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Abstract—Over the last years, the activities related to un-
manned aerial vehicle have seen an exponential growth in
several application domains. In that context, a great interest has
been devoted to search and tracking scenarios, which require
the development of novel UAV mobility management solutions.
Recent works on mobility models have shown that bio-inspired
algorithms such as ant colonies, have a real potential to tackle
complex scenarios. Nevertheless, most of these algorithms are
either modified path planning algorithms or dynamical algo-
rithms with no a priori knowledge. This paper proposes H3MP,
a hybrid model based on Markov chains and pheromones to
take advantage of both static and dynamic methods. Markov
chains are evolved to generate a global behavior guiding UAVs
to promising areas while pheromones allow local and dynamical
mobility management thanks to information sharing between
UAVs via stigmergy. Experimental results demonstrate the ability
of H3MP to rapidly detect and keep watch on targets compared
to random and pheromone based models.

I. INTRODUCTION

According to the definition provided by the Joint Capability
Group on Unmanned Aerial Vehicles [1], a UAV is "A
reusable aircraft designed to operate without an on-board
pilot. It does not carry passengers and can be either remotely
piloted or preprogrammed to fly autonomously.”. Often re-
ferred to as to drones by the public, UAVs have proven during
the last years their utility in many civilian application cases.
This is explained by their ability to go to places unreachable
by humans (e.g volcanic activities monitoring) as well as their
flexibility in terms of payload (e.g. camera, infrared sensors,
GPS). Among the wide range of possible missions, UAVs
are very often employed to keep watch, search and track.
One must also distinguish remote-controlled and autonomous
UAVs. The former still requires human decisions while the
latter relies on artificial intelligence (Al).Recently, autonomous
UAVs have become one hot topic. Many works focused on
obstacle avoidance and intelligent path planning without any
human intervention.

In this work, we consider a patrol-surveillance scenario
which objective is to maximize targets detection. For such
needs, we propose H3MM, a Hybrid Evolvable Markov Mo-
bility Model for a fleet of UAVs based on Markov chains and
indirect cooperation, i.e. stigmergy. The environment is first
partitioned in several zones after the passage of a high-altitude
and fixed-wing UAV. Then a Markov chain is generated from
this geographical decomposition. Each zone represents a state
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of the chain and transitions can only occur between neighbor-
ing zones. Each UAV implements this Markov chain except
that the transition probabilities may vary from one UAV to
another. Then, UAVs follow their own transition probabilities
to explore each zone. The union of all transition probabilities
implemented by the fleet of UAVs may be assimilated to a set
of possible strategies (solutions) to perform patrols. In order
to improve this set, an evolutionary algorithm, in this work a
genetic algorithm (GA), is be employed. This evolution could
be easily performed by a high-level UAV or the base station.
Transition probabilities leading to the best detection patrol are
the most rewarded. Since the environment is dynamic and may
change rapidly, it is required to implement an evolutionary
algorithm taking into account these modifications. For this
purpose, a local procedure is added to the evolution to tackle
this problem. When targets are encountered, transitions are
reinforced using direct communications between UAVs. If a
change occurs suddenly, the information is directly propagated
and a bad strategy may become efficient without dead time.
This first part permit to discover the best patrol zone and can
be considered as the highest level of the proposed mobility
model. Inside a patrol zone, the adopted mobility model is
based on stigmergy, i.e pheromones.

The remainder of this paper is organized as follows. The
next section deals with related work on the topic. Section
3 describes in details the different mobility models while
section 4 explains how the H3MP model is conceived as a
hybrid from the models seen in section 3. The experimental
setup and numerical results are introduced in section 5 and
6 respectively. Finally, we conclude and propose some future
perspectives in section 7.

