improved version here when counting iterations. Figure 5(b)
shows a second example with 96-dimensional schedules. The
dimensionality of the schedules has a minor effect because
the decoder delivers improvements for every dimension in the
schedule at once. Thus, the performance of our proposed inte-
gration of grid objectives depends mainly on the performance
of executing the sub-optimization process inside the decision
procedure.

Several factors have an impact on the performance of the
CMA-ES optimization process inside the decision procedure.
Thus, Table I lists several results of simulation runs with
different parametrizations. Depicted are means and standard
deviations of 25 simulation runs each. Each run was initialized
with randomly generated CHP-models (uniform distributed
buffer and outdoor temperatures). For the thermal demand, two
classes of CHP have been used: one with randomly generated
thermal demand for each time period and one class with a
thermal demand following standard profiles. Load at each node
has been randomly generated normal distributed with rated
generation as expectation and 1 kW as variance once for each
experiment and was then kept constant for all simulation runs.

The simulations have been conducted for several combi-
nations of number of CHP n, dimensions of schedules d,
weighting w, and a threshold ε as an additional stopping
criterion for the CMA-ES. Successive improvements below ε
(stall of the algorithm) lead to an abort and the result was
considered good enough.

Table II show an additional experiment with all parameters
kept constant (n = 5, d = 16, w = 0.2) except for ε showing
the huge potential for saving CMA-ES objective function
evaluations and thus Newton-Raphson load flow calculations
without significantly decreasing the quality of the final solu-
tion. The situation does not shift before ε = 0.1. Nevertheless,
several thousand power flow calculations are still challenging.
Thus, future work should try to replace the Newton-Raphson
calculations with probabilistic, estimating approaches.

VI. CONCLUSION

Power flow optimization had long since been integrated
into classical economic dispatch algorithms for traditional
unit commitment. On the other hand, changes in the grid by
a steadily growing pervasion with renewable energy and a



TABLE I. COMPARISON OF OBJECTIVE EVALUATIONS FOR DIFFERENT SETTINGS OF NUMBER OF CHP n, SCHEDULE DIMENSION d, WEIGHT w AND
QUALITY THRESHOLD ε. THE NUMBER OF EVALUATIONS DENOTES THE ABSOLUTE NUMBER OF GRID OBJECTIVE EVALUATIONS (NOTE THAT FOR EACH
DIMENSION A NEWTON-RAPHSON POWER FLOW CALCULATION HAS TO BE CONDUCTED). ADDITIONALLY THE NUMBER DECISION PROCEDURE CALLS
AND THE RELATIVE NUMBER OF GRID OBJECTIVE CALCULATIONS PER DECISION PROCEDURE CALL AND THE ACHIEVED QUALITY (WEIGHTED SUM OF

BOTH PERCENTAGE ERRORS) ARE DENOTED.

# n d w ε decisions evaluations rel. evaluations quality

1 5 16 0.2 0.0001 19.00 ± 8.10 18038.90 ± 8337.95 942.16 ± 117.98 0.130 ± 0.029
2 10 8 0.2 0.0001 70.00 ± 24.94 38059.00 ± 15372.17 534.97 ± 52.48 0.255 ± 0.013
3 10 16 0.1 0.001 57.00 ± 025.84 32800.20 ± 15322.69 572.23 ± 18.35 0.258 ± 0.016
4 10 16 0.0 0.001 28.00 ± 9.19 16108.00 ± 5166.99 576.69 ± 12.13 0.264 ± 0.013
5 10 16 0.8 0.001 51.00 ± 21.83 31433.40 ± 14212.23 609.40 ± 30.99 0.228 ± 0.031
6 10 16 1.0 0.001 58.00 ± 23.47 36713.20 ± 14576.02 634.18 ± 45.50 0.259 ± 0.076
7 10 16 0.1 0.01 47.00 ± 23.11 20628.20 ± 10377.83 437.33 ± 25.92 0.271 ± 0.021
8 25 8 0.2 0.01 165.00 ± 47.43 26757.00 ± 7811.15 162.08 ± 6.23 1.817 ± 0.045
9 25 16 0.2 0.001 157.50 ± 44.17 37610.50 ± 10639.03 238.49 ± 5.36 1.756 ± 0.043

TABLE II. SENSITIVITY ANALYSIS REGARDING THE STALL
THRESHOLD ε THAT STOPS THE CMA-ES EARLY AS SOON AS SUCCESSIVE

ERROR IMPROVEMENT FALLS BELOWε.

