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Abstract—Configuring an Evolutionary Algorithm (EA) can be
a haphazard and inefficient process. An EA practitioner may have
to choose between a plethora of search operator types and other
parameter settings. In contrast, the goal of EA principled design
is a more streamlined and systematic design methodology, which
first seeks to better understand the problem domain, and only
then uses such acquired insights to guide the choice of parameters
and operators.

We introduce a new approach to principled design of EAs
based on kernel methods. Several popular machine learning and
data analysis paradigms, which have been successfully applied to
a wide range of difficult real world problems, would fall under
this kernel umbrella. We demonstrate how kernel functions,
which capture useful problem domain knowledge, can be used
to directly construct EA search operators.

We test two kernel search operators on a suite of four
challenging combinatorial optimization problem domains. These
novel kernel search operators exhibit superior performance to
some traditional EA search operators.

I. INTRODUCTION

EA configuration continues, in practice, to be a largely
empirical affair. Practitioners can often be confronted with a
bewildering array of possible configuration options. Typically,
some subset of configuration possibilities is chosen and, then,
compared and tuned using many EA runs. The broad approach
of EA principled design is to first better understand the
problem domain (PD) being optimized. Then, insights gained
can be potentially used in a more focused, informed and
efficient design process.

This paper introduces a novel approach to principled EA
design. Our method begins by first finding a kernel function
that matches the inherent statistical characteristics of the PD at
hand. We then use this kernel function, which captures this PD
knowledge, to directly construct EA search operators. The core
strategy of kernel methods is the so-called kernel trick [1]. This
allows primarily linear algorithms, which principally operate
using inner products, to be extended to implicitly and cheaply
operate in richer and higher-dimensional kernel feature spaces
V where the original problem is easier to linearly separate
and/or model.

A. Layout

Section 2 begins by giving a brief overview of the literature
on the principled design of EAs and, then, relates our new
kernel approach to this previous work.

Section 3 provides a basic introduction to kernel methods.
We lay out the key concepts behind the “kernel trick”. Merely
having a kernel automatically allows us, for search space
points, to calculate inner products, norms, distance and squared
distance operations in the implicit transformed kernel space.
These basic kernel operations are already sufficient to allow
us to construct kernel equivalents of standard Gaussian and
other mutation operators.

Somewhat more sophisticated kernel operations are needed
for constructing crossover operators. The point of the kernel
trick is that we can avoid working with huge feature space
coordinate vectors. However, crossover operators often involve
mixing or recombining parent coordinate values in various
ways. In section 4, we construct, using basic linear algebra,
partial coordinate systems for hyperplanes intersecting the n
parent points in kernel feature space V .

These kernel parent coordinate systems are then employed
in section 5 to construct kernel crossover-mutation operators.

In section 6 we describe our basic experimental setup and
detail the suite of combinatorial optimization problem domains
we used to test our search operators. Section 7 gives results
and an analysis of these experiments. Finally, in section 8, we
set out our conclusions and describe some potential avenues
for future work.

II. PRINCIPLED EA DESIGN

This section surveys past work relating to the principled
design of EAs. A broad recent overview of work in this area
would be [2], which gathers together representative papers
from most of the major strands of work in this area.

The so-called No Free Lunch (NFL) results [3] would form
the fundamental backdrop for this whole field emphasizing
that EA analysis and design cannot take place in a vacuum, but
only have meaning in the specific context of a given problem
domain.

A. Exploiting Problem Domain Structure

Several past authors have sought to exploit problem domain
structure to produce better search operators and/or improve
general EA performance.

Peter Stadler’s pioneering the use of graph Laplacians
[4] and related tools for analyzing combinatorial optmization
fitness landscapes has resulted in significant insights into why



some locality structures (and corresponding search operators)
perform better than others [5].

Radcliffe and Surry’s work on forma theory [6] defined
and developed a generalized and extended type of schema
called a forma. Once one has found a suitable set of basic
formae for a search space, a set of intuitive design principles:
respect, transmission, and assortment [7] can be applied. This
results in natural generalizations of traditional EA bitstring
search operators to a wide variety of non-standard problem
representation types.