II. RELATED WORK

Unmanned Aerial Vehicles (UAVs) are aircraft having the
ability to fly without an on-board pilot. Their utilization has
seen an exponential growth over the recent years and many
models of UAVs have been designed to answer various situa-
tions. In [2], small UAVs are deployed to monitor urban high-
way traffic. Geologic activities can also be surveyed with the
aid of UAVs. For instance in [3], remotely piloted helicopters
were equipped with a system for sampling and analyzing gas
inside volcanic plumes. Fire detection also belongs to the range
of possible missions assigned to UAVs. In [4], the authors



present a collaborative system of UAVs composed of several
aerial vehicles and a central station for forest fire fighting.
Finally, some works have been dedicated to maritime rescue
using UAVs and USVs (Unmanned Surface Vessel). In [5],
a Bayesian Network is used as decision model to take into
account uncertain factors. UAVs have also the advantage to
go and explore dangerous zones for human beings. In [6] and
[7], the authors employed UAVs for radio-detection purposes
in radioactive zones. Concerning categorization, metrics have
been developed to classify UAVs such as Mean Takeoff Weight
(MTOW) or Operational Altitude. However it is very difficult
to keep a definitive and up-to-date model since the UAV
market is still growing at a fast pace. A lot of engineering and
research topics (e.g. UAV control [8], UAV sensor [9]) have
been investigated which continuously contribute to improve
UAVs’ application domains.

Nowadays, two main kinds of UAVs can be distinguished:
remote controlled and autonomous UAVs. While the former is
widely used today, the latter is certainly the most promising in
terms of research and applications. Autonomous UAVs allow
faster and longer missions since they do not rely on hu-
man control. They require developing decision-making model
[10] which relies on artificial intelligence such as pattern
recognition[11] or path planning[12]. Among these models,
mobility models play an important role. There exist not only
path planning but also intelligent motion algorithms based on
collaboration between UAVs. In order to inject intelligence
and self-governance to UAVs mobility, many researchers rely
on bio-inspired algorithms such as Ant colony [13], Particle
Swarm [14] or Bee algorithms [15] which mimic the behavior
of social species in nature. For more details, the reader can
refer to [16].

In this work, we focus on bio-inspired mobility models
designed to explore and detect a maximum number of tar-
gets. Some existing works extend the basic concept of ant
pheromones to different kinds, such as attractive and repulsive
ones. This approach has been successfully used in [17] and
[18]. Optimal deployment[19] has been tackled using particle
swarm optimization (PSO) and bacterial foraging algorithm
(BFA). These algorithms can be refereed to as swarm algo-
rithms. In this case, communication is of major importance as
defined in [20] where network clusters are formed to provide
stability and reliable communications.

We here propose to classify these mobility models based on
two types of approaches: tactical and strategic. The strategic
approach relies on path planning [21] and a global identifica-
tion of the actions to achieve a goal. In the tactical approach,
online algorithms [22] are developed to take uncertainties or a
dynamic environment into account. The contribution in this pa-
per, i.e. H3MP, is a combination of such two types of mobility
models with opposite characteristics. While the Markov model
is well-suited for general and global patrol, the pheromone-
based mobility model has already proven its efficiency for
tracking purposes. However, it remains inefficient until the
first pheromones are dropped on the map which may take very
long time for large environments. Indeed, most of the models
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Fig. 1. Search & rescue UAV in maritime context

presented in the literature adopted a random procedure when
no pheromones are present. We argue that it is possible to
improve the time to the first detection by using the Markov
model since UAVs are forced to change zones. Once targets
are detected, zones with high detection probabilities are more
often explored and the pheromone mechanism becomes more
efficient. As a consequence, the proposed H3MP model com-
bines the advantages of both strategic and tactical approaches.

III. UAV MODEL AND MOBILITY MODEL APPROACH

A. UAV model description

In H3MP, UAVs and targets are modeled as agents which are
able to sense the environment and act upon it. An efficient way
to implement agents is to model them as finite-state machines
(FSM) which can be mathematically formulated as a quintuple
(%, S, 80,0, F). ¥ is the set of percepts, S a finite set of states,
so the initial state and ¢§ the state-transition function § : .S x
Y — S in the deterministic case or ¢ : S x ¥ — P(.5) in the
non-deterministic case. Depending on the input received from
the environment and the current state, an agent performs some
specific tasks. Let us take the example of a search and rescue
UAV (see Figure 1) launched by a cost guard ship during sea
rescue. This UAV could be represented literally as two states:

o The search state aims at covering a wide area to find
some survivors as fast as possible;

o The rescue state occurring after detection which contin-
uously broadcasts the position of the detected survivors
while hovering over the detection zone.

To each state corresponds one particular task/mission which
is the building blocks of the agent. In the case of an au-
tonomous and intelligent agent, we could imagine that states
are updated by the agent itself based on the acquired knowl-
edge. A large number of missions can be modeled with FSM.
This is the first reason explaining our choice. The second one
is that it allows us to compare fairly different algorithms by
having a clear stopping condition, i.e. the maximum number
of state-transitions. It ensures that the same number of steps
has been respected even though algorithms are very different.



