
A Dynamic Cooperative Hybrid MPSO+GA on
Hybrid CPU+GPU fused Multicore

Wayne Franz, Parimala Thulasiraman
Department of Computer Science

University of Manitoba
Winnipeg, Manitoba, Canada

umfranz@cs.umanitoba.ca, {tulsi, thulasir }@cs.umanitoba.ca

Abstract—Todays multi-core architectures with accelerators
provide tremendous compute power. Population-based meta-
heuristic algorithms have proven particularly amenable to single
instruction multiple data (SIMD)-style parallelization due to the
fine-grained parallelism provided by these algorithms. While
SIMD hardware allows one to run large scale simulations,
obtaining better solution quality often requires a more thoughtful
reorganization of the search technique itself. In this paper, we
design a hybrid heuristic algorithm that dynamically alternates
between Multi-Swarm Particle Swarm Optimization (MPSO)
and Genetic Algorithm (GA) to improve solution quality. We
parallelize the hybrid algorithm on a hybrid multicore computer,
accelerated processing unit (APU) to improve performance. We
take advantage of the close coupling the APU provides between
CPU and GPU devices. Our hybrid algorithm results indicate an
improvement in average solution quality over Multi-Swarm PSO
across a set of standard mathematical optimization functions. We
study the effect and performance of switching between CPU and
GPU devices.

I. INTRODUCTION

Meta-heuristic algorithms are often used to approximate so-
lutions to problems which are normally very time-consuming
or difficult to solve exactly. These algorithms have become
popular in a number of fields, including science, engineering,
and NP-hard combinatorial optimization [18], [8], [1], [27]. In
this work, we study population-based meta-heuristics, which
maintain a large group of candidate solutions and iteratively
adjust them according to a set of predefined update equations.
This allows the algorithms to perform a semi-directed search
of the solution space of an optimization problem.

Meta-heuristic algorithms are susceptible to becoming
”stuck” in locally optimal solutions. If these local optima
do not represent the global best solution to the problem, the
algorithm returns a very inaccurate result. As a result, one of
the primary goals in meta-heuristic research is improving the
robustness (average performance across a range of problem
types) of algorithms. To date, work has demonstrated that sin-
gle algorithms have particular difficulty with high dimensional
solution spaces [22], [25]. Improved results are usually ob-
tained by algorithms that introduce a local search technique or
combine multiple different algorithmic approaches [11], [28].
In the case of the latter, increasing solution quality requires
organizing and controlling multiple algorithmic techniques in
such a way that the candidate solutions adhere to a controlled
convergence rate as they approach the global optimum.

Meta-heuristic algorithms with the tremendous amount of
parallelism are suitable for implementation on discrete GPU
platforms. Chen [2] proposed a crossover strategy using par-
ticles personal best positions. This eliminates the need for a
mechanism to select fitter particles for crossover. Every given
number of iterations, particles are reset to their personal best
positions in order to increase the exploitation of the algorithm.
At the same time, crossover is performed by placing a child
particle at the midpoint between the personal best position
of the current particle and the personal best position of a
randomly chosen particle. After tuning the algorithm, Chen
observed significant increases in solution quality (as high as
40%) over standard PSO for a set of standard multi-modal
benchmark functions.

Zhou and Tan [29], [30] constructed a GPU-based parallel
PSO algorithm with a mutation component. Mutation was
triggered when the health of the swarm declined below a
predefined threshold. A swarms health was defined by the
percentage of particles that attained a new personal best fitness
on each iteration. The algorithm yielded an increase in solution
quality over standard PSO, in addition to a significant parallel
speedup. However, the authors noted that it was necessary
to adjust the strength of the mutation operator to fit the
characteristics of the objective function.

Shi et al. [20], implemented two hybrid techniques. The
first, a PSO-GA-parallel-hybrid evolutionary algorithm (PG-
PHEA), maintains a single GA population and a single PSO
swarm in parallel, pausing after a designated number of iter-
ations to exchange particles and chromosomes between them.
The second, a PSO-GA-series-hybrid evolutionary algorithm
(PGSHEA), runs n PSO swarms at once. After a set number
of iterations, the best particles from each swarm are selected
and transformed into chromosomes for a new GA population.
The GA is run for a set number of iterations, at which point
the chromosomes are transferred back to their original PSO
swarms, and the process repeats. The authors observed that
PGPHEA and PGSHEA often produced higher solution quality
than standard PSO across a set of constrained and uncon-
strained mathematical optimization problems. However, they
also noted that the GA slowed down the hybrid algorithms,
and often required more time to find an optimal solution than
standard PSO.

Recently, to better utilize and take advantage of the het-



erogeneity of both CPU and GPU machines to maximize
performance there are some work in designing hybrid parallel
algorithms on these architectures [24], [12]. There are two
approaches: co-operative (CPU does the pre-processing step
before offloading to GPU) or concurrent (the work is subdi-
vided between CPU and GPU and they work concurrently).
To circumvent the latencies (especially memory and commu-
nication bandwidth) posed between multicores and GPU, the
AMD APU [4], [5], [16] is proposed as a viable architecture.

Talbi et al. [26] proposed hybrid heuristic evolutionary
algorithm on GPU using co-operative approach. Compared to
serial implementation, their algorithm produced 50x speedup.
Vidal et al. [17], proposed a hybrid heuristic algorithm that
does not use the CPU as a controller of tasks to GPU alone.
While genetic algorithm with hill climbing is executed on the
CPU in OpenMP, the systolic neighborhood algorithm is run
on the GPU. The hybrid algorithm improved solution quality
and produced 365x speedup on combinatorial optimization
problems.