Competent GAs [8] would be another good example of a
systematic attempt to exploit problem specific knowledge in
EAs, in this case in large part by learning dependencies and
linkages between variables.

B. Moraglio’s Geometric Theory of EAs

The most closely related approach to our work would be
Moraglio’s “geometric theory of EAs” [9] where, once one
has a suitable search space metric for a problem domain, balls
and line segments generated by the associated topology can be
used to construct geometric mutation and crossover operators.
Moraglio successfully applied this approach to a wide variety
of problem and search space types. He has also developed
geometric generalizations of Particle Swarm Optimization,
Differential Evolution and the Nealder-Mead algorithms [10].

Moraglio has also previously considered his “geometric
theory of EAs” from a Gaussian Random Function (GRF)
viewpoint [11]. He speculated that GRFs (kernel-based re-
gression models) could be a useful bridge between EA theory
and practice. While Moraglio did not use GRFs to actually
design EAs or construct search operators, on several GRF
test problem examples he showed that the smoothness of the
problem kernel functions was useful in predicting how well
some traditional search algorithms and search operators would
perform.

Our kernel-based approach broadly follows the same general
design philosophy. Moraglio used appropriate metrics to de-
sign search operators; we use suitable kernel functions. Kernel
functions do indeed result in a metric space. However, they
also generate additional inner product space mathematical ma-
chinery such as norms, bases and coordinate systems. A further
advantage is that kernel functions can be used to perform
inference. Significantly, rigorous evidence-based Bayesian and
other ML frameworks can be used to learn suitable kernels for
particular problem domains.

C. Gaussian Random Functions and EAs

GRFs have almost entirely been used to augment rather
than directly design EAs. For example, GRFs have been one
of the more popular models to be used as EA fitness func-
tion surrogates, particularly for expensive-to-evaluate fitness
functions. Recent state-of-the-art examples would include [12]
and [13]. Typically, a GRF surrogate model (with associated
kernel function) is used to augment an existing standard EA.
In contrast, our work seeks to incorporate the knowledge
represented by such models into the design of the search

operators themselves. Eventually, in future work, this will lead
to a more seamless integration between EAs and kernel-based
surrogate models being used to augment them.

Another family of optimizers that use GRFs are Bayesian
Optimization (BOPT) algorithms within the global optimiza-
tion field (this subfield goes back over 40 years). BOPT algo-
rithms are optimization algorithms that maintain a Bayesian
GRF machine learning model of the fitness function being
optimized, which is continually updated as new points are eval-
uated (the EGO algorithm [14] would be the most popularly
used example in this field).

There seems to be only a single previous example of work
that directly used a kernel method for principled EA design.
This research [15] dates back more than 15 years. In this,
William Macready looked at designing mutation operators
for a Gaussianized form of NK-landscapes, which closely
approximated a GRF with an exponential kernel function.

Macready’s approach, at each step, estimated the likely
payoffs (using a GRF model) of sampling the remaining
budget of N points at the various possible Hamming distances
from the single parent point (predicting an “optimal search
distance” for the resulting mutation operator). His mutation
operator then simply always randomly sampled a point at this
“optimal search distance”. This distance would vary as the
run progressed, typically becoming shorter-range and more
exploitative.

Macready’s work, though quite different to our current ap-
proach, was preliminary but interesting. His payoff estimation
method was cheap but very approximate (more accurate pre-
dictors would be possible) and only mutation was considered
(extensions to multi-parent search operators would not be
that difficult). Surprisingly, this promising research was never
developed further. We hope to build upon this approach in
future work.

III. BASIC KERNEL OPERATIONS

This section gives an introduction to basic kernel concepts.