In the related work section, we defined two different groups
of approaches: the tactical and the strategic ones. While
a tactical approach relies on local procedures, a strategic
approach tries to determine globally the best set of actions to
achieve a goal. Both approaches have complementary strengths
and weaknesses. A tactic approach involves short and ad-
hoc actions defined at specific moments to respond to some
events. A strategic approach requires to create plans and
anticipate some events. Using a military metaphor, we could
say that you make tactical choices to ”win a battle” while
you make strategic choices to “win the war”. Both constitute
an inseparable unity. To win a war, you have to win battles
while winning battles does not imply that your are winning
the war. This is the reason why it seems obvious to combine
both. The next section will explain our choice in terms of local
procedure (tactic) while the next one will explain how adding a
global procedure can enhance a UAV task. These methods are
defined to improve target detection in the context of fire starts,
search & rescue missions and many other situations involving
detection purposes.

B. Tactical mobility: communication based on pheromone
tracks

Communication is particularly important when consider-
ing a fleet of UAVs. The tactical mobility model presented
here relies on the concept of stigmergy. It is a bio-inspired
communication concept used by social insects through the
modification of the environment, e.g., by leaving pheromone
tracks. In this work, a virtual map is shared by the operational
base (central entity). Each UAV connected to this base is able
to drop and retrieve some information (virtual pheromones)
on the map. When the connection is lost with the group, a
UAV uses a local copy of the map. Once the connection is
restored, the UAV reconnects and updates the virtual map.
The advantage of such a mechanism is that UAVs may be
autonomous or semi-autonomous since the map is owned
by a central entity. Either the map is only updated with
the information provided by UAVs or the central entity may
influence them as well to patrol some area by modifying the
virtual map. This second possibility has not been tested yet
and will be tested in future work. This indirect cooperation
approach has been implemented based on a dual-pheromone
mechanism as proposed in [18]. Attractive pheromones are
dropped on nodes where targets are detected while repulsive
ones rely on node visitation, to favor the exploration of the
least frequently visited nodes. It means that the attractiveness
of a node can be compensated by a large number of visits.
Contrary to [18], we keep the random proportional transition
rule introduced by the authors of Ant Systems [23]:
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where m is a destination node, p¥, is the probability for
a UAV k to go to node m, J]’-C is the set of all nodes

belonging to the destination zone j, 7% (¢) is the attractive
pheromone intensity at iteration ¢ on node m while 12 (t)
is the repulsive pheromone intensity on this same node at .
Repulsive pheromones just represent the inverse of the number
of times each node has been visited. In the remainder of this
paper, we consider « = 8 = 1. Further investigations will
be done in the future to find a trade-off between these two
parameters. Without any tracks, UAVs take random decisions
which may lead to bad behaviors. This is clearly the main
drawback of such indirect approaches and the reason why
we propose to hybridize it with the second mobility model
introduced in the next section.

C. Strategic Mobility: patrol rules based on Markov chains

In order to cope with the weaknesses of the pheromone-
based model, an evolvable Markov model is designed. First,
the UAV navigation mesh is partitioned into several zones (or
clusters). A standard clustering algorithm such as K-means or
DBSCAN can be used for this purpose. The number of zones
is a parameter which should not be too large or too small. The
first reason is that a large number of zones will be difficult
to explore exhaustively while a too small number of zones
will have a negative effect on the exploration since UAVs
will change zones very frequently without deeply exploring
them. Finding a trade-off for this parameter is necessary.
Knowing the size of the considered map in this work and
based on previous experiments, we here considered 10 zones.
We also use the K-means algorithm in order to have zones
with approximately the same size. This is one of the specificity
of K-means which tends to generate round and equal clusters
(here zones). This partitioning could be realized by the passage
of high-altitude UAVs or using satellite imagery. We recall
that Markov chains are generally represented as a sequence
of random variables X where the probability of moving
from one state to another only depends on the present state.
Each Markov chain can be modeled as a matrix P with
P; = Pr(Xk41 = i Xy = j). In this model, each state
represents exactly one zone. Moving to another zone can be
modeled with the use of transition probabilities. It means that
P;; is the probability to move to zone i knowing that the
present zone is j. Therefore, the structure of the Markov chain
is automatically deduced from the clustered navigation mesh,
as illustrated in Figure 2. Two non-adjacent zones ¢ and j have
P;; = P;; = 0. For instance, in Figure 2 it means that a UAV
cannot take the decision to go directly from zone 1 to zone
10.

