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Abstract—Machine learning for complex multi-objective prob-
lems (MOP) can substantially speedup the discovery of solutions
belonging to Pareto landscapes and improve Pareto front accu-
racy. Studying convergence speedup of multi-objective search on
well-known benchmarks is an important step in the development
of algorithms to optimize complex problems such as High Energy
Physics particle transport simulations. In this paper we will
describe how we perform this optimization via a tuning based
on genetic algorithms and machine learning for MOP. One of
the approaches described is based on the introduction of a
specific multivariate analysis operator that can be used in case of
expensive fitness function evaluations, in order to speed-up the
convergence of the ”black-box” optimization problem.

I. INTRODUCTION

Modern fundamental science requires the development of
complex experimental machines like the LHC in High En-
ergy Physics or land and space based x-ray and gamma-ray
telescopes in High Energy Astrophysics. Other examples can
be found in the fields of protein synthesis, gene regulation
research on genome evolution. All these activities generate
large data sets and require the development of new approaches
and methods for their efficient analysis on modern computer
platforms.

In the point of the work on analyzing and optimizing the
performance of the GeantV code [1], which is the prototype
of the next-generation particle transport simulation software
intended to succeed to Geant4 [2], which is the current
golden standard in high energy physics (HEP) and beyond.
Geant4 is a toolkit for simulation of the passage of particles
through different kinds of matter, with application including
high energy and nuclear physics, accelerator physics, medicine
and space science. It is widely used in HEP experiments at
the Large Hadron Collider (LHC) located at CERN (Geneva,
Switzerland).

One of the objectives of the GeantV project is to achieve
good performance on a wide range of modern computing
architectures with good scalability for complex computations.
This is important since Geant4 is the single program consum-
ing the largest share (50%) of the CPU cycles used for HEP.
This code was developed in the 90s and it is now not well

suited to take advantage from the latest CPU and accelerator
architectures.

The GeantV project started in 2013, following an R&D
phase focused on optimal exploitation of instruction level
parallelism for particle transport simulation both on CPU and
on accelerators such as GPUs and Intel Xeon Phi R©. Emphasis
has been put on the optimization of cache usage by careful
management of data locality [3]. GeantV is getting signifi-
cant benefits via a specially developed computational solid
geometry (CSG) modeler, which provides a set of optimized
shape primitives and highly parallel geometry navigator. This
provides GeantV with the necessary ray-tracing functionality
for the efficient propagation of particles through the target
geometry [4].

The GeantV project is recasting the simulation algorithms
to get maximum benefit from SIMD/MIMD architectures on
highly massive parallel systems [5]. This involves finding the
optimal balance of several factors influencing computational
performance (floating-point performance, off-chip memory
bandwidth, usage of cache and memory hierarchy and etc.).
As a consequence, a large number of parameters have to be
optimized. This optimization task can be treated as a black-
box problem, which requires searching the optimum set of
parameters using only point-wise function evaluations.

In our optimization work, we consider particle transport
simulation to be a complex heuristic parametric model with
costly evaluations and unpredictable behavior of fitness land-
scape, that we intend to optimize using stochastic search
algorithms. The objective of this work is to observe whether,
by using unsupervised machine learning, we can accelerate
the process of finding a Pareto front describing dominance
relations between fitness functions.

Results described in this article is part of the research on
the ”black-box” optimization of GeantV as a multi-objective
problem for performance measurements. Combining together
genetic algorithm and machine learning approach we will try
to discover special behaviors and fixed points of evolutionary
systems, trying to accelerate convergence rate of algorithm for
”black-box” optimization. Before going to optimize GeantV
simulations, we will try to prototype algorithm’s performance



on a set of numerical DTLZ benchmarks [6] in order to
accelerate their convergence to the true Pareto front via
the integration of multi-objective search/optimisation (MOO)
algorithms and unsupervised machine learning (PCA).

II. THEORY

A. Genetic algorithms

Theory of genetic algorithms was a subject of research
for the last decades. For reason of suitable representation we
will use a simple model of genetic algorithm (SGA) [7] as
a prototype of evolutionary system. This model is describing
genetic algorithm (GA) as a dynamical system with accurate
mathematical definitions and well studied in a literature.

