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Abstract—An important class of modern big data applications
is distributed data production in High Energy and Nuclear
Physics (HENP). Such data intensive computations heavily rely
on geographically distributed resources featuring hundreds of
thousands CPUs and petabytes of storage. Unfortunately, clas-
sical job scheduling approaches either do not address all the
aspects of the case or do not scale appropriately. Previously
we have developed a new job scheduling approach dedicated
to distributed data production, where the load balancing across
sites is provided by forwarding data in peer-to-peer manner, but
guided by a centrally created and periodically updated plan,
aiming to achieve global optimality. Because the many HENP
experiments utilize distributed storage, in this work we provide
an important generalization of our approach to consider multiple
sources of input data. The underlying network flow model is also
extended to enable optimization on various additional criteria
on top of the flow maximization making it versatile for a
wide scope of potential use cases. In this study such additional
optimization was used for more efficient reasoning with multiple
data sources: balancing their usage and planning of the initial
data distribution. Those two considerations allow to reduce an
influence of network bottlenecks at early and late stages of data
production. The simulations carried out in this work allow to
test our approach towards a more general case of networks and
servers not limited to specifics of HENP infrastructure. In all of
the simulations our planner has shown a significant improvement
in both average throughput and makespan against the typically
used pull scheduling approach.

I. INTRODUCTION

Distributed data processing in High Energy and Nu-
clear Physics (HENP) is a prominent example of big data
analysis [1]. When applied to petabytes of data being pro-
cessed at tens of computational sites with thousands of CPUs,
standard job scheduling approaches either do not satisfy the
problem complexity or are dedicated to one specific aspect
of the problem only (CPU, network or storage). As a result,
the general orchestration of the system is left to the pro-
duction managers and requires reconsideration each time new
resources are added or withdrawn.

Data production (or pre-processing in big data terminology)
is an important type of computations in HENP when each file
in a given set has to be processed once. Similar processing
scenarios can also be found in other fields. Typically, the out-

come of data production can be further exploited only after the
entire dataset is processed. Therefore it is highly desirable to
achieve as short makespan as possible with available resources.
Given the data-intensive nature of data production the network
latency often becomes the major limiting factor for overall
performance of the distributed computations.

We have addressed this problem in previous research [2],
[3] where we considered general properties of data production
and developed a new job scheduling approach. In our approach
the load balancing across sites is provided by forwarding
data in peer-to-peer manner, but guided by a centrally created
(and periodically updated) plan, aiming to achieve global
optimality. The planner considers network and CPU perfor-
mance as well as available storage space at each site and
plans data movements between them in order to maximize an
overall processing throughput. In the later work [4] we have
tested our approach in more realistic simulations including
background network traffic and computing infrastructure of
one of the largest HENP experiments. The planner has shown
a significant performance improvement and solving time which
allows for online planning in real environment. In this study
we extend the scheduling approach to a more general case —
when data initially reside (or can be placed) at multiple loca-
tions. The recent update to the underlying model has enabled
additional optimization on secondary targets, which makes our
approach even more versatile. Balancing the usage of data
sources and initial data distribution are discussed in this paper
as first examples of the secondary optimization. More than
that, the novel application of network flows with costs allows
consideration of a wide range of scheduling issues as discussed
in Conclusion. Our new simulations were focused on large-
scale networks of relatively small computing facilities. Such
setup of simulations helps to test the planner against more
general applications outside of the dedicated infrastructure
of HENP computing. It also follows the recent tendency
in HENP where the fraction of computations performed at
smaller facilities (called Tier-2 sites) is growing comparing to
that of the major computational sites (called Tier-1) [5].



A. Related work

Common job scheduling policies [6], such as First Come
First Served (FCFS), conservative backfilling (CONS), aggres-
sive backfilling (EASY), selective backfilling, etc. consider
general types of workloads with jobs of various duration and
CPU number. However, none of those algorithms consider
network scheduling.