By adjusting transition probabilities, UAVs can be driven
to patrol more frequently some specific zones. We consid-
ered transitions as strategies and evolved them using genetic
algorithms. The strength of this Markov mobility model is
that UAVs leave unpromising zone more often. UAVs are not
wasting their time by doing random search in zones where no
pheromones tracks are present. Therefore their search becomes
more efficient.



Fig. 2.

10 zones obtained after clustering the UAV map (top) and the
corresponding Markov Chain (down)

IV. H3MP - HYBRID MARKOV MOBILITY MODEL WITH
PHEROMONES

In the previous sections, the tactical and strategic mobility
models have been briefly described. By combining them
together, we propose H3MP, a hybrid model taking advantage
of a dynamic mechanism brought by the pheromone-model
as well as a strategic mechanism consisting in finding the
best transition probabilities to globally adjust the patrol. As
aforementioned, targets and UAVs are FSM. Targets are only
composed of a single state with a loop. At each iteration, a
target chooses a random position and moves to it. Concerning
UAVs, the model is composed of two states: the Destination
state (see Algorithm 1) and the Move state (see Algorithm
2). In the the Destination state, a UAV selects a destination
based on the transitions probabilities while the Move state
corresponds to the local search based on pheromones.

At each iteration and until it reaches its destination, a
UAV updates the shared pheromones tracks and reinforces
the transition probabilities between zones according to the
observed number of detections. We recall that this direct
reinforcement (previously mentioned in section I) is performed
to avoid dead times and accelerate the generation of good

Algorithm 1 ComputeDestination state

1: proc Destination(uav):

: {Select next destination according to the mobility model and
the best tracks}

: newZone <— uav.MarkovMobility.nextZone(uav.currentZone)

: nodes < getNavigationPoints(newZone)

: probabilities=

: for n in nodes do

p + getProbabilities(getAttractivePheromones(),

getRepulsivePheromones(),

alpha = 1,beta=1)

8:  probabilities.add(p)

9: end for

10: newDestination < rouletteWheelSelection(probabilities)

11: uav.path <— computeRoute(destination, uav.position)

12: return state Move

N}

NN AW

strategies when changes occur. Once these two tasks are done,
it retrieves the next destination node and moves to its direction.

Algorithm 2 Move state

: proc Move(uav):
: {Select next point from the computed path}
: newPoint <— uvav.path.pop()
: uav.moveTo(newPoint)
: {Update tracks as well as the mobility model}
: updatePheromones(uav)
. if len(uav.path) == 0 then
return state Destination
else
return state Move
: end if

—_

—

The evolution of the transition probabilities or strategies
permits UAVs to execute a stochastic patrol. In order to gen-
erate the best patrol, transition probabilities are evolved using
a generational genetic algorithm (see Figure 3) [24]. A random
population of probability vectors, referred to as individuals in
Algorithm 4 (line 2), is first generated according to the Markov
chain obtained after discretizing the environment. In order to
evaluate these probability vectors using the evaluation function
described in Algorithm 4, each UAV is assigned one vector
and performs p iterations. This evaluation function relies on a
simulation. Since UAVs are modeled as FSMs, one iteration
represents one FSM state-transition. For each UAV, the number
of detected targets after p iterations represents the fitness value
of its probability vector. Then evolutionary operators (line 6 to
7) are applied and the population is replaced by the generated
offspring (line 9). This step constitutes a single generation.
The total number of generations is the stopping criterion.