GA evolution can be described as a Markov chain, where
states are populations and transition are operated by sets
of genetic operators: selection, crossover and mutation [8].
Mutation ensures that the Markov chain is connected: therefore
there is an unique equilibrium distribution over populations.

In this scenario, the probability to produce a particular
population in one generation depends only on the previous
generation external influencing factors. This randomized pro-
cess is described by a Markov chain, characterized by a
transition matrix Q~q,~p from the population ~p to the population
~q.

Dynamical systems describe the evolution of individuals in
the finite space of possible populations of fixed size M , where
M is number of measurements during the experiment. While
rethinking the genetic algorithms as a discrete dynamical sys-
tem, many interesting mathematical objects like fixed points
could be found. These objects are apparently not only generic
for simple genetic algorithms, but also general for optimization
problems. Let’s briefly recall the results presented in [7] and
establish the possible links with the task of optimizing our
parameters.

We have a population of N different types of individuals in
search sample space Ω. Each element of Ω can be thought of
as a ”unique individual” with a given fitness value defined by
the cost function.

A population consists of M -subsets (M � N ) each of
which contains vαi of the αi-type individual where i =
1, ...,M and defined by vector

~p ′ = (vα1 , vα2 , ..., vαM )t

where αi ∈ Ω. The size of the population is M̄ =
∑M
i=1 vαi .

We can redefine the population vector in the following form

~p = (p1, p2, ..., pN )t

where pα (pαi = vα1/M̄) is the probability of occurrence α-th
individual in the population vector ~p ′.

In this representation the repeated application of the genetic
algorithm gives a sequence of vectors ~p ∈ Λ where

Λ = {(p1, p2, ..., pN )t ∈ RN | 0 ≤ pα ≤ 1,

N∑
α=1

pα = 1}.

Λ is a set of admissible states for the populations. We can
consider Λ as a (N − 1)-dimensional simplex (a hyper-
tetrahedron).

If the current population is ~p, there is a certain probability
of producing individual α in the next generation. Let’s call
this probability as Gα(~p).

Map G : Λ→ Λ, where G(~p) =
∏
α∈ΩGα(~p), G(~p) ∈ Λ

could be considered as heuristic function. G(~p) is GA proce-
dure on ~p ∈ Λ and the map G is actually the composition of
three different maps: selection, mutation and crossover.
F : Λ → Λ define genetic selection operator. The α-th

component, Fα(~p), represents the probability of the appear-
ance of an individual of type α if the selection is applied
to ~p ∈ Λ. A selection operator chooses individuals from the
current population using the cost function vector, ~f ∈ RN ,
with fα = f(α), where α ∈ Ω. This generic type of selection
collects elements with probability proportional to their fitness.
This corresponds to a heuristic function

F (~p) =
diag (f) · ~p
~f t · ~p

,

where ~p ∈ Λ is the population vector, and diag (~f) is the
matrix with entries from ~f along the diagonal and zeros
elsewhere.
Û : Λ→ Λ defines the mutation, where Û is an N×N real

valued matrix with (α, β)-th entry uα,β > 0 for all α, β, and
uα,β represents the probability that individual β ∈ Ω mutates
into α ∈ Ω.

(Û · ~p)α is the appearance of an individual of type α after
applying a mutation to the population ~p.

Lets define crossover, as a map Ĉ : Λ→ Λ,

C(~p) = (~pt · Ĉ1 · ~p, ..., ~pt · ĈN · ~p)

for ~p ∈ Λ, where Ĉ1, ..., ĈN is a sequence of symmetric non-
negative N ×N real-valued matrices. Here Cα(~p) represents
the probability that an individual α is generated by applying
the crossover to population ~p.

Combining the selection, mutation and crossover maps we
obtain the complete operator G for the genetic algorithm (GA
map)

G : Λ→ Λ, G(~p) = Ĉ ◦ Û ◦ F (~p).

If we know the heuristic function G, we can write the tran-
sition matrix which is stochastic and based on the probability
of transforming the population ~p into the population ~q:

Q~q,~p = M̄ !
∏
α∈Ω

(Gα(~p))
M̄qα(

M̄qα
)
!

(1)

where Gα(~p) is probability of producing individual α in
the next generation and M̄qα is the number of copies of
individuals α in the population ~q, M̄ is the size of the
population.

