
Explosive Hazard Detection with Feature and
Decision Level Fusion, Multiple Kernel Learning,

and Fuzzy Integrals
Anthony J. Pinara, Joseph Riceb, Timothy C. Havensa,b,

Matthew Masarikc, and Joseph Burnsc
aDepartment of Electrical and Computer Engineering

bDepartment of Computer Science
cMichigan Tech Research Institute
Michigan Technological University
Houghton, Michigan, 49931 USA

email: {ajpinar, jsrice, thavens, mpmasari, joseph.burns}@mtu.edu

Derek T. Anderson
Department of Electrical and Computer Engineering

Mississippi State University
Mississippi State, MS 39759, USA
e-mail: anderson@ece.msstate.edu

Abstract—Kernel methods for classification is a well-studied
area in which data are implicitly mapped from a lower-
dimensional space to a higher-dimensional space to improve
classification accuracy. However, for most kernel methods, one
must still choose a kernel to use for the problem. Since there
is, in general, no way of knowing which kernel is the best,
multiple kernel learning (MKL) is a technique used to learn the
aggregation of a set of valid kernels into a single (ideally) superior
kernel. The aggregation can be done using weighted sums of the
pre-computed kernels, but determining the summation weights
is not a trivial task. A popular and successful approach to this
problem is MKL-group lasso (MKLGL), where the weights and
classification surface are simultaneously solved by iteratively
optimizing a min-max optimization until convergence. In this
work, we compare the results of two previously proposed MKL
algorithms to MKLGL in the context of explosive hazard de-
tection using ground penetrating radar (GPR) data. The first
MKL algorithm we employ is an `p-normed genetic algorithm
MKL (GAMKLp), which uses a genetic algorithm to learn the
weights of a set of pre-computed kernel matrices for use with
MKL classification. A second algorithm, called decision-level
fuzzy integral MKL (DeFIMKL), is also employed, where a fuzzy
measure with respect to the fuzzy Choquet integral is learned via
quadratic programming, and the decision value—viz., the class
label—is computed using the fuzzy Choquet integral aggregation.
Experiments using government furnished GPR data show that
these MKL algorithms can outperform MKLGL when applied
to support vector machine (SVM)-based classification.

Index Terms—multiple kernel learning, Choquet fuzzy inte-
gral, fuzzy measure, quadratic programming, genetic algorithm,
support vector machine

I. INTRODUCTION

Consider a set of numeric feature-vector data that has the
form X = {x1, . . . ,xn} ⊂ Rd, where the coordinates of
xi provide feature values (e.g., bits per second, speed, volts,
etc.) describing some object (e.g., a wireless sensor network
node, traffic camera, or radar). We are also given a set of
training labels for each feature vector, such that we have the
pair (y, X), where y = (y1, . . . , yn)T and yi is the label
of ith object. Each yi is associated with a respective feature

vector xi. The classifier learning task is thus to learn some
prediction function f , such that we can predict the label of
feature-vectors, i.e., y = f(x).

Most classifiers delineate the classes by finding some “best”
decision boundary in the feature space. Perceptrons and linear
support vector machines (SVMs) find hyperplanes. These
classifiers are easy to train, often can be effective, and are
computationally very efficient (the operational decision is just
a single dot-product in the feature space). However, they are
ineffective for classes that are not linearly separable, i.e., by
a hyperplane. Hence, we will use kernel classifiers to non-
linearly project the features into a high-dimensional space,
where hyperplanes may be more easily found that serve as
good decision boundaries.

Specifically, we will focus on multiple kernel learning
(MKL) in this paper. As its name implies, MKL combines
multiple kernels together to form a new kernel, and thus a new
decision space. There are many works that discuss MKL [1]–
[5], and nearly all of them rely on operations that aggregate
kernels in ways that preserve symmetry and positive semi-
definiteness, such as element-wise addition and multiplication.
Most MKL algorithms learn a “best” kernel space in which
to classify by learning respective weights on each component
kernel. Details are contained in Section IV.

The MKL formulations reviewed in this paper have been
previously proposed and applied to benchmark data sets [6],
and focus on aggregation using a genetic algorithm and the
Choquet fuzzy integral (FI) with respect to a fuzzy measure
(FM) [7], respectively. Previous work showed that our genetic
algorithm approach, GAMKL, is a generalized form of a pre-
viously proposed FI-based algorithm, fuzzy integral: genetic
algorithm (FIGA) [4], [5]. It learns an MKL classifier using
a genetic algorithm and a generalized p-norm weight domain,
and aggregates kernel matrices at the feature-level, producing
a new feature representation. We also employ the decision-
level MKL algorithm called DeFIMKL. This algorithm learns

a FM with respect to the Choquet FI to fuse decisions from
individual kernel classifiers. The FM is learned from training
data with a regularized quadratic program (QP) approach [8].

The FI-based MKL approaches will be compared with a
leading machine learning MKL method, called MKL group
lasso (MKLGL) [2]; they are applied to a hazard detection
dataset derived from government furnished ground penetrat-
ing radar (GPR) data discussed in Section V. We will also
investigate the behavior of regularization on the results of
DeFIMKL. Section II presents a short review of data fusion
techniques, Section III introduces FMs and FIs, specifically
the fuzzy Choquet integral, and Section IV reviews the MKL
methods. Experimental results are presented in Section VI and
we provide concluding remarks and ideas for future work in
Section VII.