The general methods for scheduling parallel jobs with
communication delays are extensively described in [7] and [8].
In [9] an optimization of network latency was achieved by
replication of highly used files to more sites while the jobs
are executed where their input data are located. Similarly,
the Storage Affinity [10] approach exploits data re-utilization
to improve the performance of the application in Grid. In
contrast to that, data reuse is impossible for the data production
problem, since each file has to be processed once. In [11], the
authors consider job scheduling on heterogeneous resources
(Grid) taking data transfer overhead for each job into account.
The input transfer overhead was estimated knowing an end-
to-end connection speed, but neither the file transfers were
scheduled at network links, nor actual network topology was
taken into account. In case of the data-intensive applications,
uncoordinated data transfers may oversaturate the network
capacity which leads to an overall degraded performance. For
this reason in our research we consider planning of network
flows.

Modern HENP experiments utilize different types of dis-
tributed data management systems (DDM) such as DPM [12],
XrootD [13], Hadoop [14] and Ceph [15]. Those systems
feature different techniques to balance load across storages and
decrease access latency. But DDM’s reasoning is disconnected
from CPU allocation policy. In other words, it does not
consider data placement or movement with respect to the
distribution of CPU power or network structure. Hence, it does
not provide a possibility to improve the data availability prior
to computations, unless it is done by a custom setup such
as at [16]. Therefore, one of the main ideas of our planer is
to bring the data closer (in a network access sense) to the
processing sites by the time when they are needed.

The idea of job forwarding between resources was intro-
duced in [17] to achieve a balanced CPU load in Grid. The
forwarding is performed by independent ”intelligent agents”
at each resource and jobs are sent to the closest free resources.
Neither network bandwidth and topology nor transfer latency
are considered. Compared to our approach, the idea also lacks
an orchestration for global optimization.

An idea of advanced bandwidth reservation at network
links has received its development in [18]. The reservation
allows to avoid transfer collisions and decrease data access
latency. Current works are focused on implementation of such
reservations and their scheduling rather than on identifying
when they are needed. Our approach can be naturally extended
with the bandwidth reservation models, because it provides
plans for upcoming data transfers. Study of such extension is
planned for future.

II. PROBLEM CHARACTERISTICS

We consider data intensive computations on a set of dis-
tributed resources. We focus on a specific type of data process-
ing called data production which is typical for computations in
HENP. Our goal is to maximize computational throughput of
such data processing. In this section we will describe elements
and important aspects of the considered problem.

In HENP experiments raw data produced by a detector and
filtered by a trigger system are stored in form of separate
files (input files) typically of several gigabytes of size. The
aim of data production is to process raw data in order to
reconstruct physical events. Each unique input file (containing
raw data) creates a unique output file (containing reconstructed
data) after processing. The data production is executed by
campaigns where a given large dataset (containing petabytes of
data) has to be processed on a given set of facilities (containing
tens of thousand of CPUs) within an expected time window
(several months).

The data production in HENP has a data level of parallelism,
which means that it is divided into independent computational
jobs applying the same processing on different files. For
simplicity we assume that each computational job has its
unique input file, uses a single CPU and produces a unique
output file. Scenarios which have multiple input/output files
per job still comply with our model if files of a single job can
be grouped for transfer and storage. The size of the input file
of a job j is denoted as InSizej , the size of the output file is
OutSizej and the job duration is pj . Only the size of the input
file is known in advance, before the job is finished. However,
the two other parameters are related to it by the following
expressions: pj ≈ αi · InSizej and OutSizej ≈ β · InSizej ,
where i is an id of a processing site, αi and β are considered
as constant coefficients. Since all the jobs perform the similar
type of processing, knowing an average values of αi and β
for previously completed jobs we can estimate the size of the
output and the duration of a particular job.