As a brief review, the convergence properties of the simple
genetic algorithm evolution schema was properly explored in
the work [9]. While [10] showed that the convergence rate



of the genetic algorithm is determined by the second largest
eigenvalue of the transition matrix (1). The details of the
proof was performed for diagonalizable transition matrices and
transferred to matrices in Jordan normal form.

Another remarkable feature of the SGA is the presence of
a rich structure of fixed and metastable points (for a detailed
discussion see [8]).

Describing GA model through Markov chain representation
we try to discover ”hotspots” and find algorithmic or data
patterns that could be used for improvement of the GA.

For the optimization of the GeantV simulation, we identify a
set of optimization parameters important for the performance
of particle transport simulations (e.g. the size of vector of
particles to be transported or other significant design features)
and build the data matrix Xα,i = {(~xα)i} = {~xα} which
contains the values of these parameters. In this matrix index
i enumerates the tuning parameters (i = 1, ..., n) and index
α enumerates the number of measurements of the parameters
(α = 1, ...,M for M measurements), while in terms of GA
index α enumerates M individuals and the population vector
is constituted by (~x1, ~x2, ..., ~xM ).

Recall the data and probabilistic sample representation.
In the first case we can associate the vector based on
the measurements of the i-th parameter ~x ′i = {(~x ′i )α} =
{(~x ′i )1, (~x

′
i )2, ..., (~x

′
i )M}, where the component (~x ′i )α cor-

responds to the value of the i-th parameter in the α-th
measurement with the population vector (~x ′1, ~x

′
2, ..., ~x

′
n).

In the second case Pi(x) be the probability distribution
function of the measurements of the i-th parameter, with
normalization ∫ ∞

−∞
dxPi(x) = 1.

Using the previous strategy we associate the population vector

(~p1, ~p2, ..., ~pn) with (~x ′1, ~x
′
2, ..., ~x

′
n)

where
~pi = {(~pi)1, (~pi)2, ..., (~pi)M},

and the component (~pi)α is the probability to measure of the
i-th parameter value (~x

′
i )α in the α-th measurement.

One of the challenges of a Markov chain is to determine
the evolution of the components along an appropriate direction
for faster convergence to equilibrium. Using Principal Com-
ponent Analysis (PCA) allows to check the genetic algorithm
parameter sensitivity and the possible correlation between
parameters. For this we introduce a operator that will be based
on PCA and inverse PCA noise reduction operation for a
genetic algorithm’s optimisation of set of parameters.

We considered a possibility to improve the convergence
rate by adding to a standard set of GA operator’s (selection,
mutation, crossing), a new operator P̂ performing uncentered
PCA on the GA populations. We will analyze the result of
the implementation of the operator on the uncentered data
matrix on standard GA performance benchmarks. From the
experimental output we see that as in the SGA case [10],
the convergence rate of genetic algorithm depends on the

eigenvalues following the highest one, and for this reason the
proposed operator P̂ was applied on them.

B. Pre-processing and post-processing of data: Principal
Component Analysis and noise cleanup procedure

Usually PCA is used to analyze the covariance matrix in
order to reduce a complex data set (in our case performance
measurements) to a lower dimensional set. In this case PCA
is traditionally applied to the centered data matrix. In this
subsection we present a way that sort of PCA could be
implemented on an uncentered data matrix. This is particularly
convenient in the case of transformations of constrained data
measurements using genetic algorithms, which are in our case
highly constrained and multi-scaled performance parameters.
As a basis of ideas about the connection between the centered
and uncentered data matrix was used ideas from [11], [12].

As a data matrix we have a set of performance parameters,
while objective functions are represented in a set of the
cost functions evaluating performance efficiency of GeantV
simulations.

1) PCA for the centered data matrix. The elements of the
data matrix X̂ of size M×n are described through M -samples
of data from an n-dimensional space. In our case M is the
number of individuals in the generation and n is the size of
the individual (n is the dimension of vector of genes ~x =
{xi}, 1 ≤ i ≤ n).