II. DATA FUSION

Data fusion is a broad term for methods that use multiple
sets of data, perhaps data from different sensors or the output
of multiple processes applied to the same data set, to improve
some performance metric from a baseline established using
only one set [9]. It is a very broad area of study, and there
exists a vast pool of literature relating to it; for a review of
data fusion methods see [10] and [11]. Because of the breadth
of the topic, we restrict this brief overview to the types of
fusion techniques most related to the methods we employ.

Data fusion can be classified in many ways [12]–[14]. The
taxonomy provided by Dasarathy in [13] is most appropriate
here and describes five categories of data fusion; the categories
that encompass our fusion methods are termed feature in-
feature out (FEI-FEO) and decision in-decision out (DEI-
DEO).

A. Feature In-Feature Out Fusion

FEI-FEO fusion is also known as feature fusion, on which
many computer vision methods rely [15]–[18]. A popular and
powerful method of feature fusion combines the features in
a multidimensional feature space using kernel methods [19]–
[22]. This allows the use of multiple kernels with classification,
giving the advantage that particular kernels can exploit certain
features better than other kernels. The SVM is a popular
classifier for MKL classification; however, comparable results
have been shown using a logistic regression-based classifier
[23].

B. Decision In-Decision Out Fusion

DEI-DIO fusion is commonly referred to as decision fusion.
This approach is very closely related to concept of ensemble
learning, where the decisions from multiple classifiers are
combined to determine the overall decision. Indeed, this is
precisely what the DeFIMKL algorithm discussed in Section
IV-C does. Due to the use of multiple classifiers, decision
fusion is generally slower than feature fusion, which only
requires one classifier [24].

Decision fusion can be done in two general ways: hard
or soft. Hard decision fusion is done using the class labels

from the ensemble of classifiers. A straightforward method
of hard decision fusion is the majority vote approach. Soft
decision fusion is performed using the posterior probabilities
(or, more generally, the soft decision variables) from the
classifier ensemble. A simple method in this case is to linearly
combine the posterior probabilities [25]. For ensembles of
fuzzy classifiers, the soft decision fusion approach can be used
by aggregating the fuzzy class memberships determined by the
classifiers [26].

III. FUZZY MEASURES AND FUZZY INTEGRALS

FIs and FMs have been proposed for many applications and
for many types of data, from simple numeric data to intervals
and type-2 fuzzy sets [27]–[37]. While manual specification
of the FM works for small sets of sources (there are already
16 possible combinations of sources in the power set of 4
sources), manually specifying the values of the FM for large
collections of sources is virtually impossible. Thus, automatic
methods have been proposed, such as the Sugeno λ-measure
[30] and the S-decomposable measure [38], which build the
measure from the densities (the worth of individual sources),
and genetic algorithm [4], [5], [29], [39], Gibbs sampling [40]
and other learning methods [8], [41], [42], which build the
measure by using training data. Other works [43]–[45] have
proposed learning FMs that reflect trends in the data and have
been specifically applied to crowd-sourcing, where the worth
of individuals is not known, and is thus extracted from the
data.

A. Fuzzy measures

A measurable space is the tuple (X,Ω), where X is a set
and Ω is a Ω-algebra or set of subsets of X such that
P1. X ∈ Ω;
P2. For A ⊆ X , if A ∈ Ω, then Ac ∈ Ω;
P3. If ∀Ai ∈ Ω, then

⋃∞
i=1Ai ∈ Ω.

A FM is a set-valued function, g : Ω → [0, 1], with the
following properties:
P4. (Boundary conditions) g(∅) = 0 and g(X) = 1;
P5. (Monotonicity) If A,B ∈ Ω and A ⊆ B, g(A) ≤ g(B).
If Ω is an infinite set, then there is also a third property
guaranteeing continuity; in practice and in this paper, Ω is
finite and thus this property is unnecessary. The FM values
of the singletons, g({xi}) = gi are commonly called the
densities. Figure 1 illustrates the lattice of a FM for the case
of n = 3.

The arguably most popular FM is the Sugeno λ-measure,
which has the attractive property of being able to be defined
completely by the values of the densities. The λ-measure has
the following additional property. For A,B ∈ Ω and A∩B =
∅,

gλ(A ∪B) = gλ(A) + gλ(B) + λgλ(A)gλ(B), (1a)

where it can be shown that λ can be found by solving [30]

λ+ 1 =

n∏
i=1

(
1 + λgi

)
, λ > −1. (1b)

g(1)

g(Ο)

g(1,2) g(1,3)

g(1,2,3)

g(2,3)

g(2) g(3)

Fig. 1: Lattice of FM elements for n = 3. Monotonicity
(P5) is illustrated by the size of each circle, i.e., g({x1}) ≤
g({x1, x2}) as {x1} ⊂ {x1, x2}.

While fuzzy measures provide a way for quantifying the worth
of combinations of sources, fuzzy integrals can be used to
aggregate the information from these sources.

B. Fuzzy integrals

There are many forms of the FI; see [30] for detailed
discussion. In practice, FIs are frequently used for evidence
fusion [39], [46]–[49]. They combine sources of information
by accounting for both the support of the question (the
evidence) and the expected worth of each subset of sources (as
supplied by the FM g). Here, we focus on the fuzzy Choquet
integral, proposed by Murofushi and Sugeno [50], [51]. Let
h : X → R be a real-valued function that represents the
evidence or support of a particular hypothesis.1 The discrete
(finite Ω) fuzzy Choquet integral is defined as∫

C

h ◦ g = Cg(h) =

n∑
i=1

h(xπ(i)) [g(Ai)− g(Ai−1)] , (2)

where π is a permutation of X , such that h(xπ(1)) ≥
h(xπ(2)) ≥ . . . ≥ h(xπ(n)), Ai = {xπ(1), . . . , xπ(i)}, and
g(A0) = 0 [7], [33]. Detailed treatments of the properties
of FIs can be found in [7], [33], [52]. We now move on to
showing how MKL can be achieved using the FM and FI.