In Franz and Thulasiraman [13], we studied two parallel
PSO-GA hybrid approaches on the accelerated processing
unit (APU), fused CPU-GPU architecture. The first, multi-
swarm PSO with mutation, crossover, and selection (MPSO-
MCS) integrated the three GA operators into the update phase
of PSO. Mutation was applied dynamically in response to
changes in the quality of the solutions in a swarm, while
selection and crossover were applied at regular intervals.
Multiple swarms were arranged in a ring topology that allowed
them to periodically exchange particles with their neighbours.
On an exchange, the best particles from each swarm replaced
the worst in the neighbouring swarm to the right. The second
approach, MPSO with GA-initialization (MPSO-GA), used
a GA to initialize the populations for a small number of
iterations, then switched to MPSO-MCS for the remainder of
the run. This is a static approach. The initial GA portion of
the algorithm was executed on the CPU, while the MPSO-
MCS phase ran on the GPU. Although this technique appeared
advantageous early in the run, the authors discovered that the
average final solution quality was not significantly different
from that of MPSO-MCS.

To address the solution quality, in [14], we constructed a
composite algorithm in which some swarms behaved like a
GA, and others like PSO. We implemented such an algorithm
and tested it in different configurations using the ring and star
topologies (shown in figure 1 below). In the ring topology,
each swarm is connected to a single immediate neighbour in
a clockwise fashion. On a swap, each swarm sends its best k
particles to its neighbour. The neighbour accepts these k best
particles and uses them to overwrite its own k worst particles.

In the star topology, each of the outer swarms is connected
(via a bi-directional link) to the central swarm. On a swap,
the central swarm sends its k best particles to each outer
swarm. The outer swarms accept these particles, and use them
to overwrite the k worst particles in their own populations. At
the same time, each of the outer swarms donates k

s−1 (where
s is the total number of swarms) of its best particles to the

central swarm. Collectively, the central swarm accepts k best
particles from the outer swarms, and uses them to overwrite
its k worst particles.

We showed that the topological communication structure of
the populations impacted the solution quality of the hybrid
algorithm.

(a) Ring (b) Star

Fig. 1: Swarm Topologies

In this paper, we improve the quality further by using a
dynamic approach. We develop a hybrid heuristic algorithm
that dynamically alternates between MPSO-MCS and GA
during execution. The swarms are organized in a ring com-
munication topology since it is better suited for parallelization
than the centralized star topology. The algorithm monitors the
convergence of the swarms and triggers the switch between
algorithms dynamically when the average fitness ceases to
improve.

In addition, in spite of the APU’s low latency interconnect,
passing control from CPU to GPU was found to cause a
synchronization delay significant enough that it proved more
efficient to run both portions of the algorithm on the GPU [13].
Therefore, we propose a co-operative approach by using the
CPU to evaluate the global fitness function and implementing
both parallel algorithms on the GPU in the Open Computing
Language (OpenCL) [15]. This allows us to take advantage of
the close coupling the APU provides between the CPU and
GPU devices.

II. APU AND OPENCL
The Accelerated Processing Unit (APU) is an AMD archi-

tecture which fuses together a CPU and GPU on a single die.
This layout allows the devices to share a single memory space.
On discrete GPU systems, data transfers between the host and
the GPU must travel across a PCI Express bus, which can
cause delays. By sharing a global memory space, transfers
may be eliminated altogether because one device may simply
pass a pointer to the other.

The APU we use for our experimentation is an AMD
Northern Islands GPU. In this device, hardware is organized
in a tree structure, with parallelism at each level [7]. The
GPU consists of multiple processors called compute units
(CUs). Our device has five. Each CU is really a composite
processor (streaming multiprocessor) that contains a number
of processing elements (PEs). All 16 PEs under the same CU
execute the same instruction in lock-step on different data
elements. Different CUs also execute the same instruction, but
they may not always be completely synchronized.



The Open Computing Language (OpenCL) [15] is a C-like
parallel language developed with the intention of providing
a standard for heterogeneous systems [6]. OpenCL refers
to threads as work-items. These are further bundled into
workgroups. Only work-items within the same workgroup can
synchronize or share information using local memory. It also
provides vector data types that pack multiple primitive types
into a single structure. Using these types can greatly assist
the compiler’s ability to pack instructions into the Very Large
Instruction Word (VLIW) format necessary for execution on
the PEs. OpenCL also allows us to run kernels written for the
GPU on the CPU [7]. When running such kernels on the CPU,
compute units map to processor cores, vector instructions use
SSE/AVX, and local memory is emulated using CPU cache.

III. DYNAMIC HYBRID-HEURISTIC ALGORITHM

In this section, we briefly describe the two algorithms,
MPSO-MCS and GA, we use to develop our hybrid heuristic
algorithm.

A. MPSO-MCS

MPSO-MCS [13] as is a multi-swarm PSO that integrates
the three GA operators, mutation, crossover, and selection
into the update phase of PSO. The particles are arranged
as multiple independent swarms in a ring topology. Every e
iterations, the y best particles from each swarm replace the y
worst particles of its neighbour to the right.

Each particle k maintains three pieces of information: a
position vector Xk, a personal-best position vector X́k, and a
velocity vector Vk. Each swarm j also maintains the position
of the best solution seen so far by any particle, X̂j . Particle
position is fed into a fitness function, which returns particle
fitness, fk, a measure of the quality of the candidate solution.
We also maintain f́k and f̂j , the particle-best and swarm-
best fitnesses, respectively. PSO operates iteratively. Particle
velocity is modified at each iteration i according to the
following equation [21]:

V i+1
k = ω∗V i

k +c1∗R1∗(X́k−Xi
k)+c2∗R2∗(X̂j−Xi

k) (1)

Positions are then updated using:

Xi+1
k = Xi

k + V i+1
k (2)

Here, R1 and R2 are vectors of random numbers between
0 and 1 (selected from a uniform distribution), while c1, c2,
and ω are user-defined weighting parameters used to balance
the forces exerted by each of the three terms in equation 1.