Let ~xα = {(~xα)i}(1 ≤ α ≤ M, 1 ≤ i ≤ n) is α-th
individual of the population and

X̂(u) = {X(u)
α,i } = {(~xα)i}, (2)

be a uncentered data matrix, size M × n. Let us define the
centered data matrix X̂(c):

X̂(c) = {X(c)
α,i} = {X(u)

α,i − µi}, (3)

where µi is mean over M -individuals of i-th component of
the gene:

µi =
1

M

M∑
α=1

X
(u)
α,i , 1 ≤ i ≤ n, ~µ = {µi}. (4)

The centered data matrix defines the covariance matrix Σ̂

Σ̂ =
1

M
X̂(c) t · X̂(c) = {Σi,j} =

1

M
X

(c) t
i,α X

(c)
α,j (5)

with the matrix multiplication repeated induces imply summa-
tion. Similarly for the uncentered data matrix we obtain the
matrix of non-central second moments,

T̂ =
1

M
X̂(u) t · X̂(u) = {Ti,j} =

1

M
X

(u) t
i,α X

(u)
α,j (6)

In standard PCA terms lets define an orthonormal vector ~u1

(ui,1, i = 1, ..., n) for which the projection x(c)
u1,α of the vector

~x
(c)
α on ~u1 has the largest variance σ2

u1:

x
(c)
u1,α = ~x(c) t

α · ~u1 =

n∑
i=1

X
(c)
α,iui,1, ~u t1 · ~u1 = 1,



and

σ2
u1 =

1

M

M∑
α=1

[
n∑
i=1

X
(c)
α,iui,1

]2

Then the first principal component (PC) ~v(c)
1 is the lin-

ear combination with the largest variance: v(c)
α,1 = ~x

(c) t
α ·

~u1 = X
(c)
α,iui,1, where the n-dimensional vector ~u1 =

(u1,1, ..., un,1)T solves

~u1 = arg max
u

Var(~x(c) t
α · ~u), ~uT · ~u = 1.

The second principal component is the linear combination with
the second largest variance and orthogonal to the first principal
component, and so on.

To calculate PC it is convenient to consider the variational
problem. For ~v(c) = {v(c)

α } = {X(c)
α,iui} we have

Var(~v (c) ) =
1

M
~u t · X̂(c) t · X̂(c) · ~u = ~u t · Σ̂ · ~u (7)

and with the Lagrangian

L = ~u t · Σ̂ · ~u+ λ(~u t~u− 1).

The stationary condition is

∂L

∂~u
= 2Σ̂ · ~u− 2λ~u = 0, Σ̂ · ~u = λ~u.

This matrix equation has n solutions

Σ̂ · ~uj = λ
(c)
j ~uj , 1 ≤ j ≤ n,

where ~uj are eigenvectors of Σ̂ with the eigenvalue λ(c)
j and

~uj satisfy the orthonormality condition

~u ti · ~uj = δi,j , 1 ≤ i, j ≤ n, (8)

and
~u tj · Σ̂ · ~uj = λ

(c)
j . (9)

Then the direction with maximum variance is the eigenvector
with the largest eigenvalue. This procedure can be iterated to
get the second largest variance projection (orthogonal to the
first one), and so on.

From (7) we get:
a) for the variance of the i-th centered principal component

Var(~v
(c)
i ) = ~u ti · Σ̂ · ~ui = λ

(c)
i (10)

b) for the covariance of the i-th and j-th centered principal
components (i 6= j)

Cov(~v
(c)
i , ~v

(c)
j ) = ~u ti · Σ̂ · ~uj = 0. (11)

Let define Ui,j = ~uj = (ui)j , from (8) this matrix satisfies
the orthonormality condition

U t
i,i′Ui′,j = δi,j . (12)

Then in matrix form we have

Û t · Σ̂ · Û = Λ̂(c), Λ
(c)
i,j = λ

(c)
i δi,j , (13)

Let define V
(c)
α,j = {~v (c)

j } = {(v (c)
α )j}, where ~v

(c)
j – j-th

centered principal component. Then

V
(c)
α,j = X

(c)
α,iUi,j , 1 ≤ α ≤M, (14)

and the first principal component ~v (c)
1

v
(c)
α,1 = V

(c)
α,1 = X

(c)
α,iUi,1 = ~x(α) t

c · ~u1

if λ(c)
1 is the largest eigenvalue. From (12), (13) we have

V
(c) t
i,α V

(c)
α,j = MΛ

(c)
i,j = Mλ

(c)
i δi,j . (15)

It is convenient to define the new matrix V̄α,j

V
(c)
α,j =

√
MV̄

(c)
α,i Λ

(c) 1/2
i,j , (16)

where

Λ
(c) 1/2
i,j =

[
λ

(c)
i

] 1
2

δi,j ,

Then from (15) and (16) we obtain:

V̄
(c) t
i,α, V̄

(c)
α,j = δi,j ,

Using (16), (14) and (13) we have

V̄
(c) t
i,α X

(c)
α,kX

(c) t
k,β V̄

(c)
β,j = Λ

(c)
i,j = λ

(c)
i δi,j ,

then V̄ (c)
α,j is the matrix of eigenvectors (v̄

(c)
j )α of the matrix

K̂(c) = X̂(c) ·X(c) t of the size M ×M

K
(c)
α,β(v̄

(c)
j )β = X

(c)
α,kX

(c) t
k,β (v̄

(c)
j )β = λ

(c)
j (v̄

(c)
j )α.

From (14) we have

X
(c)
α,i = V

(c)
α,jU

t
j,i,

This relation allows to obtain the Singular Value Decomposi-
tion (SVD) [13] for the centered data matrix

X
(c)
α,i =

√
MV̄

(c)
α,i Λ

(c) 1/2
i,j U t

j,i. (17)

After dimension reduction the reverse PCA gives the output
data matrix X̃(c)

α,i:

X̃
(c)
α,i =

√
MV̄

(c)
α,i Λ̃

(c) 1/2
i,j U t

j,i = (18)

=
√
M

([
λ

(c)
1

] 1
2

V̄
(c)
α,1U

t
1,i + ...+

[
λ(c)
m

] 1
2

V̄ (c)
α,mU

t
m,i

)
.

if we retain m the principal components in the optimization
problem. The approximation of matrix X(c)

α,i is the matrix X̃(c)
α,i

of reduced rank m < n. This transformation is also known as
the discrete Karhunen-Loéve or the Hotelling transformation
[16].

Using the SVD representation (17) and (18) for the centered
data matrix we calculate the mean square error (the standard
error)

ηm =
1

nM

M∑
α=1

n∑
i=1

(X
(c)
α,i − X̃

(c)
α,i)

2 =

=
1

nM

M∑
α=1

n∑
i=1

(
√
M

n∑
k=m+1

√
λ

(c)
k V̄

(c)
α,kU

t
k,i

)2

=



=
1

n

n∑
k=m+1

λ
(c)
k .

Thus the minimum error is obtained if the covariance matrix Σ̂
has (n−m) smallest eigenvalues λ(c)

j , m+1 ≤ j ≤ n and the
Hotelling transformation can be considered as the ”eigenvalue
control parameter” approximation.

2)Uncentered PCA (uncentered data matrix case). In a
similar way, we can apply the PCA method for the uncentered
data matrix X̂(u). Let ~wj eigenvectors of the matrix of non-
central second moments

T̂ =
1

M
X̂(u) t · X̂(u) (19)

with the eigenvalue λ(u)
j

T̂ · ~wj = λ
(u)
j ~wj , 1 ≤ j ≤ n,

and satisfy the orthonormality condition

~w t
i · ~wj = δi,j , 1 ≤ i, j ≤ n,

then
~w t
j · T̂ · ~wj = λ

(u)
j , (20)

We define matrix Wi,j = ~wj = (wi)j that satisfies the
orthogonality condition

Ŵ t · Ŵ = Î .

From (20) we have

Ŵ t · T̂ · Ŵ = Λ̂(u), Λ
(u)
i,j = λ

(u)
i δi,j , (21)

~v
(u)
j is j-th uncentered principal component

v
(u)
α,j = X

(u)
α,iWi,j = ~x(u) t

α · ~wj
For the variance of j-th uncentered principal component we
obtain

Var(~v
(u)
j ) = σ2

w,j =
1

M

M∑
α=1

[
n∑
i=1

(X
(u)
α,i − µi)Wi,j

]2

=

= ~wj t · T̂ · ~wj −
(
~µ t · ~wj

)2
=

= (~µ)2

(
λ

(u)
j

(~µ)2
− cos2(~µ, ~wj)

)
,

where

µj =
1

M

M∑
α=1

X
(u)
α,j , 1 ≤ j ≤ n,

Similarly it can obtain [11]

Cov(~v
(u)
i , ~v

(u)
j ) = −(~µ)2 cos(~µ, ~wi) cos(~µ, ~wj),

and the cosine of the angle between the i-th column-centered
PC and the j-th uncentered PC is

cos(~v
(c)
i , ~v

(u)
j ) =

√√√√ λ
(c)
i

λ
(u)
i

cos(~ui, ~wj). (22)

Hence that for case of uncentered matrix we do not have a
simple relationship between the eigenvalues λ(u)

j and the vari-
ance j-th uncentered principal component (σw,j)

2 as for the
centered data matrix. However, this property is not essential
for the usage of the PCA method for the GA and in this case
it is convenient to apply the ”eigenvalue control parameter”
approximation. The idea is to use the PCA method for the
SVD representation of the uncentered data matrix.