IV. MULTIPLE KERNEL LEARNING

Consider some non-linear mapping function φ : xi →
φ(xi) ∈ RDK , where DK is the dimensionality of the
transformed feature vector φ(xi). For brevity, we will denote
φ(xi) as φi, as φi can be considered the feature vector
in the transformed space. With kernel algorithms, one does
not need to explicitly transform xi, one simply needs to
represent the dot product φ(xi) · φ(xj) = κ(xi,xj). The
kernel function κ can take many forms, with the polynomial
κ(xi,xj) = (xTi xj + 1)p and radial-basis-function (RBF)

1Generally, when dealing with information fusion problems it is convenient
to have h : X → [0, 1], where each source is normalized to the unit-interval.

κ(xi,xj) = exp(−γ||xi − xj ||2) being two of the most well
known. Given a set of n feature-vectors X , one can thus
construct an n× n kernel matrix K = [Kij = κ(xi,xj)]n×n.
This kernel matrix K represents all pairwise dot products of
the feature vectors in the transformed high-dimensional space
HK—called the Reproducing Kernel Hilbert Space (RKHS).

There are many algorithms that use kernels to transform the
input data to an appropriate and useful space; in this paper,
we focus on kernel-based classification, such as the SVM [53],
[54]. Multiple kernel algorithms, such as MKLGL [2], FIGA
[4], and GAMKLp [6]2, take single kernel algorithms a step
further by representing the feature-vector with multiple kernels
and then combining them to produce a single decision output.
The kernel combination can be computed in many ways, as
long as the combination results in a Mercer kernel [55]. For the
feature-level fusion algorithms in this paper, we will assume
that the kernel K is composed by a weighted combination of
pre-computed kernel matrices, i.e.,

K =

m∑
k=1

σkKk, (3)

where there are m kernels and σk is the weight applied to
the kth kernel. The domain of σ is very important and many
MKL implementations only work for a single domain. For
example, ∆2 = {σ ∈ Rm : ‖σ‖2 = 1, σk ≥ 0} is the `2-
norm MKL [1], [3]. MKLGL [2] uses a generalized MKL
instantiation that allows for an `p-norm domain ∆p = {σ ∈
Rm : ‖σ‖p = 1, σk ≥ 0}, simultaneously learning σ and the
parameters of an SVM on the resultant kernel K. Similarly,
the GAMKLp and DeFIMKL algorithms also use a generalized
MKL implementation where σ can be restricted to the `p-norm
domain.

A. The MKLGL algorithm [2]

As previously stated, MKLGL simultaneously learns the
kernel weights, σ, and the parameters of an SVM, α. These
parameters are found by iteratively solving the generalized
SVM optimization problem, which is a minimax problem.
For more information on the kernel SVM formulation and its
solution via MKLGL see [2], [56]. Algorithm 1 summarizes
the MKLGL method.

B. The GAMKLp algorithm [6]

The GAMKLp algorithm uses a genetic algorithm to learn
the optimal kernel weights, σ, as outlined in Algorithm 2.
The parameters shown in Algorithm 2 are those used in the
experiments in this paper, though it may be necessary to
modify them when using other datasets.

C. The DeFIMKL algorithm [6]

The formulation of the quadratic program used for the De-
FIMKL algorithm, while not novel, does require considerable
mathematical manipulation. The derivation of the algorithm is
reviewed here.

2Note that GAMKLp was shown to be a generalized version of FIGA in
[6].

Algorithm 1: MKLGL Classifier Training
Data: (xi, yi) - feature vector and label pairs; Kk -

kernel matrices; p - norm type
Result: α - MKLGL classifier solution; σ - kernel

weight vector
Initialize σk = 1/m, k = 1, ...,m - set kernel weights
equal
while not converged do

Solve unbalanced SKSVM for kernel matrix
K =

m∑
k=1

σkKk for the optimal solution α

Update the kernel weights, σk using

σk =
f
2/(1+p)
k(

m∑
k=1

f
2p/(1+p)
k

)1/p
, k = 1, ...,m; (4a)

fk = σ2
k(α ◦ y)TKk(α ◦ y). (4b)

Algorithm 2: GAMKLp Classifier Training
Data: (xi, yi) - feature vector and label pairs; Kk -

kernel matrices; p - norm type (regularization)
Result: σ - Kernel weights
Randomly initialize population of 31 kernel weight
vector chromosomes.
for 25 generations do

for each chromosome do
Compute the kernel using (3).
Compute the fitness as the 5-fold cross-validation
kernel SVM accuracy to suppress the effects of
overtraining.

Select parents via fitness proportional selection with
elitism.
Generate offspring with 60% crossover rate.
Mutate offspring with 5% mutation rate.
Normalize each chromosome to lie in the `p-norm
domain.

Select σ as the fittest chromosome in the last generation.

Let fk(xi) be the decision-value on feature-vector xi pro-
duced by the kth classifier in an ensemble. The overall decision
of the ensemble is computed by the Choquet integral, where
the evidence h is the set of decisions by the classifier ensemble
and g encodes the relative worth of each classifier in the
ensemble. So, mathematically, the ensemble decision fg(xi)
on feature-vector xi with respect to the FM g is produced by

fg(xi) =

m∑
k=1

fπ(k)(xi) [g(Ak)− g(Ak−1)] , (5)

where Ak = {fπ(1)(xi), . . . , fπ(k)(xi)}, such that fπ(1)(xi) ≥
fπ(2)(xi) ≥ . . . ≥ fπ(m)(xi). This is a generalized classifier
fusion method that has been explored in many previous works
[36], [48], [49], [57].