Pseudo-code for a sequential version of this MPSO algo-
rithm is shown in Algorithm 1. This code uses a simple ring
topology in which exchanges happen in a clockwise-fashion
around the structure.

B. Genetic Algorithm

Genetic algorithm operates by iteratively applying three
operators to the population of chromosomes: crossover, muta-
tion, and selection. The evolutionary process is repeated until
a stopping criteria is met. In this paper, we will refer to

Algorithm 1 Sequential MPSO Algorithm

1: Initialize particle positions and velocities
2: for iteration i = 0 to n− 1 do
3: for swarm j = 0 to s− 1 do
4: for particle k = 0 to p− 1 do
5: Calculate f ik from Xi

k

6: Set V i+1
k using (1)

7: Set Xi+1
k using (2)

8: Update best values (X́i+1
k , X̂i+1

j , f́ i+1
k , f̂ i+1

k ) if
necessary

9: if i mod e = 0 and i > 0 then
10: Overwrite y worst particles in swarm (j +

1) mod s with y best in swarm j
11: end if
12: end for
13: end for
14: end for

populations and chromosomes using the PSO terms “swarm”
and “particle”. Since our candidate solutions for GA and PSO
use the same representation (a simple array of floating point
values), both sets of terms are effectively equivalent.

We use tournament selection to randomly pick groups of
chromosomes (of the same size) from the population. In each
group, the individual with the best fitness is selected for
crossover and each group is independently executed in parallel.
We use simple single point crossover to recombine the parent
genes. Both parent chromosomes are split at a random index.
Recombination generates two new children by exchanging the
second halves of the segments.

Mutation makes small random changes to the genes in
chromosomes, with a predefined probability. We use a simple
uniform mutation strategy. This strategy allows mutation to
be omni-directional, as the magnitude of the change that is
applied to each gene may be either negative or positive. Each
gene in an individual is either mutated or not according to a
user-defined probability R ∈ [0, 1].

A high level overview of a GA is shown in Algorithm 2. The
threshold and max iters variables are user-defined parameters
that are assumed to have been set at the outset of the algorithm.
Line 1 initializes each chromosome ik, (0 ≤ k < n) in
the population P in a random fashion. These chromosomes
then undergo crossover (with selection) and mutation in the
while loop. The fitness function accepts an chromosome as
an argument and returns a number indicating its quality. In
Algorithm 2, these fitnesses are collectively referred to as F .
The stopping criteria (line 10) assumes that we are trying to
minimize the value obtained from the fitness function.

In order to dynamically switch between MPSO-MCS and
GA algorithms, we use an additional heuristic to detect when
stagnation (swarms becoming trapped in local optima) is
occurring. When all of the swarms in the system do not attain
a better global best, gbest, fitness position for a given number
of consecutive iterations, we switch algorithms.



Algorithm 2 Sequential Genetic Algorithm

1: P = {rand(i0), rand(i1), ..., rand(in−1)}
2: done = False
3: best index = −1
4: i = 0
5: while i < max iters and not done do
6: P ′ = crossover(P )
7: P ′ = mutate(P ′)
8: F ′ = {fitness(i0), fitness(i1), ..., fitness(in−1)}
9: P = P ′

10: F = F ′

11: best index = best fitness index(F )
12: done = fitness(P (ibest index)) ≤ threshold
13: i = i+ 1
14: end while
15: return best index

IV. PROBLEM SET

To evaluate the hybrid algorithm, we use the benchmark
functions presented in the CEC 2010 Special Session and
Competition on Large-Scale Global Optimization [23], de-
scribed below. These functions represent a wide range of
problem characteristics and allow us to measure the robustness
of the changes we introduce through hybridization.

Let x = (x1, x2, ..., xd) be a particle position vector. Let
o = (o1, o2, ..., od) be the globally optimal position. Define
z = x − o, the shifted global optimum. Then Table I shows
the benchmark functions and their properties. All functions are
minimization problems, with the global optimum positioned at
o.

The parameter m controls the degree of non-separability for
the composite functions [23]. We set m = 4 for this work. This
provides enough non-separability to afford a challenge for the
multi-swarm algorithm, but not so much that the global best
position is unattainable.

V. PARALLEL DYNAMIC HYBRID HEURISTIC ON APU

We evaluate the heuristic on the host (CPU) side after each
iteration, by mapping a pointer into the swarm-health buffer
(described below) in the GPU address space. This allows us
to examine the heuristic on the host side without any in-
memory copying. We use synchronization to ensure memory
is consistent when this pointer is mapped (we must stop the
GPU, read it’s memory with the CPU, and then decide whether
to continue based on the output of the heuristic).

In order to describe our parallel algorithm, we define the
following symbols: Let s be the number of swarms in the
system, p the number of particles per swarm, and d be the
number of dimensions in the solution space. We use the
counter-based parallel PRNG that is well-suited for the GPU
[19] that generates 264 parallel streams of random values, each
with a period of 2128.