Let V (u)
α,j = ~v

(u)
j = (v

(u)
j )α. Then

V
(u)
α,j = X

(u)
α,iWi,j , 1 ≤ α ≤M, (23)

and
V

(u) t
i,α V

(u)
α,j = MΛ

(u)
i,j = Mλ

(u)
i δi,j , , (24)

Let us define the matrix V̄α,j

V
(u)
α,j =

√
MV̄

(u)
α,i Λ

(u) 1/2
i,j , (25)

where

Λ
(u) 1/2
i,j =

[
λ

(u)
i

] 1
2

δi,j ,

From (24) and (25) we obtain:

V̄
(u) t
i,α, V̄

(u)
α,j = δi,j .

Again using (25), (23) and (20) we have

V̄
(u) t
i,α X

(u)
α,kX

(u) t
k,β V̄

(u)
β,j = Λ

(u)
i,j = λ

(u)
i δi,j ,

and then V̄
(u)
α,j is the matrix of eigenvectors (v̄

(u)
j )α of the

matrix K̂(u) = X̂(u) ·X(u) t of size M ×M

K
(u)
α,β(v̄

(u)
j )β = X

(u)
α,kX

(u) t
k,β (v̄

(u)
j )β = λ

(u)
j (v̄

(u)
j )α.

From (23) we obtain the representation for the uncentered
data matrix

X
(u)
α,i = V

(u)
α,jW

t
j,i, (26)

from which we get the SVD representation for the uncentered
data matrix

X
(u)
α,i =

√
MV̄

(u)
α,k Λ

(u) 1/2
k,j W t

j,i. (27)

Then using the ”eigenvalue control parameter” approximation
we get for the output data matrix X̃(u)

α,j of rang p

X̃
(u)
α,i =

√
MV̄

(u)
α,k Λ̃

(u) 1/2
k,j W t

j,i = (28)

=
√
M

([
λ

(u)
1

] 1
2

V̄
(u)
α,1W

t
1,i + ...+

[
λ(u)
p

] 1
2

V̄ (u)
α,pW

t
p,i

)
,

where the eigenvalue matrix Λ̃
(u)
i,j has rang p (λ

(u)
p+1 = λ

(u)
p+2 =

... = λ
(u)
n = 0).

We approximate X
(u)
α,i with rank n with the matrix X̃

(u)
α,i

which has rank p. This is the analog of the Hotelling trans-
formation.

Using the SVD representation we can estimate the mean
square error ηp for this approximation:

ηp =
1

Mn

M∑
α=1

n∑
i=1

(X
(u)
α,i − X̃

(u)
α,i )

2 =



=
1

Mn

M∑
α=1

n∑
i=1

√M n∑
k=p+1

√
λ

(u)
k V̄

(u)
α,kW

t
k,i

2

=

=
1

n

n∑
k=p+1

λ
(u)
k

Again the minimum error is obtained if the matrix of non-
central second moments T̂ has (n − p) smallest eigenvalues
λ

(u)
j , p+ 1 ≤ j ≤ n.
Analysis of eigenvalues in SVD representation of the un-

centered input data matrix X
(u)
α,i used as population in GA

can significantly accelerate the processes of finding the Pareto
front for the MOP. We verified this hypothesis for the standard
GA test problems [6].

Eigenvectors with the largest eigenvalues likely determine
the subspace of solutions of the MOP in which lies the Pareto
front. Using an iterative procedure for uncentered data matrix
from MOP we can faster converge to the optimal solution
subspace.