In [8], we proposed a method to learn the FM g from
training data with a regularized sum-of-squared error (SSE)
optimization, which we now briefly describe. Let the SSE be
defined as

E2 =

n∑
i=1

(fg(xi)− yi)2 . (6)

It can be shown that (5), as a Choquet integral, can be
reformulated as

fg(xi) =

m∑
k=1

[
fπ(k)(xi)− fπ(k+1)(xi)

]
g(Ak), (7)

where fπ(m+1) = 0 [7]. The SSE can thus be expanded as

E2 =

n∑
i=1

(
HT

xi
u− yi

)2
, (8a)

where u is the lexicographically ordered FM g, i.e.,
u = (g({x1}), g({x2}), . . . , g({x1, x2}), g({x1, x3}), . . . ,
g({x1, x2, . . . , xm})), and

Hxi =

...
fπ(1)(xi)− fπ(2)(xi)

...
0
...

fπ(m)(xi)− 0

, (8b)

where Hxi
is of size (2m−1)×1 and contains all the difference

terms fπ(k)(xi)− fπ(k+1)(xi) at the corresponding locations
of Ak in u. We can now fold out the squared term in (8a),
producing

E2 =

n∑
i=1

(
uTHxi

HT
xi
u− 2yiH

T
xi
u + y2i

)
= uTDu + fTu +

n∑
i=1

y2i , (9)

D =

n∑
i=1

Hxi
HT

xi
, f = −

n∑
i=1

2yiHxi
.

Note that (9) is a quadratic function; hence, we can add in the
constraints on u, such that it represents a FM, producing a
constrained QP. We can write the monotonicity constraint on
u, according to properties P4 and P5, as Cu ≤ 0, where

C =

ΨT
1

ΨT
2
...

ΨT
n+1
...

ΨT
m(2m−1−1)

(10)

and ΨT
1 is a vector representation of the monotonicity con-

straint, g{x1} − g{x1, x2} ≤ 0. Hence, C is simply a matrix
of {0, 1,−1} values of size (m(2m−1 − 1))× (2m − 1). See

[8] for more details about the form of C. Thus, the full QP to
learn the FM u is

min
u

0.5uT D̂u + fTu, Cu ≤ 0, (0, 1)T ≤ u ≤ 1, (11)

where D̂ = 2D. We will also test the performance of `2 and
`1 regularization on the optimization at (11), i.e.,

min
u

0.5uT D̂u + fTu + λ‖u‖p, (12)

where p = 1 for `1 regularization and p = 2 for `2. Again,
see [8] for more discussion on this topic. The QPs at (11) and
(12) provide a method to learn the FM u (i.e., g) from training
data. We now propose a method for using this learning method
for ensemble learning with kernel SVMs.

We propose that each learner fk(xi) is a kernel classifier,
each trained on a separate kernel Kk; here, we will use the
SVM. The SVM classifier decision value is

ηk(x) =

n∑
i=1

αikyiκk(xi,x)− bk, (13)

which is essentially the distance of x from the hyperplane
defined by the learned SVM model parameters, αik and bk
[53], [54]. Typically, the class label is then computed as
sgn{ηk(x)}. One could use fk(x) = sgn{ηk(x)} as the
training input to the FM learning at (9), but this elimi-
nates information about which kernel produces the largest
class separation—essentially, the difference between ηk(x) for
classes labeled y = +1 and y = −1. Hence, we remap ηk(x)
onto the interval [−1,+1], creating the inputs for learning by
the sigmoid function,

fk(x) =
ηk(x)√

1 + η2k(x)
. (14)

Thus, the training data for DeFIMKL are ({Kk =
[κk(xi,xj)], fk(X)},y), k = 1, . . . ,m, where Kk are the
kernel matrices for each kernel function κk, fk(X) =
(fk(x1), . . . , fk(xn))T are the remapped SVM decision val-
ues, and y = (y1, . . . , yn) are the ground-truth labels of
X = (x1, . . . ,xn), respectively. The output of the QP learner
is the FM g. The training process is summarized in Algorithm
3.

Algorithm 3: DeFIMKL Classifier Training
Data: (xi, yi) - feature vector and label pairs; Kk -

kernel matrices
Result: u - Lexicographically ordered fuzzy measure

vector
for each kernel matrix do

Compute the kernel SVM classifier decision values,
ηk, as in (13).
Remap the decision values onto the interval [−1,+1]
as fk using (14).

Solve the minimization problem in (11) for the FM u.

A new feature vector x—from a test data set—can be clas-
sified by the trained algorithm with the following procedure:

1) Compute the SVM decision values fk(x) by using (13)
and (14);

2) Apply the Choquet integral at (5) with respect to the
learned FM g;

3) Compute the class label by sgn{fg(x)}.
We now will apply the MKL algorithms discussed here to
a pertinent defense and security problem, explosive hazard
detection.

V. EXPLOSIVE HAZARD DETECTION DATASET

Our explosive hazard data set is composed of a collection
of 1,955 11-dimensional feature vectors with class labels
{−1,+1}, corresponding to true negatives and true positives,
respectively. These feature vectors are computed by applying
preprocessing and prescreener algorithms to GPR data, as
discussed below.