We now describe the various steps in the algorithm and its
implementation on the GPU. We introduce two new kernels
(Mutation Restoration Kernel and Crossover and Mutation

Function Definition Modality Separability Rotation
F1 Felliptic(z) Uni Separable None
F2 Frastrigin(z) Multi Separable None
F3 Fackley(z) Multi Separable None
F4 Frot elliptic[z(P1 : Pm)] ∗ 106 + Felliptic[z(Pm+1 : Pd)] Uni Single-group

m-nonseparable
Single-group
m-rotated

F5 Frot rastrigin[z(P1 : Pm)] ∗ 106 + Frastrigin[z(Pm+1 : Pd)] Multi Single-group
m-nonseparable

Single-group
m-rotated

F6 Frot ackley [z(P1 : Pm)] ∗ 106 + Fackley [z(Pm+1 : Pd)] Multi Single-group
m-nonseparable

Single-group
m-rotated

F7 Fschwefel[z(P1 : Pm)] ∗ 106 + Fsphere[z(Pm+1 : Pd)] Uni Single-group
m-nonseparable

None

F8 Frosenbrock[z(P1 : Pm)] ∗ 106 + Fsphere[z(Pm+1 : Pd)] Multi Single-group
m-nonseparable

None

F9

d
2m∑
k=1

Frot elliptic[z(P(k−1)∗m+1 : Pk∗m)] ∗ 106 + Felliptic[z(P d
2
+1

: Pd)] Uni d
2m

-group
m-nonseparable

d
2m

-group
m-rotated

F10

d
2m∑
k=1

Frot rastrigin[z(P(k−1)∗m+1 : Pk∗m)] ∗ 106 + Frastrigin[z(P d
2
+1

: Pd)] Multi d
2m

-group
m-nonseparable

d
2m

-group
m-rotated

F11

d
2m∑
k=1

Frot ackley [z(P(k−1)∗m+1 : Pk∗m)] ∗ 106 + Fackley [z(P d
2
+1

: Pd)] Multi d
2m

-group
m-nonseparable

d
2m

-group
m-rotated

F12

d
2m∑
k=1

Fschwefel[z(P(k−1)∗m+1 : Pk∗m)] ∗ 106 + Fsphere[z(P d
2
+1

: Pd)] Uni d
2m

-group
m-nonseparable

None

F13

d
2m∑
k=1

Frosenbrock[z(P(k−1)∗m+1 : Pk∗m)] ∗ 106 + Fsphere[z(P d
2
+1

: Pd)] Multi d
2m

-group
m-nonseparable

None

F14

d
m∑

k=1

Frot elliptic[z(P(k−1)∗m+1 : Pk∗m)] Uni d
m

-group
m-nonseparable

d
m

-group
m-rotated

F15

d
m∑

k=1

Frot rastrigin[z(P(k−1)∗m+1 : Pk∗m)] Multi d
m

-group
m-nonseparable

d
m

-group
m-rotated

F16

d
m∑

k=1

Frot ackley [z(P(k−1)∗m+1 : Pk∗m)] Multi d
m

-group
m-nonseparable

d
m

-group
m-rotated

F17

d
m∑

k=1

Fschwefel[z(P(k−1)∗m+1 : Pk∗m)] Uni d
m

-group
m-nonseparable

None

F18

d
m∑

k=1

Frosenbrock[z(P(k−1)∗m+1 : Pk∗m)] Multi d
m

-group
m-nonseparable

None

F19 Fschwefel(z) Uni Fully
nonseparable

None

F20 Frosenbrock(z) Multi Fully
nonseparable

None

TABLE I: Benchmark functions and their properties [23].

Kernel) for the dynamic switching algorithm not existing in
the iterative, static version [13]. Due to space limitations we
do not provide the full implementation details of all the kernels
here.

A. Buffer Initialization

We maintain buffers to store the positions, velocities, fit-
nesses, personal-best positions, personal-best fitnesses and
swarm-best positions, allocated in GPU global memory.
Within the kernels, we may periodically shift portions of them
to faster local memory to use as a scratch space, or to constant
memory to improve single-element read access by multiple
threads.

The permuted benchmark functions require a permutation
P to shuffle the elements in the position vector. P is a
permutation of the sequence of all possible position indices:
(0 1 ... (d−1)). We generate P on the host using Durstenfeld’s
version [9] of the Fisher-Yates shuffle algorithm and store it
in a GPU-side global memory buffer. Similarly, we create an
orthogonal matrix M for the rotated benchmark functions. The
m × m matrix will be multiplied by the position vector to
rotate the function. Our matrix generation code is adapted from
a Java sample provided on the CEC website [3]. This code
creates a randomly initialized matrix and applies the Gram-
Schmidt process to make it orthogonal.

To improve performance, we store the matrix in column-
major order to allow the elements to be accessed contiguously,
to read chunks of four elements at a time and push them
straight through the processing elements four ALUs. We
generate the orthogonal matrix on the host in a host-resident,
GPU-accessible buffer. Next, we launch a GPU kernel that
reads this buffer and writes it to a GPU-resident buffer in
column-major order (matrix transpose).



We maintain a swarm health buffer to record the number of
consecutive iterations that each swarm has been unhealthy.
This buffer is an array of size s that is stored in global
memory. The dynamic switching algorithm also requires a
global memory buffer of size s to track the number of
consecutive iterations on which stagnation has occurred for
each swarm.

B. Particle Initialization Kernel

This kernel uses one work-item per particle dimension
(s∗p∗d work-items) to initialize the X and V vectors for each
particle. X is randomly initialized in the range [−xmax, xmax]
(see [23]). We initialize velocities to zero [10], and limit them
to the range [−xmax, xmax] - this clamping is done in the
update position and velocity kernel. Since the work-item-to-
data mapping is one-to-one, it is easy to use four-way vector
data types in this kernel, reducing the number of required
work-items by a factor of four.