Concerning the evolutionary operators, we consider a modi-
fied version of the BLX-0 crossover to generate two offspring.
Let x and y be two chromosomes selected to mate. x;(y;) is an
allele of x(y) occurring at position 2. 0 < z; <1,0<y; <1
Vi{l,..., N} with N the chromosome length. Two offspring 2*
and 22 are generated from z and y according to the following
formulas:

1 = max(x;,y;) x U(0,1)
2) Viz2=uU(0,1) x (1 —min(x;,y;)) + min(x;, yi)



Algorithm 3 Pseudo-code of a the GA

: proc Evolve(genga,targets,quad-copters)

. Initialisation(genga.pop);

: Evaluation(offspring,target,quad-copters);

: for iin 1 To Ngen do

parents <— Tournament(genga.pop,2);
offspring <— Recombination(genga.Pc,parents);
offspring <— Mutation(genga.Pm,offspring);
Evaluation(offspring,target,quad-copters);
genga.pop<—offspring;

: end for

: end procEvolve

SR e

—

Algorithm 4 Evaluation function

: proc evaluation(individuals,targets,uavs)

: for i in len(uavs) do
uavs[i].ptransitions < individuals[i]

end for

. Agents < Union(targets,uavs);

: foriin 1 To p do

for agent in Agents do
agent.executeStateTransition();

end for

: end for

: for i in len(uavs) do

individuals[i].fitness <— uavs[i].nbDetection

: end for

: end proc evaluation
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Fig. 3. Genetic algorithm: workflow

Fig. 4. Allele generation for offspring from parents alleles

For instance (see Figure 4) if max(z;,y;) yi, then
2zl € [0,y] and 22 € [z;,1]. Mutation is performed given
the mutation probability p,,, the mutation operator modi-
fied a chromosome x using the formula: x; < 1 — x; if
U0,1) < p,, Vi{l,...,N}. Finally in a Markov chain, all
transitions probabilities going out of a state have to sum to
1. A repair procedure has been added to ensure that transition
probabilities going out each state sums to 1. This is basically
a normalisation procedure dividing each allele x; by > a;

which guaranties that the individual is then valid.

V. EXPERIMENTAL SETUP
A. Scenario

In this work, we consider a patrol scenario involving more
targets than UAVs such that the trivial strategy consisting in
assigning UAVs to targets once they have been detected is in-
efficient. This is motivated by real application cases, where the
number of targets is not known a priori. The considered UAVs
are quad-copters. The environment is a 3D map, illustrated
in Figure 5, designed by the authors of the 3D game engine
described in [25]. This map has been selected to increase the
environment complexity. Its topology has interesting properties
since it is made of two main areas separated by a hill. A
small corridor links these areas. As aforementioned, targets
and quad-copters will move based on discretized versions
of the environment. A target navigation mesh has been first
generated by computing all points on the ground satisfying
static collision constraints. Contrary to targets, the quad-copter
navigation mesh is generated given the flying altitude and
collisions are tested as well (e.g. collision with the hill). By
applying this abstraction, we avoid computing static collisions
during simulations reducing the computation cost. Collisions
between UAVs may be simply avoided by changing the altitude
of the two UAVs having collision course. Another approach
could be to share trajectories between UAVs through the
virtual map to avoid any collision courses. We selected the
first one which does not require extra implementation. Indeed,
it exists large number of works in the literature focusing
on collision avoidance and control theory which are not the
purpose of this paper.

B. Settings

In order to compare and evaluate our H3MP model, re-
ferred to as H3MP (Hybrid Markov Mobility Model with



TABLE I
PARAMETERS USED FOR THE EXPERIMENTS

H3MP Pheromone = Random

Tterations® 100 100 100
Rounds 100 100 100
Total iterations 10e4 10e4 10e4
Independent runs 30 30 30
Selection BTT X X
Crossover probability: pc 0.8 X X
Mutation probability: pm m X X
Pheromones update local local X
Pheromones type A+ R? A+R X
Pheromones evaporation3 10% 10% X
Fig. 5. The environment: a 3D map Detection range? > > >
Number of targets 20 20 20
Number of quad-copters 10 10 10

1: Binary Tournament; 2: Attractive + Repulsive; 3: Each round; 4: Maximal

Pheromones), we considered two other mobility models: a
distance to detect targets

random-based and a standard pheromone-based. In the random
mobility model, later named Random, quad-copters select
uniformly at random a new destination node in their neigh-
borhood. They basically have the same mobility model as
the target. They do not have a priori knowledge or the
ability to communicate. This random mobility model is just
a basic reference to show that H3MP has a better behavior
than the random one. The real comparison is performed with
the pheromone-based model, referred to as Pheromone. It is
inspired by the works presented in [17] and [18]. Both models
use an online-based approach but the authors in [18] added
attractive pheromones for tracking scenarios. Both works
focused on fixed-wing UAVs while we here consider quad-
copters. They also use a continuous environment while we
have a discrete one. Table I describes the parameters used for 5
the simulation. For the sake of comparison, statistics on the o hat R i N
number of detections are recorded at each round. A round is ‘ ‘ ‘ ‘