A. Ground Penetrating Radar Data and Preprocessing

The raw data upon which this work is based was collected
using a hand-held downward-looking GPR. The data acquired
from this system include a time series of radar returns at a large
number of discrete locations along a lane, the GPS locations of
these radar returns, and a list of ground truth locations for a set
of various types of explosive hazards. For more information
regarding the GPR system and the data collected, see our
previous work [56], [58].

Before applying the prescreening algorithm, the data col-
lected by the GPR system was first preprocessed using robust
principal component analysis (RPCA) [59]. The application of
RPCA to GPR data has previously been shown to be fruitful
since it decomposes the data into a low-rank component and
a sparse component [58], [60], [61]. In this context the low-
rank component corresponds to the slowly-varying background
component of the radar returns, and the low-rank component
represents outliers such as targets. Reference [58] contains
additional information on how RPCA is applied to these data.

B. Prescreener and Feature Extraction

A simple energy-based prescreener using the RPCA sparse
component was utilized to identify queue points to be investi-
gated using the classifiers. The energy of each discrete radar
return was found and a ground map was formed as shown
in Figure 2. The prescreener then flags local maxima in the
integrated energy ground map as queue points, and features
are then extracted from those points. The features that were
collected from the queue points for this experiment were based
on energy and localized contrast. Specifically, for each queue
point location, the features include

• the energy at the detection location;
• the energy in a disk of radius 20 cm in the integrated

energy ground map;
• the ratios of energy in disks of radius 10, 20, 30, and

40 cm to the energy in a disk of radius 50 cm in the
integrated energy ground map;

• the ratios of energy in circles of radius 10, 20, and 30%
of total image size to total energy in the B-scan image3.

C. Performance metric: NAUC

Results for explosive hazard detection are typically pre-
sented as receiver operating characteristic (ROC) curves. The
horizontal axis, though typically labeled as a false alarm
rate, is also directly proportional to a threshold against which
the confidence of the hits is compared. As the threshold is
increased, the relation of the probability of detection and
false alarm rate (FAR) is shown. To quantify the results of
a particular ROC, we find the normalized area under the ROC
(NAUC) up to a FAR of 0.1 FA/m2. This FAR rate was chosen
to balance detection performance with practicality—a larger
FAR will generally give better detection probability, however,
the increased number of false alarms wastes time in the field.
The NAUC equation is

NAUC =
1

0.1

0.1∫
0

PD(FAR)dFAR, (15)

where PD(FAR) is the probability of detection at false alarm
rate, FAR. Equation (15) shows that the minimum value of
the NAUC is zero if PD(FAR) = 0 for FAR ∈ [0, 0.1]. It
is also clear from Eq. (15) that an NAUC of 1 corresponds to
perfect detection at zero FAR.

VI. EXPERIMENTS AND RESULTS

Here we present the results of the GAMKLp and DeFIMKL
algorithms after applying them to the GPR data set described
in Section V using SVM classifiers; we use LIBSVM to
implement the classifiers [62]. Their performance is presented
alongside the results of the state-of-the-art MKLGL algo-
rithm discussed in Section IV-A. Additionally, the results are
compared with those of the prescreener such that the overall
improvement can be evaluated.

Each experiment consists of 100 trials, where the results of
these trials are statistically compared via a two-sample t-test at
a 5% significance level. Including the standard deviation in the
results highlights the sensitivity (variance) of each classifier
to the selection of training data. In each trial the data set
is partitioned into five partitions, each holding 20% of the
data. The training/testing cycle is performed five times, where
four partitions are used as training data and the remaining
partition is used as the testing data; the testing results from
each partition are combined to form the overall ROC for each
trial and the NAUC is extracted as the performance metric.

Fifty RBF kernels are used in each algorithm with respec-
tive RBF widths σ logarithmically spaced on the interval
[10−2, 101.6]; the same RBF parameters are used for each
algorithm.

3The B-scan image is a collection of individual radar returns surrounding
the queue point location. This image essentially represents a vertical slice
of earth at the queue point location. More details on these radar returns and
B-scans can be found in [56], [58].

TABLE I: NAUCs and percentage improvement compared to
the prescreener*.

Results
Algorithm NAUC % Improvement
Prescreener 0.204 -

MKLGL1 0.438 (0.013) 115%
MKLGL2 0.466 (0.013) 129%
GAMKL1 0.504 (0.012) 147%
GAMKL2 0.494 (0.013) 142%
DeFIMKL 0.350 (0.074) 72%

DeFIMKL1 0.461 (0.041) 126%
λ = 1

DeFIMKL2 0.486 (0.017) 138%
λ = 2

*Bold indicates the best performer ac-
cording to a two-valued t-test at a 5%
significance level..

A. Experiment 1

The first experiment was designed to compare the results of
the MKL methods discussed in this paper with the prescreener
and MKLGL algorithms. This experiment applies the different
MKL classifiers to the same data partitions such that the results
can be compared equally. Table I summarizes the average
NAUCs from this experiment along with their improvement
over the prescreener; the standard deviations are given in
parentheses.

The results show that the GAMKL algorithm has superior
performance when compared to the MKLGL algorithm and the
regularized DeFIMKL algorithms’ performance is comparable
to MKLGL’s performance, however, the `2−regularized De-
FIMKL algorithm does beat MKLGL. The standard deviation
of DeFIMKL2 is marginally higher than that of MKLGL, sug-
gesting that the DeFIMKL training is more closely dependent
on the selection of training data and thus more susceptible
to overtraining. This conclusion is further supported by the
relatively large standard deviation exhibited by the unregu-
larized DeFIMKL algorithm, which is to be expected since
regularization was not employed to suppress the possibility of
overtraining (i.e., classifier variance). GAMKL, on the other
hand, has essentially equivalent classifier variance, i.e., it is
just as susceptible to overtraining as MKLGL.