C. Update Fitness Kernel

This kernel is our fitness function. Since our functions con-
tain summations (most with independent terms), it is advanta-
geous to assign multiple threads to cooperatively compute the
fitness of each particle. For complex functions (F4 − F20),
multiplying m components of the position vector by the
(m×m) orthogonal matrix is done using a minimum of m/4
threads (functions that require a permutation will have access
to more), and m2/2 local memory space. We use d/4 threads
per particle, with each thread handling four dimensions. The
execution of the kernel proceeds in three phases. In phase
1, all threads read four position values from global memory
and compute the values of the corresponding four terms of
the summation to fully utilize the 128-bit bus and perform
simultaneous arithmetic operations on all four values allowed
by the VLIW configuration. In phase 2, we combine all of the
partial results (for each particle) from phase 1 into a single
fitness value to local memory and perform a reduction using
the d/4 threads assigned to the same particle. Phase 3 sums
the two-element chunks that resulted from the reduction and
writes these final values back to the global memory fitness
buffer.

Note, that we cannot split particles across workgroups be-
cause threads operating on a single particle require local mem-
ory to communicate. We launch

(
256
(d/4) − (256 mod (d/4))

)
∗

d/4 threads per workgroup, where 256 is the maximum size
of a GPU workgroup for our device.

D. Update Bests Kernel

We update the particle-best and swarm-best fitnesses and
positions, launching one work-item per particle. The kernel
operates in two phases.

The first compares f́ i−1k and f ik for each particle k and
writes to local memory. If an update is required, each work-
item overwrites f́ i−1k and X́i−1

k in their global memory arrays.
The second phase performs a parallel reduction to find f̂ ij for
each swarm j and update it, if necessary. We reuse the local

buffer to perform a reduction, skipping over any unneeded
values. Finally, work-items cooperate to update X̂i

j .

E. Update Position/Velocity

Since Equation 1 allows each dimension to be calculated
independently, we launch a full s∗p∗d/4 work-items. Note that
in Equation 1, the same swarm-best positions (X̂i

j) are read
by all p ∗ d/4 work-items in a swarm j. Therefore, we place
them in constant memory to take advantage of broadcasting.

The mutation operation is implemented here. This kernel
uses one thread per dimension. We compute the new velocity
and position using equations (1) and (2). Next, with probability
β, we perform mutation on both position and velocity. The
resulting vectors are copied back to global memory to over-
write the previous iteration’s values. Implementing the new
mutation restoration mechanism also requires making several
changes in this kernel. We create new buffers to store the state
of the particles before mutation so that we can restore them
in the event that mutation is detrimental. Before we perform
the updates described above, we copy the previous iteration’s
fitnesses, velocities and positions to these new buffers.

F. Find Best/Worst Particles

In this kernel, we determine the indices of the particles
with the y best and y worst fitnesses in each swarm. This
information is stored in global memory buffers so that the
exchange can be done by the swap kernel (below). We map
one work-item to each particle. First, we copy the fitness
data from global memory to a local buffer of size p (buf1).
Next, we use two more local buffers of size p (buf2, buf3)
to perform a parallel reduction to find the best and worst
particles. Throughout this process, we maintain the particle
index of each fitness value by keeping two auxiliary local
memory arrays. Each time a value is moved in the reduction,
the move is mirrored in the corresponding auxiliary buffer.
After the reduction, we overwrite the best and worst values
in buf1 using a negative value, and omit them from future
reductions. Finally, we write the indices to global memory,
reset all of the buffers (copying original fitness data from
buf1 to avoid another global memory access), and restart the
reduction to find the second-best and second-worst particles.
This process is repeated y times. In total, five buffers of size
p are used.

G. Swap Particles Kernel

This kernel performs the actual particle exchange between
swarms, using the ring topology. We launch one work-item
for each dimension of every particle to be exchanged (s∗y ∗d
work-items for the ring topology). A portion of the best
particles in each swarm overwrite the worst particles in the
next swarm. Specifically, X , V , X̂ , and f̂ are overwritten.
Current fitnesses will be recalculated on the next iteration
before they are needed. In order to prevent multiple particles
from selecting the same partner to cross with, a random
permutation of particle indices, P = (0 1 ... (p − 1)) is
created. Each particle k crosses with P (k). We implemented



an intra-swarm method that crosses particles with with pbest
positions from other particles in their own swarm. We use
the ring topology to cross particles in swarm j with others in
swarm (j + 1) mod s.

H. Mutation Restoration Kernel

This is a new kernel that is introduced immediately
following the update fitness phase of the algorithm. Its
purpose is to restore the fitnesses, velocities and positions
of unhealthy swarms if the mutation performed on the
previous iteration was detrimental. Here, we map one thread
to every four dimensions and launch s ∗ p ∗ d/4 threads.
First, each thread checks to see if the swarm it corresponds
to is unhealthy (indicating that mutation was triggered on
the last iteration). If so, it compares the current fitness of
the particle to the pre-mutation fitness that was saved by the
update position and velocity kernel on the last iteration. If the
new fitness is worse, we restore the old position and velocity
from their saved buffers. Finally, one thread per swarm resets
the swarm health buffer element to zero.

I. Crossover and Mutation Kernel

We use tournament selection with a group size of t (with
replacement). We launch max(d/4, t/4) threads per particle.
For each particle, t/4 threads randomly select t particles and
perform a parallel reduction to find the one with the best
fitness. A two-way vectorized approach executes this reduction
using t/2 local memory.

Next, single-point crossover is performed with probability
γ. After randomly choosing a crossover point (this information
is shared by causing all threads operating on the same particle
to use the same counter values), half of the threads for each
particle read values from the left half of the first parent. The
other half read values from the right half of the second parent.
These reads are done in chunks of four to take advantage of our
memory bus width. Finally, one thread combines the chunks
in which the cross point lies.

Up to this point, all of our crossover chunks are stored
in registers. Performing mutation and crossover in the same
kernel allows us to avoid a write-back to global memory be-
tween the two operations. All threads apply uniform mutation
to their chunks of values. Finally, we write the values back to
the global memory position buffer.