obtained when quad-copters and targets have each performed 0 20 40 Rounds 60 80 1o
100 iterations, i.e. 100 state-transitions. 100 rounds in total

are performed for all mobility models. Once a round has
been completed, information about target detection and area
coverage are retrieved. Once again, targets are moving using
a random mobility model comparable to the one implemented
for the random-based mobility model of UAVs. One could U
say that a random behavior for targets seems unrealistic. == Pheromones
Nevertheless in this work, we just want to compare two O[luw Random  Jr
mobility models without focusing on a particular mission.
Furthermore a random behavior for target should be even
more difficult than predictable trajectories. In any case, further
investigations will be performed using game theory to provide
some adversarial behavior to targets. All mobility models have
been implemented in Python. Experiments were performed
on a High Performance Computing platform. Each run was

= = Pheromones
00 W i Random

Average number of detections

A WML,

Fig. 6. Average number of detections

Minimum number of detections

L]
completed on a single core of an Intel Xeon E3-1284L v3 @ C R [N 5 T N e AL -
. . . .
1,8 GHz, 32Gb of RAM server, which was dedicated to this AP N PRI %
task 0 |-|-u-m‘u-m.-ﬁfﬁ'au’ﬁ!ﬁun’mﬂu‘ﬁm‘nqu:ﬁummmmmmmmnmm
VI. NUMERICAL RESULTS ° 20 Y oungs 5 100

Figure 6 represents the average number of detections for
each mobility model while Figure 7 depicts the minimum Fig. 7. Minimum number of detections



TABLE II
P-VALUE FOR PAIRWISE COMPARISON BETWEEN THE MOBILITY MODEL PERFORMANCE

Rounds
Pairwise comparisons 1 25 50 75 100
H3MP vs. Pheromone (Average) 1e-3 5.7e-2 5.4e-1 3e-2 9.4e-1
H3MP vs. Pheromone (Minimum) 1.0 4.9e2 1.1e-4 1.24e-7 3.05¢-6
H3MP vs. Random (Average) 1.0e-2 | 3.49e-11 | 1.33e-11 | 1.33e-11 | 6.47e-11
H3MP vs. Random (Minimum) 1.0 4.9¢-2 4.59¢-6 1.38¢-8 1.63e-7
Pheromone vs.Random (Average) 1.0 6.78¢-11 | 1.47e-11 | 1.33e-11 | 5.11e-11
Pheromone vs. Random (Minimum) 1.0 1.0 2.7e-1 2.7e-1 1.9e-1
1.0p O
60 2 S
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Fig. 8. Maximum number of detections

number of detections. Each experiment has been repeated 30
times (see Table I) to achieve a sufficient statistical confidence
since all models are stochastic. Using Wilcoxon rank sum test,
all mobility models’ results have been statistically compared
for different rounds (see Table II). As planned, the random
model detects targets with difficulty and constitutes the base-
line. On the contrary, one can observe that H3MP is able to
detect targets sooner than the other models. This is due to the
partitioning of the geographical search space. Indeed contrary
to the other models, hybrid Markov-based quad-copters have
to leave a zone once they arrive and are thus able to explore
the environment faster. After 20 rounds, the difference between
the pheromone-based and the Markov-based model decreases,
and according to Table II the average number of detections
is not statistically different anymore. Figure 7 depicts the
minimum number of detection for the three mobility models.
One can see that this number is larger for H3MP while it
remains very low for the other two approaches. Table II shows
that the minimum number of detection is statistically higher
than for the other two models. On the contrary, it can be
observed that the maximum number of detection (Figure 8)
is the highest for the pheromone model. H3MP ensures that
each quad-copter detects as fast as possible targets. They