B. Experiment 2

A second experiment was performed with the DeFIMKL
algorithm to observe the effects of the regularization parameter
λ. This experiment applies the regularized DeFIMKL algo-
rithms to the data while varying λ over the range [0, 10]. Figure
3 summarizes the results of this experiment.

The trend of the plot shows the importance of includ-
ing regularization with the DeFIMKL algorithm, since both
DeFIMKL1 and DeFIMKL2 benefit by using a nonzero λ.
However, the average NAUC generally decreases as λ is in-
creased. Furthermore, the standard deviation of the DeFIMKL2

results increases nearly consistently with increasing λ, though
the trend is opposite with the DeFIMKL1 standard deviation.

Fig. 2: Integrated energy ground map and an example queue point with 10, 20, 30, and 40 cm disks.

0 2 4 6 8 10
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

N
A

U
C

L1 Regularization
L2 Regularization

λ
Fig. 3: DeFIMKL performance using regularization. Error bars
indicate ± one standard deviation.

VII. CONCLUSION

This paper applies a feature-level fusion algorithm,
GAMKLp, and a decision-level fusion algorithm, DeFIMKL,
to a dataset derived from ground penetrating radar for ex-
plosive hazard detection. GAMKLp uses a genetic algorithm
to find the multiple kernel mixing coefficients, σ, and is
generalized to allow σ to lie in the `p-norm domain, ∆p.
The DeFIMKL algorithm aggregates kernels through the use
of the Choquet fuzzy integral with respect to a fuzzy measure
learned by a regularized quadratic programming approach. We
use MKLGL as the benchmark MKL algorithm, and show that
both GAMKLp and DeFIMKL can outperform MKLGL.

A. Future Work

We have been working on a feature-level method for ag-
gregating the kernels Kk with a non-linear fuzzy integral.
The main goal is to preserve the ability of the fuzzy integral
to produce non-linear aggregations of the individual kernels,
while ensuring that the result is a Mercer kernel. In order to
achieve this, one must develop a way of sorting the kernel
matrix terms in the Choquet integral (and not just once with
the base-learner training data accuracy, as does FIGA) and still
aggregate with a Mercer kernel preserving operation.

ACKNOWLEDGMENT

This work is funded in part by the Army Research Office
(W911NF-16-1-0017). Dr. Anderson is partially funded by
Army Research Office Grant W911NF-14-1-0673. Superior,
a high performance computing cluster at Michigan Techno-
logical University, was used in obtaining some of the results
presented in this publication.

REFERENCES

[1] M. Kloft, U. Brefeld, P. Laskov, and S. Sonnenburg, “Non-sparse
multiple kernel learning,” 2008.

[2] Z. Xu, R. Jin, H. Yang, I. King, and M. Lyu, “Simple and efficient
multiple kernel learning by group lasso,” in Proc. Int. Conf. Machine
Learning, 2010, pp. 1175–1182.

[3] C. Cortes, M. Mohri, and A. Rostamizadeh, “`2 regularization for
learning kernels,” in Proceedings of the Twenty-Fifth Conference on
Uncertainty in Artificial Intelligence. AUAI Press, 2009, pp. 109–116.

[4] L. Hu, D. T. Anderson, and T. C. Havens, “Multiple kernel aggregation
using fuzzy integrals,” in IEEE International Conference on Fuzzy
Systems. IEEE, 2013, pp. 1–7.

[5] L. Hu, D. Anderson, T. Havens, and J. Keller, “Validity of different
fuzzy integrals and representations for multiple kernel aggregation,” in
Proc. Int. Conf. Info. Processing and Management of Uncertainty in
Knowledge-Based Systems, 2014.

[6] A. Pinar, T. C. Havens, D. T. Anderson, and L. Hu, “Feature and decision
level fusion using multiple kernel learning and fuzzy integrals,” in IEEE
International Conference on Fuzzy Systems, Aug 2015, pp. 1–7.

[7] M. Sugeno, “Theory of fuzzy integrals and its applications,” Ph.D.
dissertation, Tokyo Institute of Technology, 1974.

[8] D. Anderson, S. Price, and T. Havens, “Regularization-based learning
of the choquet integral,” in IEEE International Conference on Fuzzy
Systems, July 2014, pp. 2519–2526.

[9] D. L. Hall and J. Llinas, “An introduction to multisensor data fusion,”
Proceedings of the IEEE, vol. 85, no. 1, pp. 6–23, 1997.

[10] B. Khaleghi, A. Khamis, F. O. Karray, and S. N. Razavi, “Multisensor
data fusion: A review of the state-of-the-art,” Information Fusion,
vol. 14, no. 1, pp. 28–44, 2013.

[11] F. Castanedo, “A review of data fusion techniques,” The Scientific World
Journal, vol. 2013, 2013.

[12] H. F. Durrant-Whyte, “Sensor models and multisensor integration,” The
International Journal of Robotics Research, vol. 7, no. 6, pp. 97–113,
1988.

[13] B. V. Dasarathy, “Sensor fusion potential exploitation-innovative archi-
tectures and illustrative applications,” Proceedings of the IEEE, vol. 85,
no. 1, pp. 24–38, 1997.

[14] R. C. Luo, C.-C. Yih, and K. L. Su, “Multisensor fusion and integra-
tion: approaches, applications, and future research directions,” Sensors
Journal, IEEE, vol. 2, no. 2, pp. 107–119, 2002.