The swapping and crossover operators both periodically
overwrite particles. Since both crossover and swapping are
applied every 100 iterations, their applications coincide on the
same iteration and were found to interfere with each other.
Since crossover is applied before swapping, some particles
that are crossed may immediately be overwritten in the swap,
before their fitness has been evaluated. Therefore we staggered
the application of crossover by 50 iterations.

a) Alternating:: Finally, on the host side, we obtain a
pointer to the stagnation buffer and check to see if all swarms
have a value greater than our threshold number of iterations.
If so, the alternate algorithm will begin on the following

iteration. Otherwise, the current algorithm will continue. This
host-device communication requires a synchronization barrier
before each check. This ensures that the host does not check
the buffer before the current algorithm’s latest iteration (run-
ning on the GPU) completes.

VI. RESULTS

The results for the dynamic hybrid algorithm are shown in
Table II. The first two columns in the table show the function
and average fitness across 20 runs (each run is allowed to
continue for 400000 iterations). The ”solve count” column
displays the number of runs on which the optimal solution was
found. For each run, we also record the iteration at which the
system-wide best fitness stopped improving. The ”Avg Solve
Flatline” column displays this value, averaged across those
runs in which the optimal solution was found (i.e the average
iteration at which the optimal solution was found). The ”Avg
Fail Flatline” column shows this value averaged across those
runs in which the optimal solution was not found (i.e. the
average iteration at which system-wide stagnation occurred).

Using some simple empirical tests, we found an acceptable
switch point for the algorithms near 1000 iterations. This
means that in order for a switch to occur, the entire system
must not attain a new global best, gbest, fitness value for a
minimum of 1000 iterations.

Fcn Avg Fitness Solve Count Avg Solve Flatline Avg Fail Flatline
F1 0.0000000000 ± 0.0000000000 20 547.5 -
F2 0.0000812054 ± 0.0003539660 19 2268.421143 8150
F3 0.0000009537 ± 0.0000000000 0 - 3032.5
F4 1487.1175537109 ± 5305.7036132813 0 - 22375
F5 0.0000000000 ± 0.0000000000 20 2532.5 -
F6 0.9536750913 ± 0.0000001788 0 - 2597.5
F7 0.0000000000 ± 0.0000000000 20 617.5 -
F8 0.0000763976 ± 0.0003330093 19 5431.579102 2800
F9 28.3636283875 ±52.1113624573 0 - 39677.5
F10 1.9836571217 ± 1.4924528599 0 - 24967.5
F11 0.0054430007 ± 0.0237130206 0 - 820
F12 0.0000000000 ± 0.0000000000 20 605 -
F13 1.0905876160 ± 0.0000000961 0 - 15485
F14 2975.0483398438 ± 4049.8256835938 0 - 39975
F15 8.4520912170 ± 2.8283038139 0 - 31735
F16 0.0920106918 ± 0.4010486901 0 - 2270
F17 0.0000000000 ± 0.0000000000 20 820 -
F18 4.8699765205 ± 7.7608213425 0 - 37597.5
F19 0.0000000000 ± 0.0000000000 20 1437.5 -
F20 0.5036863089 ± 2.1955180168 1 18150 25155.26367

TABLE II: Dynamic switching: solution quality.

Fcn Avg GA Runs Avg MPSO Runs Avg Total Time
F1 14.95 15.55 39.029573
F2 10.00 10.55 36.015223
F3 15.45 16.10 37.671725
F4 9.60 9.95 49.634658
F5 13.90 14.45 46.022383
F6 15.95 16.70 49.926449
F7 14.80 15.20 41.003188
F8 8.70 9.35 40.095976
F9 0.00 1.00 77.386322
F10 2.60 3.45 58.184283
F14 0.00 1.00 72.416916
F15 0.90 1.85 68.358946
F16 18.25 18.55 68.942839
F17 14.50 15.00 48.075199
F18 0.10 1.10 48.109142
F19 13.35 13.90 40.547843
F20 3.40 4.20 37.690814

TABLE III: Dynamic switching: execution time.



In general, the dynamically-switching hybrid performed
better than the static GA and MPSO-MCS algorithm in [13].
For functions F3, F4, F9, F11, F13, F14, and F18 this algorithm
also either tied or outperformed the MPSO-MCS algorithm in
terms of average solution quality.

Table III shows the cumulative amount of time for which
each component of the dynamic switching algorithm (GA or
MPSO-MCS) was executed, for each function. The synchro-
nization barriers required at each iteration (since we are using
the host to evaluate the switch heuristic) made this a time-
consuming algorithm.

We observed several interesting phenomena when compar-
ing the dynamic switching algorithm with the static approach:
For the F4 function, the dynamic switching algorithm achieved
better solution quality than the static algorithm, but slightly
poorer average solution quality than MPSO-MCS. Although
the function was not fully solved in any of the three algorithms,
we observed that both of the better performing algorithms
(MPSO-MCS and dynamic switching) flat-lined much later in
the run (about two times farther) than the static algorithm.

The average number of triggered mutation applications for
the MPSO-MCS algorithm was 2481.489746 ± 4.815617,
while the dynamic switching algorithm went through only
1975.179688 ± 384.816162 applications of mutation. The fact
that the latter number is smaller seems to suggest that the
swarms may be stagnating less often in the dynamic switching
algorithm. However, the larger standard deviation would seem
to indicate that this effect varies much more from run to run
than in the MPSO-MCS algorithm.

The F9 and F14 functions are elliptic-based functions. In
the dynamic switching algorithm the GA was never triggered
for these functions (note the high value of the average fail
flatline) because the stagnation did not occur. This suggests
that particles have not yet converged, and so switching was
not really necessary.