ε decisions evaluations rel. evaluations quality

0.0 23.50 ± 5.30 116762.50 ± 26515.08 4966.57 ± 33.70 0.118 ± 0.022
0.0001 28.50 ± 16.67 18152.50 ± 11148.78 637.88 ± 85.69 0.138 ± 0.022
0.001 23.50 ± 11.56 7925.00 ± 4311.09 333.56 ± 37.58 0.133 ± 0.027
0.01 20.00 ± 7.07 3935.00 ± 1284.08 198.36 ± 16.51 0.167 ± 0.036
0.1 16.50 ± 9.14 234.50 ± 137.42 14.01 ± 1.64 409.186 ± 23.044

shift away from a strict ’load follows consumption’ paradigm
already started research on new control strategies. Due to the
strongly growing problem sizes, induced by the large number
of generators (bundled with small controllable consumers),
decentralized, self-organized approaches seem to be the most
promising technology to cope with scalability issues. So far,
grid objectives had scarcely been considered or integrated into
these new control strategies.

We developed an approach that for the first time inte-
grates grid objectives by optimizing grid friendly behavior into
decoder-based decentralized load planning.

Developing specific criteria for evaluating grid compliance
or rather grid friendly behavior has so far not been in the
scope of this work. Here, future research will still have to
be conducted. We presented a framework for integrating such
criteria into distributed scheduling procedures with the hybrid
approach of integrating CMA-ES many-objective optimization
into an agent’s decision routine and thus enabled an easy
integration of such grid criteria.

REFERENCES
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of 31 algorithms from the black-box optimization benchmarking bbob-
2009,” in Proceedings of the 12th Annual Conference Companion on
Genetic and Evolutionary Computation, ser. GECCO ’10. New York,
NY, USA: ACM, 2010, pp. 1689–1696.

[47] N. Hansen, “The CMA Evolution Strategy: A Tutorial,” Tech. Rep.,
2011. [Online]. Available: www.lri.fr/∼hansen/cmatutorial.pdf

[48] O. Kramer, A. Barthelmes, and G. Rudolph, “Surrogate constraint
functions for cma evolution strategies,” in Proceedings of the 32Nd
Annual German Conference on Advances in Artificial Intelligence, ser.
KI’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 169–176.

[49] D. V. Arnold and N. Hansen, “A (1+1)-cma-es for constrained optimi-
sation,” in Proceedings of the 14th Annual Conference on Genetic and
Evolutionary Computation, ser. GECCO ’12. New York, NY, USA:
ACM, 2012, pp. 297–304.

[50] J. Neugebauer, O. Kramer, and M. Sonnenschein, “Classification cas-
cades of overlapping feature ensembles for energy time series data,”
in Proceedings of the 3rd International Workshop on Data Analytics
for Renewable Energy Integration (DARE’15), ECML/ PKDD 2015.
Springer, 2015.

[51] A. Nieße and M. Sonnenschein, “Using grid related cluster schedule
resemblance for energy rescheduling - goals and concepts for reschedul-
ing of clusters in decentralized energy systems.” in SMARTGREENS,
B. Donnellan, J. F. Martins, M. Helfert, and K.-H. Krempels, Eds.
SciTePress, 2013, pp. 22–31.

[52] J. Bremer and M. Sonnenschein, “Sampling the search space of energy
resources for self-organized, agent-based planning of active power
provision,” in EnviroInfo, 2013, pp. 214–222.

[53] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evol. Comput., vol. 9, no. 2, pp.
159–195, Jun. 2001.