The computational resources are organized into sites. Each
site ci ∈ C is a set of closely connected machines with CPUs
(also can be referred as a computing facility, cluster or node)
which has a fast access to a common data storage (referred as
a local disk) and a shared connection to the outer network. A
computational facility of a scientific institution is an example.
Often, an institution provides access to only a fraction of its
computational resources (i.e. a fixed number of CPUs and
limited storage size) to be used by an experiment. In such
case, a set of those granted resources can be considered as
a site. The key principle to identify a set of machines as a
site is that they can access a given local disk with a latency
which is negligible compared to their access to outer storages.
We assume that there is a local job scheduling system at each
site which allows to submit jobs to its machines. Each CPU
is considered as a separate processing element, which can
correspond to a single core in modern architectures. The CPUs
are modeled as a space-shared resource, which means that each
CPU can execute a single job at a time. In our model each



site ci is described by the available local disk space Diski,
the number of CPUs NCPUi and average processing time per
CPU and unit of data αi. There is an input queue of input files
which are stored at this site, but have not been processed yet.
The input files from this queue can be submitted for processing
or transferred to another site if needed. Similarly, output files
of previously finished jobs are organized into an output queue.

There are three functions that a site can serve during
data production: input source, computational site and output
destination. Those functions are not exclusive, which means
that a particular site can be enabled with all three, two or just
one function. Also, there can be many sites with the same
function in the computational network. Input source is a site
which already has a portion of input data at its local disk
by the time when data production starts. A processing site
is the one which can process jobs (NCPUi > 0). Output
destination is a site selected to store the outcome of data
production on its persistent storage. As soon as an output file
is transferred to any of possible output destinations we assume
that its processing is finished. For each site ci we consider the
total size of currently available input files ki and the currently
available free space to store new output files ki. Those values
are set to zero if the site is not assigned the corresponding
function.

The sites are mutually interconnected with network links
l ∈ L of known bandwidth b(l). They form a computational
network (Grid) which can be described by a directed weighted
graph. Such graph can represent a realistic network topology,
where the network routers can be considered as sites with no
CPUs and local disk and are not assigned any function in
data production. In our model we consider only the network
latency, which can be calculated as a size of transferred data
divided by the bandwidth of the link.

As mentioned before, the main goal is to maximize the
overall computational performance for data production. In a
real environment the performance can be evaluated using such
parameters as a total CPU utilization (given that there is no
job duplication and I/O waiting CPU cycles are not counted
as useful work) and makespan for processing of a given set
of input files, i.e. the completion time of the last output file
transfer.

III. MAXIMUM FLOW APPROACH

In our original as well as proposed approach [2], [3] we
do planning by cycles, i.e. a plan for a limited time interval
∆T is created at the beginning of this interval and then the
procedure is repeated for the next interval until all the data are
processed and all output is transferred. The plan relies on the
current system state and recent statistics but not on previously
issued plans. Consideration of a shorter interval (e.g. 12 hours)
allows to adapt to dynamic environment implying background
network load, addition/withdrawal/failure of resources and
fluctuation of job parameters. Due to such dynamics a single
plan created for an entire production campaign would not
remain feasible for its duration (e.g. 1 month). The model

discussed in this section is a direct extension of [2], [3] with
addition of multiple sources.

For a single planning cycle let us consider a time interval
∆T at an arbitrary moment of data production. We assume
that at the beginning of this interval some of the CPUs in the
system are busy, and there can be some amount of input data
already placed at each processing site. We need to transfer the
next portion of input data to each site during this time interval
in order to avoid draining of the local input queues. We also
need to deliver the output data to its destination as fast as
possible.

The computational Grid is represented by a directed
weighted graph where vertexes are computational sites ci ∈ C
and network routers; edges l ∈ L are network links. We will
give two separate problem formulations based on network
flows: for input and output transfer planning. In order to
formulate both problems we have to define a capacitated
{s, t} network [19], which is a set of vertices V including
a source s and a sink t; and a set of edges e ∈ E with
their capacities cap(e), representing the amount of data which
can be transferred during ∆T . A solution that assigns a non-
negative integer number f(e) to each edge e ∈ E can be
found in polynomial time with known algorithms. Here f(e)
is understood as an actual amount of data to be transferred
within ∆T .

We prioritize transfer of output files, because it allows to
create free space for upcoming input files. For this reason we
solve the output problem first, and then use its solution to
calculate the remaining capacities of the network links.