A. The Kernel Trick

Algorithms such as linear regression and principal compo-
nent analyis (PCA) primarily operate using inner products in
the original representation space and assume an underlying
linear model for the problem/data being tackled. In principle,
such linear algorithms can be extended to cope with non-linear
problems/data using an explicit transform Φ : S → V from the
original search space S to some (usually higher dimensional)
kernel feature space V where the original problem is better
linearized. This approach means one has to explicitly calculate
inner products for potentially huge (even infinite dimensional)
and cumbersome coordinate feature vectors

The kernel trick [1] is where one instead uses only a kernel
function k(s, t) (with general form k : S × S → <) that
directly gives the inner product between any two search space
points s and t in some transformed kernel feature space V .
One only implicitly works in these higher dimensional spaces
via cheaply-computed kernel functions (see Figure 1). For



Figure 1. The Kernel Trick

example, a standard linear classifier that could not effectively
separate data in the original space might successfully separate
these in some higher dimensional feature space via a kernel;
this is the basis of Support Vector Machine techniques [16] in
classification and Gaussian Random Functions (GRFs) [17] in
machine learning (also known as Gaussian Processes).

B. What are Kernel Functions?

Kernel functions are functions with the form k : S×S → <.
Associated with every kernel function is a transform Φ : S →
V from the original search space S to some (usually higher
or infinite dimensional) kernel feature space V ( which is a
Hilbert space):

Φ(s) = {φ1(s), φ2(s), · · · }, s ∈ S, φi(s) ∈ <∀i

The kernel function k(s, t) gives the inner product between
any two search space points s and t in this transformed kernel
feature space V:

k(s, t) = 〈Φ(s),Φ(t)〉V =
∑
i

φi(s)φi(t)

Not any function can be used as a kernel function. Such
functions must be continuous, symmetric and also satisfy a
technical non-negative definiteness condition. Once this is
satisfied, however, Mercer’s theorem [18] (and its generaliza-
tions) guarantee that there will always be a transform Φ from S
to some associated Hilbert space V in which k(s, t) calculates
the inner product. However, generally with kernel methods,
there is no need to explicitly know about or actually use the
kernel feature space and mapping that is implicitly associated
with a kernel function.

As well as being a type of non-linear computational short-
cut, kernel functions can also be viewed as being fitness
similarity functions. Many stochastic search algorithms are
based on the notion that similar search space points are likely
to have similar fitness values. A kernel function is a particular
concrete and explicit model of such fitness similarity for a
problem domain. A kernel function, for any two search space
points, gives a value indicating how similar their fitness values
are likely to be. To be more precise, a kernel function should
capture the fitness covariances between points in the search
space. The ideal kernel function would equal:

k(s, t) = cov(f(s), f(t)) (1)

where the covariance is calculated by averaging over all
fitness functions f sampled from the problem domain under
consideration.

Theory (the Karhunen-Loeve theorem [18]) indicates that
such a choice of kernel function best linearizes the problem
domain when mapped to the associated kernel feature space.
With such an accurate kernel model, we can take any two
points s and t in the search space and predict whether their
fitnesses are likely to be similar (highly correlated), unrelated
(independent) or dissimilar (negatively correlated).

Rigorous evidence-based machine learning techniques can
be used to efficiently learn suitable kernel functions that
capture such PD behaviour [17]. Typically, samples of points
and their fitnesses are taken from fitness functions from
the problem domain being studied. Bayesian or maximum
likelihood techniques are then used to find a kernel function
that most closely matches this evidence (DiceKriging [19] is a
good example of a software library, written in R, implementing
many such techniques). Usually, the first step in this process is
to find a kernel function family that broadly matches general
PD characteristics, for example, the degree of smoothness or
ruggedness of the PD’s fitness functions. Then, associated
kernel function hyperparameters are tuned to give a final
closely-fitting kernel function.

In some cases, where the actual form of the fitness function
generator is known, the kernel function can be explicitly
calculated from first principles (conveniently this is the case
for the combinatorial optimization problem domains we use
later in this paper).

In practice there are common families of popular kernel
functions in the GRF and SVM fields, which seem to suffice
for most practical problems. See [20] for a discussion of these
issues and a fairly comprehensive compendium of almost all
commonly-used kernel function families and their properties.

If the problem domain mathematical form is explicitly
known (as is the case for the combinatorial optimization
problem domains we use later), then sometimes the associated
kernel functions can be directly calculated from first principles.