[15] J. K. Aggarwal, Multisensor fusion for computer vision. Springer
Science & Business Media, 2013, vol. 99.

[16] F. S. Khan, J. Van de Weijer, and M. Vanrell, “Top-down color attention
for object recognition,” in IEEE 12th International Conference on
Computer Vision. IEEE, 2009, pp. 979–986.

[17] P. Natarajan, S. Wu, S. Vitaladevuni, X. Zhuang, S. Tsakalidis, U. Park,
R. Prasad, and P. Natarajan, “Multimodal feature fusion for robust event
detection in web videos,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 2012, pp. 1298–1305.

[18] G. Nützi, S. Weiss, D. Scaramuzza, and R. Siegwart, “Fusion of imu
and vision for absolute scale estimation in monocular slam,” Journal of
intelligent & robotic systems, vol. 61, no. 1-4, pp. 287–299, 2011.

[19] Y.-R. Yeh, T.-C. Lin, Y.-Y. Chung, and Y.-C. F. Wang, “A novel multiple
kernel learning framework for heterogeneous feature fusion and variable
selection,” IEEE Transactions on Multimedia, vol. 14, no. 3, pp. 563–
574, 2012.

[20] P. Gehler and S. Nowozin, “On feature combination for multiclass object
classification,” in IEEE 12th International Conference on Computer
Vision. IEEE, 2009, pp. 221–228.

[21] L. Cao, J. Luo, F. Liang, and T. S. Huang, “Heterogeneous feature
machines for visual recognition,” in IEEE 12th International Conference
on Computer Vision. IEEE, 2009, pp. 1095–1102.

[22] J. Yang, Y. Li, Y. Tian, L. Duan, and W. Gao, “Group-sensitive multiple
kernel learning for object categorization,” in IEEE 12th International
Conference on Computer Vision. IEEE, 2009, pp. 436–443.

[23] B. Fernando, E. Fromont, D. Muselet, and M. Sebban, “Discriminative
feature fusion for image classification,” in IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). IEEE, 2012, pp. 3434–
3441.

[24] C. H. Chan, M. A. Tahir, J. Kittler, and M. Pietikainen, “Multiscale local
phase quantization for robust component-based face recognition using
kernel fusion of multiple descriptors,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 35, no. 5, pp. 1164–1177, 2013.

[25] Y. Zhang, H. L. Yang, S. Prasad, E. Pasolli, J. Jung, and M. Crawford,
“Ensemble multiple kernel active learning for classification of multi-
source remote sensing data,” IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, vol. 8, no. 2, pp. 845–858,
2015.

[26] B. Bigdeli, F. Samadzadegan, and P. Reinartz, “Fusion of hyperspectral
and lidar data using decision template-based fuzzy multiple classifier
system,” International Journal of Applied Earth Observation and Geoin-
formation, vol. 38, pp. 309–320, 2015.

[27] D. Anderson, T. Havens, C. Wagner, J. Keller, M. Anderson, and
D. Wescott, “Extension of the fuzzy integral for general fuzzy set-valued
information,” IEEE Transactions on Fuzzy Systems, vol. 22, no. 6, pp.
1625–1639, Dec 2014.

[28] C. Wagner, D. Anderson, and T. Havens, “Generalization of the fuzzy
integral for discontinuous interval- and non-convex interval fuzzy set-
valued inputs,” in IEEE International Conference on Fuzzy Systems, July
2013, pp. 1–8.

[29] D. T. Anderson, J. M. Keller, and T. C. Havens, “Learning fuzzy-
valued fuzzy measures for the fuzzy-valued sugeno fuzzy integral,”
in Computational Intelligence for Knowledge-Based Systems Design.
Springer, 2010, pp. 502–511.

[30] M. Grabisch, Fuzzy Measures and Integrals: Theory and Applications,
M. Sugeno and T. Murofushi, Eds. Secaucus, NJ, USA: Springer-Verlag
New York, Inc., 2000.

[31] D. Zhang and Z. Wang, “Fuzzy integrals of fuzzy-valued functions,”
Fuzzy Sets and Systems, vol. 54, no. 1, pp. 63–67, 1993.

[32] R. Yang, Z. Wang, P.-A. Heng, and K.-S. Leung, “Fuzzified choquet
integral with a fuzzy-valued integrand and its application on temperature
prediction,” IEEE Transactions on Systems, Man, and Cybernetics, Part
B: Cybernetics, vol. 38, no. 2, pp. 367–380, 2008.

[33] M. Grabisch, H. T. Nguyen, and E. A. Walker, Fundamentals of
uncertainty calculi with applications to fuzzy inference. Springer
Science & Business Media, 2013, vol. 30.

[34] T. Havens, D. Anderson, and J. Keller, “A fuzzy choquet integral with an
interval type-2 fuzzy number-valued integrand,” in IEEE International
Conference on Fuzzy Systems, July 2010, pp. 1–8.

[35] D. Anderson, T. Havens, C. Wagner, J. Keller, M. Anderson, and
D. Wescott, “Sugeno fuzzy integral generalizations for sub-normal
fuzzy set-valued inputs,” in Fuzzy Systems (FUZZ-IEEE), 2012 IEEE
International Conference on, June 2012, pp. 1–8.

[36] X. Wang, A. Chen, and H. Feng, “Upper integral network with extreme
learning mechanism,” Neurocomputing, vol. 74, no. 16, pp. 2520–2525,
2011.

[37] X. Liang, C. Wei, and Z. Chen, “An intuitionistic fuzzy weighted owa
operator and its application,” International Journal of Machine Learning
and Cybernetics, vol. 4, no. 6, pp. 713–719, 2013.