A. Output flow planning
In order to transform a given graph of a Grid into a

capacitated {s, t} network for the output transfer problem we
add two dummy vertexes: a source s and a sink t and dummy
edges. The source s is connected to each processing site ci
with a dummy edge di ∈ D. Its capacity wi defines the
maximum expected amount of the output data to be transferred
from the site. Each output destination site ci is connected to
the sink t with a dummy edge qi ∈ Q having capacity ki –
the currently available free space to store new output files. In
this formulation capacity of each edge defines the maximal
amount of data that can be transferred within time interval
∆T . For each real network link l ∈ L with bandwidth b(l) it
is b(l) ·∆T . The transformation is illustrated at Fig. 1a.

The following expression summarizes the capacities of
edges in the output problem:

cap(e) =


b(e) ·∆T if e ∈ L
wi if e = di ∈ D
ki if e = qi ∈ Q

(1)

We denote the solution for the output transfer problem as
fout(e). It specifies the amount of output data that has to
be transferred over each link during ∆T .

B. Input flow planning
For the input problem (see Fig. 1b) we apply a similar trans-

formation to the initial graph of the computational network.
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(a) Output flow planning. Solid lines are network
links L, dotted lines are dummy edges Q, dash lines
are dummy links D. Output destinations are in red
cycles, processing sites are in blue cycles (Site-2
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(b) Input flow planning. Solid lines are network
links L, dotted lines are dummy edges Q, dash
lines are dummy edges D. Input sources are in red
cycles, processing sites are in blue cycles (Site-2
shares both functions).
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(c) Multiple solutions of the maximum flow
problem. S1,S2 are input sources, P1 – P3 are
processing sites. The dash and dotted lines are
dummy edges, labels show their capacity, solid
lines are network links. The grey arrows in the
background show two alternative flows through
the input sources.

Fig. 1: A computational network represented as a capacitated {s, t} graph for dataflow planning.

We add dummy edges di ∈ D from each processing site to
the sink, and a dummy edges qi ∈ Q from the dummy source
s to input sources. These dummy edges allow us to introduce
constraints on the storage capacity, CPU throughput and data
availability at sites. For real network links l ∈ L we also take
into account the capacity reserved for output transfers:

cap(e) =

 b(e) ·∆T − fout(e) if e ∈ L
wi if e = di ∈ D
ki if e = qi ∈ Q

(2)

where wi is the demand for new input data at processing
site ci. Its calculation is explained in the next Section. We
denote the solution for the input transfer problem as f in(e).
It specifies the amount of input data that should be transferred
over each link l during ∆T .

C. Capacities of dummy edges

In order to complete the formulation of both input and
output problems we have to set the values wi and wi. Those
values correspond to the estimated amount of input/output data
to be processed/produced at processing sites during ∆T . If the
system has reached a stable throughput, then we can expect
that each site will consume/produce the same amount of data
as in the previous planning cycle. For this reason, in most
of the cases these values can be derived from the statistics of
previous performance. Otherwise, if the system is in a transient
state (the start/end of data production or addition/withdrawal
of resources) or problems are identified (insufficient input data
or free space at some sites) the values wi and wi can be
estimated knowing the current state of the influenced sites.
It is important to note, that the value of wi is not necessary
equal to the maximal amount of input data that the site can
accept. For example, a site with large storage but few CPUs
should not accumulate excessive data instead of processing it
at another site. To find a correct estimation we should consider
an average computational throughput (NCPUi

αi
), free local disc

space and the amount of each type of data placed at the site.
The detailed procedure for estimation of wi and wi can be
found in [3].

D. Plan execution

In order to execute the plan, there is a dedicated service
running at each site, called handler, also responsible for
sending statistics and status information to the planner. As the
handler receives a plan, it knows the amount of input/output
data (f in(l), fout(l)) to be transferred over each outgoing
link to the neighboring nodes. Each time a new input file
arrives over one of the incoming links, the planner either
submits it for processing (if there are free CPUs) or, otherwise,
forwards it over one of the outgoing links with a remaining
flow f in(l) > 0 and then decreases this flow by the size of
the file. If there are no outgoing links with f in(l) > 0 the
file is kept at the local queue until a CPU becomes free or
a new plan is issued. In this manner the handler maintains a
local queue of input files, so that a CPU can start the next job
as soon as a previous one is completed, therefore, a transfer
overhead is eliminated. The output files are forwarded in a
similar way until they reach one of the output destinations.
The detailed description of the handler’s logic can be found
in [3].