C. Basic Kernel Operations

As we’ve just seen, a kernel function calculates the inner
product between two search space points transformed into
some kernel feature space. However, several other basic op-
erations in the feature space; norms, squared distances and
distances, can also be expressed in terms of inner products.
Table I lists these, their form in terms of kernel feature space
coordinates, how to calculate them using kernel functions,
and finally how they relate to actual fitness values and their
moments.

d(s, t) is, in effect, Euclidean distance in the kernel feature
space V . This is a well know metric in GRF theory, known as
the canonical metric [18].

D. Kernel Mutation

With these basic kernel operations, we already have enough
tools to kernelize some well-known mutation operators. We



Table I
KERNEL OPERATIONS

Operation Symbol Kernel Feature Space View Kernel Function Implementation Fitness Representation

Inner
Product

〈s, t〉 〈Φ(s),Φ(t)〉 =
∑

i φi(s).φi(s) k(s, t) cov(f(s), f(t))

Norm ‖ s ‖
√

〈Φ(s),Φ(s)〉 =
√∑

i φi(s)2
√

k(s, s)

√
var(f(s)) =√

cov(f(s), f(s))

Squared
distance

d2(s, t)
∑

i(φi(s)− φi(t))
2 =∑

i φi(s)
2 + φi(t)

2 − 2φi(s)φi(t)
k(s, s) + k(t, t)− 2k(s, t) (f(s)− f(t))2

Distance d(s, t)
√∑

i(φi(s)− φi(t))2
√

k(s, s) + k(t, t)− 2k(s, t)
√

(f(s)− f(t))2

need to do little more than substitute the usual Euclidean or
squared Euclidean distance with their kernel distance counter-
parts.

Since the kernel feature space V is a real-valued Hilbert
space (essentially a vector of real numbers), search operators
from real-coded GAs are particularly relevant for our purposes.
Perhaps the most common mutation operator for this type of
GA is Gaussian mutation [21], where a multivariate Gaussian
density centred on the current parent point p is used to
generate a new child point c. The kernel equivalent of this
mutation operator is constructed by simply replacing the
ordinary squared Euclidean distance E(p, c) between p and
c with its kernel equivalent d(p, c) (as defined in Table I).
Hence, the probability density for Gaussian Kernel Mutation
(GKM) would:

PGKM(c) ∝ exp

(
−d2(p, c)

2σ2

)
where:

d2(p, c) = k(p, p) + k(c, c)− 2k(p, c)

Kernel versions of Cauchy and other similar mutation
distributions can be defined in an analogous fashion.

1) Kernel Mutation Examples: The probability densities of
these mutation operators will very much reflect the shapes of
the kernel functions being used. Many commonly used kernel
functions simply decay monotonically with distance. Hence,
unsurprisingly, the corresponding kernel mutation operators
also do likewise (as can be seen in the example using the
popular exponential kernel function
k(s, t) = exp(−E(s, t)) in the leftmost graph in Figure
2). However, kernel functions are not always monotonic.
The rightmost graph in Figure 2 gives a similar example
using the more complex oscillating kernel function k(s, t) =
exp(−E(s, t)) cos(3 E(s, t)). The resulting kernel mutation
operator still manages to incorporate and mirror this oscillating
pattern.

IV. KERNEL COORDINATE SYSTEMS

With the help of some basic matrix manipulation, kernel op-
erations even more complex than those that appear in Section
III-C are possible (involving linear combinations, hyperplanes
and spanning sets). A key advantage of kernel methods is
not having to explicitly deal with (potentially huge) kernel
feature space coordinate vectors. However, many standard

Figure 2. Gaussian Kernel Mutation with Exponential and Oscillating Kernel
Functions

crossover search operators work by recombining/mixing the
genetic material of existing parent points using some coordi-
nate system. We can have the best of both worlds, though, by
using kernel functions to construct parent coordinate systems,
which give locations relative to some set P of n parent
points P = {p1, ...pn} , pi ∈ S . These are O(n)-dimensional
coordinate systems in V for hyperplanes that intersect the n
parent points.