[38] D. J. Dubois, Fuzzy sets and systems: theory and applications. Aca-
demic press, 1980, vol. 144.

[39] M. F. Anderson, D. T. Anderson, and D. J. Wescott, “Estimation of adult
skeletal age-at-death using the sugeno fuzzy integral,” American journal
of physical anthropology, vol. 142, no. 1, pp. 30–41, 2010.

[40] A. Mendez-Vazquez and P. Gader, “Sparsity promotion models for the
choquet integral,” in IEEE Symposium on Foundations of Computational
Intelligence. IEEE, 2007, pp. 454–459.

[41] J. Keller and J. Osborn, “A reward/punishment scheme to learn fuzzy
densities for the fuzzy integral,” in International Fuzzy Systems Associ-
ation World Congress, 1995, pp. 97–100.

[42] ——, “Training the fuzzy integral,” International Journal of Approxi-
mate Reasoning, vol. 15, no. 1, pp. 1–24, 1996.

[43] C. Wagner and D. T. Anderson, “Extracting meta-measures from data for
fuzzy aggregation of crowd sourced information,” in IEEE International
Conference on Fuzzy Systems. IEEE, 2012, pp. 1–8.

[44] T. C. Havens, D. T. Anderson, C. Wagner, H. Deilamsalehy, and
D. Wonnacott, “Fuzzy integrals of crowd-sourced intervals using a
measure of generalized accord,” in IEEE International Conference on
Fuzzy Systems. IEEE, 2013, pp. 1–8.

[45] T. Havens, D. Anderson, and C. Wagner, “Data-informed fuzzy measures
for fuzzy integration of intervals and fuzzy numbers,” IEEE Transactions
on Fuzzy Systems, vol. PP, no. 99, pp. 1–1, 2014.

[46] M. Grabisch, “Fuzzy integral for classification and feature extraction,”
in Fuzzy Measures and Integrals: Theory and Applications. Springer-
Verlag New York, Inc., 2000, pp. 415–434.

[47] J. Keller, P. Gader, and A. Hocaoglu, “Fuzzy integral in image pro-
cessing and recognition,” in Fuzzy Measures and Integrals: Theory and
Applications. Springer-Verlag New York, Inc., 2000, pp. 435–466.

[48] S. Auephanwiriyakul, J. M. Keller, and P. D. Gader, “Generalized
choquet fuzzy integral fusion,” Information Fusion, vol. 3, no. 1, pp.
69–85, 2002.

[49] H. Tahani and J. M. Keller, “Information fusion in computer vision
using the fuzzy integral,” IEEE Transactions on Systems, Man and
Cybernetics, vol. 20, no. 3, pp. 733–741, 1990.

[50] G. Choquet, “Theory of capacities,” in Annales de l’institut Fourier,
vol. 5. Institut Fourier, 1954, pp. 131–295.

[51] T. Murofushi and M. Sugeno, “An interpretation of fuzzy measures and
the choquet integral as an integral with respect to a fuzzy measure,”
Fuzzy sets and Systems, vol. 29, no. 2, pp. 201–227, 1989.

[52] M. Grabisch, “Fuzzy integral in multicriteria decision making,” Fuzzy
sets and Systems, vol. 69, no. 3, pp. 279–298, 1995.

[53] C. Cortes and V. N. Vapnik, “Support-vector networks,” vol. 20, no. 3,
1995, pp. 273–297.

[54] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for
optimal margin classifiers,” in Proceedings of the fifth annual workshop
on Computational learning theory. ACM, 1992, pp. 144–152.

[55] J. Mercer, “Functions of positive and negative type and their connection
with the theory of integral equations,” vol. 209, 1909, pp. 441–458.

[56] A. Pinar, M. Masarik, T. C. Havens, J. Burns, B. Thelen, and J. Becker,
“Approach to explosive hazard detection using sensor fusion and multi-
ple kernel learning with downward-looking GPR and emi sensor data,”
in Proc. SPIE, vol. 9454, 2015, pp. 94 540B–94 540B–20.

[57] J. Zhai, H. Xu, and Y. Li, “Fusion of extreme learning machine with
fuzzy integral,” International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, vol. 21, no. 2, pp. 23–34, 2013.

[58] M. P. Masarik, J. Burns, B. T. Thelen, J. Kelly, and T. C. Havens, “GPR
anomaly detection with robust principal component analysis,” in Proc.
SPIE, vol. 9454, 2015, pp. 945 414–945 414–11.

[59] E. J. Candes, X. Li, Y. Ma, and J. Wright, “Robust principal component
analysis?” Journal of the ACM, vol. 58, no. 3, May 2011.

[60] D. Kalika, M. T. Knox, L. M. Collins, P. A. Torrione, and K. D.
Morton, “Leveraging robust principal component analysis to detect
buried explosive threats in handheld ground-penetrating radar data,”
in SPIE Defense+ Security. International Society for Optics and
Photonics, 2015, pp. 94 541D–94 541D.

[61] A. Pinar, T. C. Havens, J. Rice, M. Masarik, J. Burns, and B. Thelen,
“A comparison of robust principal component analysis techniques for
buried object detection in downward looking gpr sensor data,” in SPIE
Defense+ Security. International Society for Optics and Photonics,
2016, pp. 98 230T–98 230T.

[62] C. C. Chang and C. J. Lin, “LIBSVM: a library for support vector
machines,” ACM Trans. Intell. Sys. Tech., vol. 2, no. 27, pp. 1–27, 2011.