PCA-based genetic operator GP (~p) = P̂ ◦ Ĉ ◦ Û ◦ F (~p)
allows to check the genetic algorithms parameter sensitivity
and the possible correlation between parameters. We intro-
duced a new algorithmic step applied to generation modifica-
tion step that performs data transformation based on PCA and
inverse PCA noise reduction operation the set of parameters
used for GA.

C. Evolutionary schema performance improvement on an
NSGA-II example

NSGA-II [14] is considered to be one of the most common
GAs and it features fast non-dominance sorting procedure of
population and preservation of a good convergence rate to the
optimal Pareto set. The spread of best individuals is obtained
through a diversity preservation operation called crowding
distance and non-dominated ranking procedure.

NSGA-III [15] as a evolution of NSGA-II has more specific
algorithm schema based on reference point’s selection proce-
dure. Suppose that we are using a decent set of GA suitable
for black-box MOP with a computationally-expensive fitness
function (for example constrained or unconstrained NSGA-II
or NSGA-III algorithms). An important issue is the lack of
additional operators that could provide higher convergence to
the set of global optimum points. Adding specific operator that
can be regarded as a denoising factor for faster approximation
and convergence to the true Pareto front consisting of ideal
individuals, we can apply orthogonal transformation to be able
to discover strong patterns in data set.

III. RESULTS AND BENCHMARKING

The DTLZ problems [6] are a set of numerical MOP
benchmarks that are used for comparing and validating results
from different GA algorithms. We present results of the DTLZ
benchmarks [6] for NSGA-II and NSGA-II with PCA noise
cleanup operator. We recognized that currently NSGA-III is
outperforming NSGA-II but here results are provided as a

Fig. 1. Population distribution on 40th generation - NSGA-II - DTLZ3

Fig. 2. Population distribution on 40th generation - NSGA-II - DTLZ4

proof of concept. On Figure 1 – Figure 7 are presented the pa-
rameter distribution (mean and standard deviation values) and
cost function values behavior depending on used algorithms.
Comparing Figure 6 and Figure 7 where was applied noise-
removing procedure and Figure 3 and Figure 4 where was not,
we can observe faster convergence to the ideal values of the
parameters in the first case. Figure 7 and Figure 8 show the
first approach to Pareto front in combination with correct set
of parameters. In Figure 9, we represent results of the first
simple transport particle simulations, with promising results
of benefit already 20 % of run time of simulation comparing
to initial generations.

In next table you can find behavior of system on 40th
population (we are using variance to define how fast we are
providing noise cleanup procedure):

Benchmark Old alg. New alg. PF conv.
DTLZ1 0.3032 0.3034 Not converged
DTLZ2 0.1624 0.1344 Converged for both
DTLZ3 0.2942 0.1357 Converged for NSGAIIPCA
DTLZ4 0.2068 0.1357 Converged for NSGAIIPCA
DTLZ5 0.3076 0.2048 Converged for NSGAIIPCA

The next steps of our work will be to agree our concept
with the existence of fixed points in dynamical systems, to
re-evaluate a possible speedup comparing to other algorithms
together with the ”black-box” benchmarks [17] and port a new



Fig. 3. Pareto Front on 40th generation of NSGA-II - DTLZ4

Fig. 4. Pareto Front on 40th generation of NSGA-II - DTLZ5

Fig. 5. Population distribution on 40th generation of NSGA-II with prepro-
cessing of data - DTLZ4

algorithm as a part of the optimization framework for GeantV
particle transport simulations code.

IV. CONCLUSION

We have explored the possibility to combine stochastic
optimization methods and unsupervised machine learning to
obtain a powerful combination that speedup existing GA
algorithms. The combination of genetic algorithm and prin-
cipal component analysis helps to get better convergence
rate performing data set noise cleanup procedure based on
orthonormal transformations. Performance optimization based
on of tuning parameters of particle transport simulations using
the approach outlined here will help to free up computational
resources, change the algorithmic approaches used for job

Fig. 6. Population distribution on 40th generation - NSGA-II with prepro-
cessing of data - DTLZ4

Fig. 7. Population distribution on 40th generation - NSGA-II with prepro-
cessing of dataI - DTLZ5

Fig. 8. Pareto Front on 40th generation of NSGA-II with preprocessing of
data - DTLZ5

Fig. 9. Parameter benefit after tuning simplified particle transport simulation
application with NSGA-II and preprocessing of data

scheduling and provide energy-efficient solution granting the
same work proficiency.
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