For search operator design, two particularly useful hyper-
plane constructs are the parent spanning set SP (the set of all
possible linear combinations of the parent set coordinates in
V) and the parent hyperplane HP (the hyperplane in V that
intersects the n parent points).

We can construct orthonormal coordinate systems for such
hyperplanes and spanning sets, and also calculate the distances
of arbitrary points to these sets. We develop in this section
n-dimensional partial coordinate systems that span the parent
spanning set:

SP = span(P ) =
{∑

wipi ∈ V | pi ∈ P, wi ∈ <
}

A. Parent Hyperplanes and Simplices

SP can also be viewed as the unique n-dimensional hy-
perplane that intersects the n parents points and the origin 0
coordinate in the kernel feature space. The parent hyperplane
HP is the (n−1)-dimensional hyperplane that intersects just
the n parent points. Figure 3 illustrates this for the two parent
case. Here, SP is in 2D and HP is a line through the two
parent points. The parent simplex 4P is then, in this case,
just the line segment connecting the two parent points.



Figure 3. Parent hyperplane and spanning set for two parents

B. Parent Coordinate Systems

The simplest valid coordinate system for SP can be con-
structed by using the vector of inner products with the parent
points in P . Suppose KP,P is the n×n matrix of kernel inner
products between the parents: (KP,P )i,j = k(pi, pj), and KP,c

is the n-dimensional column vector of their inner products
with some arbitrary point c ∈ S: (KP,c)i = k(pi, c).The
coordinates for some c ∈ SP would then be given by the
n-dimensional column vector: [c]K = KP,c where (KP,c)i =
k(pi, c). We term this the kernel coordinate system.

A potentially more useful alternative would be the parent
coordinate system, which uses the parent vectors themselves
as the basis vectors. The coordinates for a point c ∈ SP given
by this system [c]P = {c1, . . . , cn}T correspond to its weights
when expressed as a linear combination of parent points: c =∑n

i=1 ci pi in V . Some linear algebra is needed to solve for
these ci. It turns out that [c]P = K−1

P,PKP,c.
How do we compute inner products kSP

(u, v) between
points u and v in SP when using their parent coordinates
[u]P and [v]P ? These can be computed using weighted sums
of inner products between parents:

kSP
(u, v) = k(Σiuipi,Σjvjpj) =

Σi,juivik(pi, pj) = [u]TPKP,P [v]P

What about when we are dealing with points x and y when
using their kernel coordinates [x]K and [y]K? We’ve already
seen that [x]P = K−1

P,P [x]K . Hence:

kSP
(x, y) = [x]TPKP,P [y]P =(
K−1

P,P [x]K

)T

KP,P

(
K−1

P,P [y]K

)
= [x]TKK−1

P,P [y]K

When both points x and y are in SP , these kSP
(x, y) calcu-

lations will always coincide exactly with k(x, y). The overall
k(x, y) kernel inner product consists of two components:

k(x, y) = kSP
(x, y) + kS⊥

P
(x, y). kSP

(x, y) gives the inner
product inside of SP . kS⊥

P
(x, y) gives the inner product outside

of SP in the parent spanning set’s orthogonal complement
S⊥
P . Suppose the kernel feature space V is N -dimensional.

We’ve effectively re-oriented its coordinate system, reserving
n coordinates for SP . (N−n) extra coordinates will still be
needed to span V . For points in SP these extra coordinates are
always 0 and can be ignored. Outside of SP , however, these
extra coordinates may be non-zero.

Fortunately, for our purposes, we don’t actually need to
explicitly work with these (potentially huge number of) extra
coordinates. For example, we can easily calculate c’s squared
norm in S⊥

P as the squared norm over the full kernel feature
space ||c||2 = k(c, c) minus its squared norm within our partial
coordinate system ||c||2SP

= kSP
(c, c), which equals1:∥∥∥c∥∥∥2

S⊥
P

= k(c, c)−KT
P,cK

−1
P,PKP,c (2)

This actually gives the squared kernel distance from any
point c to SP . Calculations for other basic S⊥

P kernel opera-
tions can be performed similarly via subtraction.