Rounds

Fig. 9. Percentage of covered area

cannot loop inside a zone of the map and thus discover more
targets. Pheromone-based quad-copters may suffer from a lack
of tracks forcing them to move randomly during the first
step. This is the reason why it is not so different as our
reference, i.e. the random mobility model. Once pheromone-
based quadcopters detect targets, the number of detection
increases making the pheromone-based model better for the
maximum number of detection (see Figure 8) but worst for
the minimum number of detection. This could be explained by
the fact that pheromone-based quadcopters are certainly better
for tracking but do not guarantee an overall good performance
for all cooperative UAVs. In fact, the cooperation is basically
poor since some UAVs do not benefit from the information
provided by the others if they are not able to catch the tracks.
With smaller zones as implemented in H3MP, pheromones
tracks are more efficient. On large maps, it is difficult to find
the best evaporation parameter and some zones may lose all
the information dropped by one UAV. This drawback does
not appear with H3MP since UAVs also have a global patrol
forcing them to change zone. Concerning the coverage of all
the area, Figure 9 illustrates the percentage of covered area
over all rounds. The area is covered faster with H3MP quad-
copters than pheromone-based or random-based quad-copters.



VII. CONCLUSION AND PERSPECTIVES

In this work, we proposed H3MP, a hybrid approach
based on a Markov mobility model and pheromone tracks
to enhance the target surveillance-patrol abilities of UAVs
flying in swarms. This hybrid approach has been studied to
counterbalance some drawbacks of local procedure based on
pheromones. H3MP is generated from a preceding partitioning
of the environment which could be performed by a fixed-wing
UAV flying at high altitude. Transition probabilities are then
improved using a standard genetic algorithm to find the best
stochastic patrol according to the location of detected targets.
Simulations involving the detection of randomly moving tar-
gets by quad-copters have been designed and implemented
to evaluate the potential of the proposed mobility model. Its
performance was compared to two other mobility models,
pheromone-based and random-based. Numerical results have
demonstrated that H3MP ensures a maximal utilization of each
quad-copter while the pheromone model tends to have some
big detection gap. Future works will be devoted to study a
bi-level (Stackelberg game) version of this hybrid Markov
mobility model where clusters (zones) may change based on a
dynamic cooperation between quad-copters and high-altitude
UAVs.

ACKNOWLEDGMENT

Emmanuel Kieffer acknowledges the support of the National
Research Fund of Luxembourg (FNR), with the AFR contract
no. 9984150. Experiments presented in this paper were carried
out using the HPC facility of the University of Luxembourg.

REFERENCES

[11 J. C. G. on Unmanned Aerial Vehicles, “Stanag 4671 - unmanned
aerial vehicle systems airworthiness requirements (usar),” NATO Naval
Armaments Group, 2007.

[2] D. Rosenbaum, F. Kurz, U. Thomas, S. Suri, and P. Reinartz, “Towards
automatic near real-time traffic monitoring with an airborne wide angle
camera system,” European Transport Research Review, vol. 1, no. 1,
pp. 11-21, 2008. [Online]. Available: http://dx.doi.org/10.1007/s12544-
008-0002-1

[31 A. J. S. McGonigle, A. Aiuppa, G. Giudice, G. Tamburello, A. J.
Hodson, and S. Gurrieri, “Unmanned aerial vehicle measurements
of volcanic carbon dioxide fluxes,” Geophysical Research Letters,
vol. 35, no. 6, pp. n/a-n/a, 2008, 106303. [Online]. Available:
http://dx.doi.org/10.1029/2007GL032508

[4] L. Merino, F. Caballero, J. R. Martinez-de Dios, 1. Maza, and
A. Ollero, “An unmanned aircraft system for automatic forest fire
monitoring and measurement,” Journal of Intelligent & Robotic
Systems, vol. 65, no. 1, pp. 533-548, 2011. [Online]. Available:
http://dx.doi.org/10.1007/s10846-011-9560-x

[5] T. Tao and R. Jia, “Uav decision-making for maritime rescue based
on bayesian network,” in Computer Science and Network Technology

(ICCSNT), 2012 2nd International Conference on, Dec 2012, pp. 2068—

2071.

[6] P. Martin, O. Payton, J. Fardoulis, D. Richards, Y. Yamashiki,
and T. Scott, “Low altitude wunmanned aerial vehicle
for  characterising remediation effectiveness  following  the
{FDNPP} accident,” Journal of Environmental Radioactivity,
vol. 151, Part 1, pp. 58 — 63, 2016. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0265931X15301028

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

R. Pllnen, H. Toivonen, K. Perjrvi, T. Karhunen, T. Ilander, J. Lehtinen,
K. Rintala, T. Katajainen, J. Niemel, and M. Juusela, “Radiation
surveillance using an unmanned aerial vehicle,” Applied Radiation and
Isotopes, vol. 67, no. 2, pp. 340 — 344, 2009. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0969804308004831
G. Chowdhary and E. Johnson, “Concurrent learning for convergence

in adaptive control without persistency of excitation,” in Decision and
Control (CDC), 2010 49th IEEE Conference on, Dec 2010, pp. 3674—
3679.