IV. PLANNING WITH MULTIPLE SOURCES

The maximum flow problem can have multiple solutions,
which means that in certain networks the maximum total flow
can be achieved by several alternative flow assignments to
edges. Intuitively, for a large enough network, when the total
flow is limited by the capacity of a subset of the edges (the
bottleneck) the flow over the remaining part of the network can
be routed in many different ways. This fact raises an important
issue when it comes to planning with multiple input sources.
An example is given at Fig. 1c. Here the total flow is limited
by CPU throughput, while the network structure allows to
select from which input source to transfer the data. However,
classical network flow maximization algorithms do not select
between solutions with maximal flow on any additional cri-
teria [19]. When an input source gets depleted, the number
of possible transfer paths decreases and it potentially leads to
emergence of additional bottlenecks. For this reason, a solution
taking into account different amount of data at particular
sources to properly balance their usage during computation



is needed. A helpful strategy is to utilize sources with more
data as much as possible from the beginning but try to keep
the smaller sources for later and utilize them when it allows
to maximize the overall flow.

With this concern, an additional criteria for selection be-
tween multiple maximum flow solutions should be added to
the problem. We have achieved this by extension from the
maximum flow problem to the minimum cost maximum flow
problem in our planner. For such transition we assign a cost
cost(e) for each edge e ∈ E in addition to previous problem
formulation. The cost of a flow function f for a given graph
is defined as

∑
e∈E f(e) · cost(e). A minimum cost maximum

flow (min-cost max-flow) of a given network is a maximum
flow with a smallest possible cost. Known algorithms such
as generalized push-relabel algorithm [20] can solve min-cost
max-flow problem in polynomial time.

In order to balance usage of multiple input sources we
assign costs to dummy edges qi depending on the amount
of input data remaining at the sources. At the beginning of
each planning cycle our planner does the following:

1) Sort input sources in descending order by the amount of
available input data.

2) Set costs of the dummy edges qi depending on the rank of the
source i in the sorted list. In current implementation the cost
is set equal to the rank.

3) Set the cost of the rest of the edges to one in order to take
distances into account.

Since the costs are updated at each planning cycle the priorities
of the sources are changing as they are depleted.

V. INITIAL DATA DISTRIBUTION

Another important question concerning multiple input
sources is: what would be the best way to distribute the
given dataset over available storages prior to computations?
A carefully planned initial data distribution can help to reduce
the subsequent data production makespan. In real world it
is usually possible to move data across several available
storages before the computation starts. For example, the STAR
collaboration makes agreements with external institutions to
use their computational facilities for data production during
a predefined time period [21], in this case the access to the
remote storage is usually granted before the access to CPU
resources. Under such conditions it would be advantageous
to move a part of data to that remote storage before the
actual computations. Another example comes from the ATLAS
experiment [5] where raw data are persistently stored at 12
geographically separated sites and is reprocessed (typically
several times during years) using updated algorithms and
calibration data in order to improve quality of the resulting
reconstructed data. Such re-processings are planned by the
experiment’s collaboration in advance, so that the dataset to be
processed and computational resources to be used are known
in advance. This gives an opportunity to distribute the raw
data in order to decrease the makespan of upcoming data
(re)processing.

The general idea of the initial planning stage is to consider
the entire data production in one planning cycle where ∆T

equals to estimated makespan. The produced plan is not
expected to be highly accurate due to the huge planning
time interval, but it allows to find how much data should be
taken from each possible source. After the calculated data
distribution is established the data production can start as
described before.

A. Model description

Let K be the total size of input data to be processed. Some
of the sites can be used as input sources, the maximal amount
of input data, which can be placed at such site is Si > 0. The
task is to find how much data ki should be placed at each
source and how long the data production will take.