1) An Orthonormal Coordinate System: The most attractive
types of bases are orthonormal ones. For this, we seek a basis
set:

ΨE = {e(1), . . . , e(n)} = ZP =

 z1,1p
(1) + · · ·+ z1,np

(n)

· · ·
zn,1p

(1) + · · ·+ zn,np
(n)


that spans SP but whose elements have norms of 1,
i.e.

∥∥∥e(i)∥∥∥ = k(e(i), e(i)) = 1 ∀i, and are mutually orthog-

onal/perpendicular, i.e.
〈
e(i), e(j)

〉
= k(e(i), e(j)) = 0 ∀i 6= j.

The most obvious (though not only) choice of matrix Z

that satisfies these requirements is Z = K
− 1

2

P,P . Calculating
coordinates in this standard orthonormal parent coordinate
system can then be done as follows:

[c]E = K
− 1

2

P,PKP,c

Z is calculated using the eigendecomposition of KP,P :
KP,P = QDQ−1where Q contains the eigenvectors as column
vectors and D is a diagonal matrix of eigenvalues. Z then
is QD− 1

2Q−1. All vectors in the basis set must be linearly
independent. (Near-)zero eigenvalues indicate (near-)collinear-
ity between the parents. In such cases we can also use this
decomposition to first remove any parents with such associated
(near-)zero eigenvalues before constructing our coordinate
system.

One advantage of such orthonormal coordinate systems
is that, for points in SP , they are always consistent with
the basic kernel operations described in section III-C. If we
have two points q and r, which are in the parent span-
ning set SP , and their coordinates [q]E = {q1, . . . , qn} and
[r]E = {r1, . . . , rn}, then calculations of distances and dot

1This is actually the standard GRF formula for calculating predicted
variance.



Table II
PARENT COORDINATE SYSTEMS

Coordinate
System

Notation Basis Set Calculating
Coordinates

Kernel [.]K ΨK = K−1
P,PP KP,c

Standard
Orthonormal

[.]E ΨE = K
− 1

2
P,PP K

− 1
2

P,PKP,c

Parent [.]P ΨP = P K−1
P,PKP,c

Figure 4. Parent hyperplane and simplex for three parents

products etc. with these coordinates will match the equivalent
ones using kernel functions given in table I. For example,
the squared norm ||q||2 of point q in SP can be calculated
using its actual coordinate vector [q]TE [q]E =

∑n
i=1(qi)

2 or
equivalently:

(K
− 1

2

P,PKP,q)
T (K

− 1
2

P,PKP,q) = KT
P,qK

−1
P,PKP,q (3)

and will agree with the value given by the equivalent kernel
function calculation: ||q||2 = k(q, q).

See Table II for a summary of some of the properties of
these three coordinate systems.

V. KERNEL CROSSOVER

Such coordinate systems allows straightforward kernelized
generalizations of some real-coded GA crossover operators.
We implemented two such possible kernel crossover-mutation
operators based on the distance from a child point c to either
the parent hyperplane HP or parent simplex 4P in V (see
figure 4 for an illustration of these concepts for the three parent
case).

Figure 5. Kernel simplex crossover-mutation densities in SP with two and
three parents.

Our Kernel Hyperplane (KH) operator was based on the
squared kernel distance d2(c, HP ) between a child point c
and the parent hyperplane HP in V . This had the following
search operator density form:

PKH(c) ∝ exp

(
−d2(c,HP )

σ2

)
, σ > 0 (4)

The σ parameter determines how severely departures from the
parent hyperplane within V are penalized.