R. Szeliski, Computer Vision - Algorithms and Applications, ser.
Texts in Computer Science. Springer, 2011. [Online]. Available:
http://dx.doi.org/10.1007/978-1-84882-935-0

W. R. J. Dufrene, “Application of artificial intelligence techniques in un-
inhabited aerial vehicle flight,” in Digital Avionics Systems Conference,
2003. DASC ’03. The 22nd, vol. 2, Oct 2003, pp. 8.C.3-8.1-6 vol.2.
C.-K. Sung and F. Segor, “Onboard pattern recognition for autonomous
uav landing,” pp. 84991K-84991K-7, 2012. [Online]. Available:
http://dx.doi.org/10.1117/12.929646

C. Goerzen, Z. Kong, and B. Mettler, “A survey of motion planning
algorithms from the perspective of autonomous uav guidance,” Journal
of Intelligent and Robotic Systems, vol. 57, no. 1, pp. 65-100, 2009.
[Online]. Available: http://dx.doi.org/10.1007/s10846-009-9383-1

C. Zhang, Z. Zhen, D. Wang, and M. Li, “Uav path planning method
based on ant colony optimization,” in Control and Decision Conference
(CCDC), 2010 Chinese, May 2010, pp. 3790-3792.

Y. Bao, X. Fu, and X. Gao, “Path planning for reconnaissance uav
based on particle swarm optimization,” in Computational Intelligence
and Natural Computing Proceedings (CINC), 2010 Second International
Conference on, vol. 2, Sept 2010, pp. 28-32.

L. Lei and Q. Shiru, “Path planning for unmanned air vehicles using an
improved artificial bee colony algorithm,” in Control Conference (CCC),
2012 31st Chinese, July 2012, pp. 2486-2491.

H. Duan and P. Li, Bio-inspired computation in unmanned aerial
vehicles. Springer.

E. Kuiper and S. Nadjm-Tehrani, “Mobility models for UAV group
reconnaissance applications,” in Wireless and Mobile Communications,
2006. ICWMC °06. International Conference on, July 2006, pp. 33-33.
C. Atten, L. Chanouf, G. Danoy, and P. Bouvry, Applications of
Evolutionary Computation: 19th European Conference, EvoApplications
2016, Porto, Portugal, Proceedings. Springer International Publishing,
2016, ch. UAV Fleet Mobility Model with Multiple Pheromones for
Tracking Moving Observation Targets.

R. V. Kulkarni and G. K. Venayagamoorthy, “Bio-inspired algorithms
for autonomous deployment and localization of sensor nodes,” [EEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), vol. 40, no. 6, pp. 663—-675, Nov 2010.

G. Danoy, M. R. Brust, and P. Bouvry, “Connectivity stability in
autonomous multi-level uav swarms for wide area monitoring,” in
Proceedings of the 5th ACM Symposium on Development and Analysis
of Intelligent Vehicular Networks and Applications, ser. DIVANet ’15.
New York, NY, USA: ACM, 2015, pp. 1-8. [Online]. Available:
http://doi.acm.org/10.1145/2815347.2815351

S. A. Bortoff, “Path planning for uavs,” in American Control Conference,
2000. Proceedings of the 2000, vol. 1, no. 6, Sep 2000, pp. 364-368
vol.1.

X. Liang, H. Wang, M. Cao, and T. Guo, Proceedings of the 2011 2nd
International Congress on Computer Applications and Computational
Science: Volume 1. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, ch. On-Line Path Planning for UAV in Dynamic Environment,
pp. 9-19.

E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From
Natural to Artificial Systems. New York, NY, USA: Oxford University
Press, Inc., 1999.

D. Simon, Evolutionary Optimization Algorithms. Wiley, 2013.
[Online]. Available: https://books.google.lu/books?id=gwUwIEPqk30C
M. Goslin and M. R. Mine, “The panda3d graphics engine,” Computer,
vol. 37, no. 10, pp. 112-114, Oct 2004.