A. Speedup

Table IV shows the average time required to execute stan-
dard MPSO using a quad-core CPU, the average time required
using the GPU, and the resulting (relative) speedup. Due to
the length of time required to execute a simulation of this size
on the CPU, we limited the experiment to a representative set
of the benchmark functions. We notice that the CPU execution
times are higher than the GPU execution times.

Fcn Avg CPU time Avg GPU time Speedup
F1 379.3708 18.3397 20.69
F4 514.4256 28.8616 17.82
F9 742.7202 58.2920 12.74
F14 896.3262 52.9344 16.93
F20 304.1031 304.1031 16.87

TABLE IV: Relative Speedup.

This is because, it is important to remember that while
OpenCL allows us to run the same code and kernels on both
devices, the way in which the hardware executes this code
differs significantly between them.

First, for the CPU, the maximum workgroup size is 1024,
four times larger than the GPUs maximum of 256. Each core
will execute a workgroup using a single thread that iteratively
runs through each instruction across all work-items. In addi-
tion, the OpenCL compiler will attempt to pack instructions
into groups of four in order to employ SSE instructions.

Second, the CPU does not provide local or constant mem-
ory, so the runtime emulates it using regular system memory,
which is approximately two orders of magnitude slower. This
means that kernels will receive more detriment than benefit
from executing kernels containing local or constant memory-
based optimization.

Third, in order to compensate for the large difference in the
clock rates of the processor and the memory system, the CPU
must rely on the cache hierarchy. GPU kernels are not coded
with this in mind. When a CPU thread executes a workgroup,
it loops across all work-items for a single instruction at a time.
Therefore it is conceivable that the cache may become polluted
with data from other work items before moving on to the next
instruction.

We believe that this illustrates the importance of taking the
hardware architecture into account when studying metaheuris-
tic algorithms. As the architecture has a direct influence on the
execution time, the degree to which the algorithm is suited to
(or successfully adapted and optimized for) the architecture
can significantly sway its cost-benefit ratio. There may exist
some hybrid metaheuristic algorithms which would not be
practical (from the perspective of cost-benefit ratio) when run
on one particular architecture, but could be on others.

In spite of these factors, we believe that the speedups shown
in the table are large enough to demonstrate a clear benefit to
using the GPU at our swarm size and dimensionality.

VII. SOLUTION QUALITY VERSUS EXECUTION TIME

Metaheuristic algorithms’ main utility is trading solution
quality for execution time. Therefore in the event that mod-
ifications are made to improve the former, it is important to
measure the latter in order to ensure that the balance between
the two remains acceptable.

Table V presents a summary of the results for each of
the algorithmic variations we have tested, MPSO-MCS, Static
and Dynamic algorithms. The first column in the table was
obtained by averaging the time taken across 20 runs. This
was done independently for each function, and the results
were summed. The second column presents the sum of the
number of times the algorithm solved a function completely.
The maximum (best) possible value here is 400 (20 runs × 20
functions). Finally, the third column presents the ratio between
these two values (Time/Solve Count). This ratio allows us to
see the net effect of the trade off between execution time and
solution quality. Lower values indicate a more favorable cost-
benefit ratio, while larger values indicate that at least one of
the factors was negatively impacted to a larger degree. The
results are ordered on this column, from best to worst.

The table shows compared to the static hybrid algorithm,
the dynamic hybrid algorithm produced better solution quality



Alg Avg Time (sec) Avg Solve Counts Ratio
MPSO-MCS 692.258 167 4.145
Static 783.613 139 5.638
Dynamic 1012.061 159 6.365

TABLE V: Sum of average execution time per algorithm.

(solve count) but with a significant increase in execution time.
Unlike the static approach, the dynamic approach introduced
switching between algorithms that incorporated synchroniza-
tion between local and global memories, in order to maintain
memory coherency. We also observed that the MPSO-MCS
algorithm provides the highest solve count, with a moderate
increase in execution time. This is because the algorithm is
executed on the GPU only combining another algorithm’s
ideas (in this case genetic operators) into the heuristic.

VIII. CONCLUSION

In this paper, we developed a dynamically-switching parallel
hybrid heuristic algorithm on the APU. We applied a co-
operative approach in which the MPSO-MCS and GA were
implemented on the GPU using the CPU to co-ordinate
the tasks to the GPU. We observed the dynamic algorithm
produced better solution quality than the static algorithm at
the expense of execution time. Synchronization in unavoid-
able on the parallel machines. Combining two meta-heuristics
together, such as MPSO-MCS and implementing the algorithm
on the data parallel architecture such as the GPU maybe an
alternate way of designing parallel algorithms. This is for
future work.

REFERENCES

[1] Cantú-Paz, E.: A Survey of Parallel Genetic Algorithms. Calculateurs
Paralleles 10 (1998)

[2] Chen, S.: Particle Swarm Optimization with pbest Crossover. In: IEEE
Congress on Evolutionary Computation. pp. 1–6. Brisbane, Australia
(Jun 2012)

[3] Computation, N.I., of Science, A.L.U., of China, T.: Special Session
on Large Scale Global Optimization: 2010 IEEE World Congress
on Computational Intelligence. http://nical.ustc.edu.cn/cec10ss.php (ac-
cessed Feb. 19, 2014) (Nov 2009)

[4] Daga, M., Aji, A.M., Wu-chun Feng title = On the efficacy of a
fused CPU+GPU processor (or APU) for parallel Computing, booktitle
= Symp on Appl. Accelerators in HPC, m..J.y...:

[5] Daga, M., Nutter, M.: Exploiting coarse-grained parallelism in B+
tree searches on an APU. In: IEEE High Performance Computing,
Networking, Storage and Analysis (2012)

[6] Devices, A.M.: OpenCL: The Future of Accelerated Application Perfor-
mance Is Now. http://www.amd.com/us/Documents/FirePro OpenCL
Whitepaper.pdf (Accessed Sept. 2012) (2011)