Our Kernel Simplex (KS) operator was based on the kernel
distance d2(c,4P ) between a child point c and the parent
simplex 4P in V . This has a similar search operator density
form to equation 4 (except distance to 4P rather than HP

was used). These two kernel search operators combined both
crossover and mutation in a single operator. In our experiments
we tested the two-parent (n = 2) case.

d2(c,4P ) can be calculated as sum of the squared distance
d2(c,Sp) from any point c to its closest equivalent in SP and
then the squared distance within SP from this to 4P . d2(c,Sp)
can be calculated using equation 2 as d2(c,Sp) = k(c, c) −
KT

P,cK
−1
P,PKP,c. Once within SP , we can use the orthornomal

coordinate system ΨE , described in section IV-B1. Standard
geometric techniques can be used to calculate the distance of
a point to a simplex within SP (a suitable algorithm can be
found in [22]). d2(c,HP ) can similarly be decomposed as the
sum of the squared distance from c to SP and then the squared
distance, within SP , to HP .

Figure 5 gives concrete examples in SP of some such
combined crossover-mutation densities (implementing these
operators with higher numbers of parents is possible). The
underlying simplex nature of these densities can be very
strongly seen in SP and the kernel feature space. Points
outside of these simplices, however, can still be generated.

This simplex shape may not always be as evident when
the search operator density is mapped back to the original
search space. Figure 6 gives an example of what a density
for these search operators (with three parents) actually looks
like in the search space itself. A Gaussian kernel function
k(s, t) = exp(− 5

2E(s, t)
2) is used with σ = 1

5 . When the
three parent points are close together and interacting strongly,
a simplex shape can actually be seen. As the parent points draw
further away from each other, though, interactions between



Figure 6. Search space densities for kernel simplex crossover-mutation using
a Gaussian kernel function.

the parents become weaker, essentially eventually defaulting
to just mutation around each parent.

These operators were implementing by constructing search
operator density tables, partitioning the binary search spaces
according to Hamming distances between and from the set
of parent points. This allowed us to efficiently sample points
according to the desired search operator density.

VI. EXPERIMENTAL SETUP

A. EA Parameter Settings

We used an EA with a population size of 150 running for
100 generations. Selection was carried out using tournament
selection (with size 2). Several traditional EA bit string
crossover operators were tested, 1-point, 2-point and uniform
crossover. We also used bit flip mutation. Batches of 100 runs
were used to produce all experimental results given here.

B. Problem Domain Set

Four well-known combinatorial optimization problem do-
mains with bit string search spaces were used; these are
described in more detail in Table III. One key attraction of the
problems chosen for this suite is the actual kernel functions for
these problems can be directly calculated from first principles,
avoiding the need for introducing kernel fitting methodologies.
These kernel functions are all isotropic, that is their values
only depend on the Hamming distance h = H(x, y) between
bit strings x and y. Three different values for n, the bit string
length, were used in simulations: n = 25, 50 and 100.

These kernel functions are plotted (for the case n=100)
in Figure 7. We can see from these plots that, for all our
problem domains, the average fitness correlation between
search space points tends to weaken at various rates (even
becoming negative in the CUBO case) as Hamming distance

Figure 7. Problem Domain Suite Kernel Functions for n=100

between them increases. In the QUBO case, though, fitness
correlation eventually begins to increase again because, for
this problem domain, bitstrings and their complements always
have identical fitness values.

Both our KS and KH crossever-mutation operators can
actually be viewed, in a certain sense, as a generalization
of uniform crossover and bit-flip mutation. The simple but
popular toy binary weighted “counting ones” (OneMax) prob-
lem can be shown to have a linear kernel function: k(x, y) =
1− 2H(x,y)

n when it has the form: f(x) =
∑n

i=1 wi(2xi − 1),
wi ∼ N (0, 1

n ). Applying our kernel design methodology to
this case, the KS and KH search operators turn out to be
both equivalent to a combination of uniform crossover and
bit-flip mutation (with the σ parameter determining the bit-
flip mutation rate). Hence, our new kernel operators can be
viewed as generalizations of traditional uniform crossover-
bitflip mutation operators that have been tailored to the prob-
lem domain at hand using the knowledge encapsulated in a
kernel function. Using these traditional search operators as a
baseline comparison is, therefore, rather appropriate.