We can again use the min-cost max-flow approach to the
initial data distribution problem. Similar as before, we trans-
form the graph of the computational network into capacitated
{s, t} network and set costs to all its edges. We set the
capacity of each real network link equal to the amount of data
which can be transferred over it during the data production
cap(e) = b(e) · ∆T . The dummy source s is connected to
each input source via dummy edges qi with capacity Si. Each
processing site ci is connected to a dummy sink t via a dummy
link di with capacity cap(e) = NCPUi

αi
·∆T which estimates

its data processing throughput. The coefficient αi should be
derived from the statistics of previously finished jobs; its
variance can be significant given the heterogeneity of resources
and jobs. For this reason, the accuracy of αi estimation is a
limiting factor for the precision of the resulting initial plan.
However, as explained before, the initial plan does not have to
be strictly fulfilled during the upcoming data production itself.

In current implementation the costs of all of the edges are
set to one. This allows to reduce the number of transfers during
the computational stage, but potentially increases the number
of required transfers before the computations. Alternatively,
the costs of dummy edges qi to the source sites which do not
contain significant portions of data yet can be set to one, while
the costs of the rest of the edges can be set to zero. As the
result the planner will try to utilize existing placements of data
as much as possible (and will use additional sources only if this
will allow to avoid network bottlenecks), however, the amount
of transfers during the computational stage may increase. The
choice of alternatives should depend on the particular use
case. The advantage of the proposed approach is certainly its
flexibility which allows to adjust to real life conditions.

B. Solving procedure

The makespan of data production ∆T is not known in
advance, in order to find it we start with an estimation and then
improve its value iteratively. The iterations continue until we
find a value of ∆T for which the maximum total flow Φ equals
to the total size of input data K with a predefined precision ε.
The overall solving procedure for the initial planning problem
is the following:

1) Calculate an optimistic (as if there is no network bottlenecks)
estimation for makespan ∆T = K/

∑ NCPUi
αi

,
2) Construct the {s, t} network as described before,



3) Update capacities of the edges using the current value of ∆T
4) Solve the max-flow min-cost problem. If | K − Φ |< K · ε

then go to (6),
5) Set a new value for the estimated makespan

∆T = K
Φ
·∆Tprevious and go to (3) ,

6) Resulting flows f over dummy edges qi are the amount of data
to be placed at each source (ki = f(qi)), ∆T is the expected
makespan.

To summarize, this procedure allows to find a makespan
estimation ∆T for data production and amount of the input
data ki to be initially placed at each source site i.

VI. EXPERIMENTS

For testing of our updated scheduling approach, we have
performed simulations of distributed data production using
GridSim [22] — a common tool for simulation of computa-
tional Grids. Network links were modeled as space-shared
resources, i.e. if multiple files are submitted for a transfer over
the same link simultaneously, they are dispatched one by one
in the First-In-First-Out order. We have used job parameters
from log records collected during the data production for
the STAR experiment in June – September 2014 at the KISTI
computational facility [23]. The records of 60,000 of jobs were
collected which corresponds to 260 TB of input files processed
at 1,000 CPUs.

The planner was implemented in Java using the
JGraphT [24] library which provides common tools for graphs
and flows. The simulations were running under Windows 10
64-bit with Java 1.8.0 60 (64b) on a computer with Intel i5 (4
cores) 2.50 GHz processor and 6 GB of memory. An average
runtime of simulations described in this paper was 6 minutes
with deviation 5 minutes.

A. PULL scheduling approach

In order to compare our approach with others we have
simulated job scheduling typical for modern distributed com-
puting systems and HENP computations in particular. Most
of the scheduling systems in HENP experiments have their
own implementation of so called pull model. While details of
implementations may differ, the general pattern is very similar:
a pilot job [5] is submitted to each available CPU in the
system which is responsible for requesting input data (pulling),
starting computational jobs and transferring output data. When
the CPU is ready to process data, the pilot job requests the
distributed data management (DDM) system for a new input
file. The DDM checks the data availability and redirects the
request to one of the sites storing the data. The selection of
the site may be arbitrary or depend on either current load or
communication latency to the requester. After the source site is
selected the pilot job transfers the data to the local storage and
starts to process the job. When the file is processed the pilot
job transfers the output to a predefined destination and requests
for the next input. As one can see, under such model the CPU
allocation and data access are concurrent and uncoordinated.
Under the best case scenario all the jobs are transferring data
from the fastest available source. We have simulated a pull

scheduling approach using the following algorithm executed
at each processing site:

• Initialization
1) Ping all available sources, form a queue ordered by

connection speed and set the fastest source as selected
for this processing node

• Simulation start
1) Whenever a CPU becomes free request next input file

from the active source
2) When an input file is received submit a job
3) When current source is depleted, switch to the next in the

queue. Repeat until all data are processed

Output files can be send to a single storage, or to multiple ones,
using the same reasoning as for input files. In the following
text the above algorithm is called PULL for brevity. Our
scheduling approach is referred as PLANNER.

B. Experiment setup

In previous work we have tested our approach in simulations
of data production in the network of so-called Tier-1 sites of
one of the largest HENP experiments. Eleven large sites with
NCPUi varying from 500 to 12,000 interconnected with a
dedicated network were considered in that simulation [4]. In
this work we focus on a large-scale network consisting of
several tens of smaller sites (referred as Tier-2) interconnected
with relatively slow links. This provides an opportunity to test
our planner over a wider scope of infrastructures and consider
its application beyond the HENP computations including com-
modity networks and computational resources.

It is known that large-scale communication networks
(including the Internet) reveal properties of a scale-free
graph [25]. For this reason the network topology in our simu-
lations was constructed using such a graph. The parameters
of the computational sites (CPU, disk space) were set to
comply with observations from the online monitoring data of
HENP experiments (such as MonAlisa [26]). The bandwidth
of the links was set considering the lower bound required to
utilize CPUs efficiently, which is close to 250 kbps per CPU
according to our previous simulations [3]. This allows to test if
the simulated scheduling approaches can utilize the bounded
bandwidth efficiently. We used the following procedure for
grid generation:

1) Generate a scale-free graph with N vertices.
2) Set M vertices with the highest degree are as input sources.
3) The rest of the vertexes are set as processing sites, where

NCPUi is proportional to the vertex degree and a random
value within a given interval. The size of the local disk was
set to 15 GB per CPU.

4) Each edge of the graph is set as a network link, its bandwidth
is proportional to the smallest NCPUi and network degree of
the sites connected by the link.

Ten generated computational networks used in the simulations
consisted of 50 sites each and were varying in total number
of CPU’s (4,000 – 23,000) and bandwidth of the links. Fig. 2
shows an example of such network with 50 sites, 8 input
sources, 77 links and 6,663 CPUs.

Four simulations were done for each generated network:
PULL and PLANNER using multiple input sources; and



Fig. 2: Example of a computational network generated for
simulations. The red vertexes are input sources, the blue
vertexes are processing sites, where the label is the number
of CPUs. The thickness of the links illustrates the bandwidth.

PULL(single) and PLANNER(single) using a single input
source. In case of multiple input sources the initial data
distribution was established using our approach described in
Sec. V. In case of a single source, the site with the best
connectivity (largest degree) was used. S0 site at Fig. 2 is
an example. In both cases the output data was transferred to
a single output destination which was, again, the site with the
best connectivity (S0). In each simulation the same dataset
was submitted for data production and the resulting makespan
and CPU utilization over time were compared. The ∆T for
the planner (from Sec. IV) was set to 12 hours.

C. Results

In all the simulations the PLANNER has reached the highest
CPU utilization (both peak and average) and a significantly
shorter makespan. A typical dependence of an overall CPU
usage over time is presented at Fig. 3. Under the PULL model
a small fraction of jobs which is processed the last increases
the overall makespan dramatically. This can be seen as a long
”tail” for both PULL and PULL(single) threads at the plot.
It is a well known drawback of remote data access in scale-
free networks. Such behavior can be explained by the lack of
coordination between CPU allocation and file transferring: the
jobs are allocated to the first CPU which becomes free with
no reasoning about the resulting latency. As a consequence,
significant portions of data are send to distant (in a network
sense) processing sites, especially at the end of computation.
At the same time the closer sites run out of input data and
remain idle. In contrast, the PLANNER considers how much
data can be transferred and processed at each site within each
planning time interval and distributes the load accordingly.
This allows to decrease the makespan dramatically: by 60 %
in this particular simulation and by 46 % on average with
deviation 12 % in all the simulations (PLANNER compared to
PULL(single), note that PULL(single) has better performance
than PULL as discussed later). Such a significant makespan