[7] Devices, A.M.: AMD Accelerated Parallel Processing OpenCL Program-
ming Guide. http://developer.amd.com/download/AMD Accelerated
Parallel Processing OpenCL Programming Guide.pdf (Accessed July
2014) (Nov 2013)

[8] Dorigo, M., Stützle, T.: The Ant Colony Optimization Metaheuristic:
Algorithms, Applications, and Advances. In: Glover, F., Kochenberger,
G.A. (eds.) Handbook of Metaheuristics, International Series in Opera-
tions Research & Management Science, vol. 57, pp. 250–285. Springer
US (2003)

[9] Durstenfeld, R.: Algorithm 235: Random Permutation. Commununica-
tions of the ACM 7(7), 420 (Jul 1964)

[10] Engelbrecht, A.: Particle Swarm Optimization: Velocity Initialization. In:
2012 IEEE Congress on Evolutionary Computation. pp. 1–8. Brisbane,
Australia (Jun 2012)

[11] Fatih Tasgetiren, M., Liang, Y.C., Sevkli, M., Gencyilmaz, G.: Particle
Swarm Optimization and Differential Evolution for the Single Machine
Total Weighted Tardiness Problem. International Journal of Production
Research 44(22), 4737–4754 (2006)

[12] Feichtinger, C., Habich, J., Köstler, H., Rüde, U., Aoki, T.: Performance
modeling and analysis of heterogeneous lattice boltzmann simulations
on CPUGPU clusters. Parallel Computing 46, 1–13 (2015)

[13] Franz, W., Thulasiraman, P., Thulasiram, R.K.: Exploration/exploitation
of a hybrid-enhanced MPSO-GA algorithm on a fused CPU-GPU
architecture. Concurrency and Computation: Practice and Experience
(2014)

[14] Franz, W., Thulasiraman, P.: Effect of communication topologies on
hybrid evolutionary algorithms. In: Sixth World Congress on Nature and
Biologically Inspired Computing. pp. 232–237. Porto, Portugal (2014)

[15] Group, K.O.W.: The OpenCL Specification (v1.2) (Nov 2012)
[16] Nilakant, K., Yoneki, E.: On the efficacy of APUs for heterogeneous

graph computation. In: Fourth Workshop on Systems for Future Multi-
core Architectures. Amsterdam, Netherlands (2014)

[17] Pablo, V., Enrique, A., Francisco, L.: Solving optimization problems
using a hybrid systolic search on GPU plus CPU. Soft Computing (Jan
2016)

[18] Poli, R.: Analysis of the Publications on the Applications of Particle
Swarm Optimisation. Journal Artificial Evolution and Applications pp.
4:1–4:10 (Jan 2008)

[19] Salmon, J., Moraes, M., Dror, R., Shaw, D.: Parallel Random Numbers:
as easy as 1, 2, 3. In: Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis. pp.
16:1–16:12. Seattle, WA, USA (Nov 2011)

[20] Shi, X.H., Lu, Y.H., Zhou, C.G., Lee, H.P., Lin, W.Z., Liang, Y.C.:
Hybrid Evolutionary Algorithms Based on PSO and GA. In: The
IEEE Congress on Evolutionary Computation. vol. 4, pp. 2393–2399.
Canberra, Australia (Dec 2003)

[21] Shi, Y., Eberhart, R.: A Modified Particle Swarm Optimizer. In: Pro-
ceedings of the 1998 IEEE International Conference on Evolutionary
Computation. pp. 69–73. Anchorage, AK, USA (May 1998)

[22] Sinha, A., Goldberg, D.E.: A survey of hybrid genetic and evolutionary
algorithms. Tech. rep., University of Illinois at Urbana Champaign
(2003)

[23] Tang, K., Li, X., Suganthan, P.N., Yang, Z., Weise, T.: Benchmark Func-
tions for the CEC’2010 Special Session and Competition on Large-Scale
Global Optimization. Tech. rep., University of Science and Technology
of China (USTC), School of Computer Science and Technology, Nature
Inspired Computation and Applications Laboratory (NICAL): Héféi,
Ānhuı̄, China (2010)

[24] Teodore, G., Pan, T., Kurc, T.M., Kong, J., Cooper, L.A.D., Saltz, J.L.:
Efficient irregular wavefront propagation algorithms on hybrid CPU-
GPU machines. Parallel Computing 39, 189–211 (2013)

[25] Van, L.T., Nouredine, M., El-Ghazali, T.: Parallel hybrid evolutionary
algorithms on GPU. In: Proceedings of the IEEE Congress Evolutionary
Computation. pp. 1–8 (2010)

[26] Van, L.T., Nouredine, M., El-Ghazali, T.: GPU computing for parallel
local search meta-heuristic algorithms. IEEE Transactions on Computers
62(1), 173 185 (2013)

[27] Yang, X.S., He, X.: Firefly Algorithm: Recent Advances and Appli-
cations. International Journal of Swarm Intelligence 1(1), 36–50 (Jan
2013)

[28] Yang, X.S.: Engineering Optimization: An Introduction with Metaheuris-
tic Applications. Wiley Publishing, Hoboken, NJ, USA, 1st edn. (2010)

[29] Zhou, Y., Tan, Y.: GPU-Based Parallel Particle Swarm Optimization.
In: IEEE Proceedings of the Eleventh Conference on Congress on
Evolutionary Computation. pp. 1493–1500 (May 2009)

[30] Zhou, Y., Tan, Y.: Particle Swarm Optimization with Triggered Mutation
and its Implementation based on GPU. In: ACM Proceedings of the 12th
annual Conference on Genetic and Evolutionary Computation. pp. 1–8
(Jul 2010)