VII. RESULTS

We aimed for a fair like-for-like comparison of the kernel
simplex operator with some traditional EA search operators
(uniform, 1-point and 2-point crossover; each of these used
in combination with bit flip mutation). All EA configuation
settings used in our experiments were identical except for the
bit flip mutation rate and crossover rate for the standard EAs,
and for the σ parameter associated with our Kernel Simplex
(KS) and Kernel Hyperplane (KH) search operators.

All of the standard search operators exhibited similar per-
formance levels. Of these, uniform crossover was found to
be marginally the most competitive; hence, we have included
this as our main comparator here (summaries of test suite
performances for the other crossover operators are given in
Table IV).

Much effort was devoted to finding a single good all-round
setting for these parameters that would optimize performance
over the test suite. A crossover rate of 0.65 was found to
maximize performance for uniform crossover. A bit flip rate



Table III
PROBLEM DOMAIN SET DETAILS

Problem Domain References Fitness Function Formula/Details Kernel Function

QUBO (Quadratic
Unconstrained Binary

Optimization)

[23] f(x) =
∑n

i,j=1 wij(2xi − 1)(2xj − 1),
wij ∼ N (0, 1

n2 ).

(
1− 2 h

n

)2

CUBO (Cubic Unconstrained
Binary Optimization)

[24] f(x) =∑n
i,j,k=1 wijk(2xi − 1)(2xj − 1)(2xk − 1),

wij ∼ N (0, 1
n3 )

∑3
u=0(−1)u

(3
u

) (
h
n

)u (
1− h

n

)(3−u)

NK-Landscapes [25] “Random neighbourhood” model (without
replacement); K = 5

(n−h
K+1

)( n
K+1

)
K-Uniform MAX-SAT (with

20n random clauses)
[26] K = 3 (variables per clause)

(n
K

)
−2K

(n−h
K

)
(1−2K)

(n
K

)

of 2
n , where n is the bit string size, was found to gave the

best all-round test suite performance for bit flip mutation.
A setting of σ = 1.75

n produced the best average test suite
performances for both the KS and KH operators.

The relative performances of the KS operator over Uniform
Crossover (UX) can be seen in Table V. The fitness distri-
butions of these problem domains were all scaled to have
zero means and unit variances; hence, it is not surprising
that typical maximum fitness values are similar across our
test suite. Generally, the KS operator performed better than
the UX operator. The mean performance advantage over the
entire test suite was 7.2%. This advantage becomes more
marked with increasing dimensionality. The QUBO and MAX-
SAT problem domains are smoother, less rugged and probably
inherently easier than the CUBO and NK-landscape ones. This
most likely explains the performance gap, particularly at lower
dimensions for these problems (all search algorithms seem to
perform well for these easier cases).

Table VI gives the relative performances of the KH search
operator. Its overall test suite performance was slightly worse
than that of the KS operator. Its performance margin over the
UX operator was 6.8%. The overall test suite performance
gaps between both KH and KS operators over the UX operator
were significant at a 99% confidence level using the two-tailed
Student’s t-test.

VIII. CONCLUSIONS AND FUTURE WORK

These preliminary results show that this novel kernel-based
EA principled design approach is worthy of further study.
These new operators exhibit a moderate but significant per-
formance gain. We will, of course, need to test this method
on a much wider range of problem domain types.

Many other kernel search operator forms and generalizations
of standard EA search operators are possible. Kernel functions
automatically come with a plethora of very useful and problem
domain tailorable vector space machinery. Our kernel search
operators did not exploit parent fitness information. Scaling up
kernel search operators to use multiple parents should also be
straightforward. The resulting exploitation of far more parent
position and fitness information will hopefully lead to even
better performances.

Other EA components will also be amenable to kerneliza-
tion, e.g. diversity preservation mechanisms such as sharing.

A potentially very promising avenue of research is the
application of the kernel trick to Estimation of Distribution
Algorithms (EDAs). Early EDA algorithms, e.g. PBIL [27],
used simple linear probabilistic population models. Later algo-
rithms, e.g. [28], used more complex Bayesian network models
to go beyond simple linearity. Kernel methods, however,
represent an unexplored alternative route to a whole new class
of non-linear EDAs.
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