Fig. 3: Total CPU usage in simulated data production using
the network pictured at Fig. 2.

improvement has a great value for applications where the
dataset has to be processed completely before its future usage
can start (e.g. user analysis in HENP processes the outcome
of data production).

The initial data distribution helps to reach the peak pro-
cessing throughput faster (compare PLANNER and PLAN-
NER(single) at Fig. 3) and thereby provides an additional
decrease of the makespan by 6 % on average with deviation
3 % compared to usage of a single input source. It becomes
even more advantageous (up to 18 %) if the network has
regions with poor connectivity to the primary input source.
In such case, transferring a portion of input data to that region
before the processing starts allows to utilize resources more
efficiently. However, our initial data distribution does not bring
any advantage for the PULL approach, because this approach
does not address well the case of multiple sources without data
replication. When multiple sources contain unique portions of
data the transfer latency increases for the PULL algorithm
at late stages (when only sources with average connectivity
left) compared to the case with a single source (with the
best connectivity). Let us note that most of the modern DDM
systems can provide data replication across sites. It allows
to select a closer input source for each particular job, which
is beneficial for the PULL model. We plan to consider data
replication in our future work.

Simulations of our planner using a single input source can
be compared to simulations in our previous papers [3], [4],
where we have observed up to 28 % makespan improvement
in networks with several sites. Comparing it to the results
of the recent simulations we can observe that the gain in
the makespan grows with the complexity of the network.
The makespan improvement of PLANNER(single) against
PULL(single) has reached 43 % on average with deviation
10 % in the recent simulations.

VII. CONCLUSION

Our job scheduling approach is dedicated to data-intensive
applications on distributed resources when network perfor-
mance and storage space are important factors along with CPU
throughput. In this work we have generalized the network flow
approach towards reasoning over multiple criteria. Given that
we have extended our approach to consider multiple sources
of input data. To enable efficient utilization of many sources



additional reasoning was introduced to the underlying model:
planning of initial data distribution and balancing usage of the
sources.

While initially focused on distributed data production in
HENP, our approach can also be helpful in other applica-
tions where a large set of data at distributed storage has to
be processed on geographically spread resources within the
shortest possible time. The approach is especially beneficial
when the network performance becomes a limiting factor and
optimization of data access is required. It can also address
usage of volatile cloud resources provided on demand due to
its adaptability to changing environment.

In complement to the simulations performed previously,
in this paper we have tested our approach in realistic large-
scale networks with tens of smaller computational sites. The
simulated environment follows the recent trend in HENP com-
putations: the aggregated computational power of smaller sites
(Tier-2) is growing faster than that of the larger sites (Tier-
1). These simulations also allowed to study the behavior of
our approach outside of the dedicated infrastructure of HENP
experiments and consider more general case of networks and
servers.

In all of the simulations our planner has shown a signifi-
cant improvement against the typically used pull scheduling
approach. The peak processing throughput was increased and
the makespan of data production was improved by 46 %. The
planning of initial data distribution across several sites allowed
to reach peak throughput faster and to decrease the makepan
by up to 18 % comparing to the case when a single input
source is used.

Our new extension of the planner’s mathematical model is
very important for many close scheduling problems because
the cost function can be used to handle various optimization
criteria on top of the flow maximization. Such extension makes
our planner versatile to many potential use cases. This paper
proposes two ways of using the cost: to balance source usage
and to plan initial data distribution. In future it can also be
used to impose other desired properties to plans. For example,
it allows to prioritize the usage of faster CPU resources,
minimize expenses for using external paid cloud resources or
decrease the load on shared network links experiencing high
background traffic and other. We plan to study and implement
such additional optimization in future.
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