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Abstract—Making smart grids and microgrids an 

overwhelming and successful reality implies the consideration of 

a lot of challenges coming from different domains and 

collaboration is a keyword to seize the high ground. SEAS 

Shared Intelligence (SEAS SI) is a platform for algorithms 

sharing and execution developed under the scope of Smart 

Energy Aware Systems (SEAS) project to promote the intelligent 

management of smart grids and microgrids, by means of the 

shared usage of algorithms and tools, while ensuring code and 

intellectual protection. In this paper the platform goals and 

architecture will be described, and a case study based on SEAS-

SI available algorithms, EVeSSi and FreqReg, will be presented. 

The case study aims at highlighting the collaborative 

management relevance allowing the simulation of the dynamic 

behavior of a huge number of electric vehicles while addressing 

the frequency regulation service for the smart grid.  

Keywords — collaborative intelligence; SEAS Shared 

Intelligence, smart grids management; Electric Vehicles 

I.  INTRODUCTION  

Distributed generation was a driver for the power and 
energy systems complete rethinking of traditional practices. A 
lot of challenges remain: How to accommodate in an efficient 
and secure way the intensive use of renewable based and 
distributed generation together with demand flexibility? How 
to face a high penetration of electric vehicles (EVs)? How to 
assure and obtain knowledge from real-time monitoring? How 
to communicate and assure interoperability between different 
technologies and players? To address these challenges cross 
industry and cross domain cooperation is required.  

Smart Energy Aware Systems (SEAS) is a project under the 
ITEA initiative that aims at enabling interactions for all market 
players in real time, for consumption and production energy 
systems, automation and ICT in order to optimize global 
energy consumption. Project most ambitious goal is to define a 
common language and intelligence to all types of energy aware 
technologies, consumers and producers [1]. 

In this paper we will focus on the common intelligence and 
how it is being achieved under the SEAS’s vision, by means of 
different algorithms, coming from different partners, written 
and executed in different languages and IDEs, with 

complementary or competitive approaches, available through a 
Shared Intelligence platform (SI).   

Algorithms available by now make possible the integration 
of partner’s approaches to be tested in case studies, also 
available through SEAS SI, and afterwards implemented in 
project pilots. 

The paper is organized in a total of 6 sections, with this 
brief introduction being the first one. In Section II particular 
insights about SEAS project and its goals will be given into; in 
Section III the SEAS – Shared Intelligence platform will be 
described and, in section IV the Electric Vehicle Scenario 
Simulator (EVeSSi) from GECAD and the Frequency 
regulation algorithm from ICAM are briefly described. In 
Section V a case study will show how complementary 
intelligence can be achieved, focusing on a scenario in which a 
significant number of EVs participate in the French regulation 
market. The conclusions are fully drawn in section VI. 

II. SMART ENERGY AWARE SYSTEMS 

SEAS is an Eureka project, under the cluster ITEA, with nr. 
12004, coordinated by ENGIE and involving 36 partners, with 
a total of 6 academic/research and 30 industrial ones, from 7 
different countries. SEAS project addresses the problem of 
inefficient and unsustainable energy consumption, which is due 
to a lack of insufficient means to control, monitor, estimate and 
adapt energy usage of systems versus the dynamic usage 
situations and circumstances influencing the energy usage.  

A. Project ambition and results 

The main goal of the SEAS project is to research, develop 
and demonstrate a new SEAS Knowledge Model and SEAS 
information exchange platform for energy information 
representation, processing and exchange between energy 
systems, automation systems, ICT based digital services and all 
related stakeholders. Additional aim is to explore business 
models and solutions that will enable energy players to 
successfully incorporate microgrid environments and active 
customers [1].  

In the smart grids paradigm data is a crucial enabler for 
advanced management. Data acquisition is the bottom layer on 



the top of which knowledge extraction techniques can provide 
a set of services, such as forecasting, optimization, context 
awareness, etc. However it is not enough to improve data 
acquisition systems but to make the data, coming in different 
time frames, from different systems and technologies, 
understandable to be used by other systems and players [2]. 
This is the core of SEAS: make data available and 
understandable, to provide “interoperable” knowledge and 
services to energy players. 

Project objectives can be summarized through some of its 
most ambitious goals: 

 From static to dynamic management: to enable real-
time interactions for all market players, concerning 
monitoring and management of both consumption and 
production energy systems; 

 A self-adaptive system: able to control on a semi-
automatic or autonomous way the energy consumption 
and production, based on providing a semantic 
understanding of the system and its context; 

 Active consumer participation: support consumer’s role 
evolution into an active player. This brings a lot of new 
challenges concerning energetic services and cost 
optimization; 

 Benefits for all energy players: provide a public and 
standardized knowledge model to support open data 
exchange platforms. 

The most relevant project outcomes are: 

 SEAS Knowledge Model, a set of ontology’s are 
developed and publicly available;  

 SEAS Information Exchange Platform: available for 
data sharing; 

 A set of new digital services enabling proactive 
adaptation of consumption behavior to the changes in 
usage, energy costs, availability of energy sources and 
weather/climate/season, while making the stakeholders 
(e.g. utilities and consumers) aware of the changes and 
their impact; 

 Business models and solutions that will enable energy 
market participants to incorporate micro-grid 
environments and active customers; 

 SEAS Shared Intelligence Platform: algorithms and 
case studies available. 

In the remainder sections of this paper the focus will be on 
the Shared Intelligence platform (SEAS SI). Its features 
will be described, the architecture will be presented and a 
case study to illustrate the sharing of intelligence will be 
discussed. 

III. SHARED INTELLIGENCE PLATFORM 

SEAS Shared Intelligence (SEAS SI) was developed under 
SEAS project with the goal of providing a unique platform for 
algorithms sharing between partners [3]. SEAS SI allows the 
execution of algorithms in a standalone, sequential or 

complementary way. Algorithms confidentiality is provided by 
means of a distributed system where algorithms are accessible 
to all the partners while keeping them running in its owner 
server. This methodology enables the code protection and 
intellectual protection while allowing the share of knowledge 
and intelligence between partners. 

A. Shared Intelligence 

The main goal of SEAS SI is the sharing of algorithms 
between partners without compromising the confidentiality of 
the algorithm. The sharing of intelligence is a very important 
topic in our days and enables the growth of science 
contributions. In big projects, like SEAS, the sharing of 
intelligence can be difficult to manage between partners. The 
creation of a unified and common platform enables and 
promotes these sharing while dealing with restrictions of 
confidentiality and protection.  

Algorithms are executed in the Web Service side and use 
Excel files for data input and output, enabling the use of SEAS 
SI in the ordinary computer without the need of additional 
software installation, even if using different programming 
languages and environments. 

The Web Services currently used in SEAS SI were 
developed in WFC framework, however SEAS SI supports 
communication by web services developed within other 
frameworks. The use of SEAS SI enables the sharing of 
intelligence between SEAS partners and enables the execution 
of algorithms sequences, when the output of an algorithm is 
automatically used as input for another one. 

 

Fig. 1. Screenshot of SEAS SI: ANN algorithm 

For each algorithm available in SEAS SI, input and output 
variables, regarding the name, description and variable type are 



described, a downloadable file with detailed algorithms 
description and parameters is also available. Figure 1 show 
SEAS SI when an Artificial Neural Network (ANN) is chosen. 
This algorithm is used for forecasting under different contexts, 
being useful for several of the methodologies to be applied to 
SEAS pilots. 

At this moment, algorithms are executed in four different 
programming languages: C#, MATLAB, TOMLAB and R. 
Additional programming languages can be used while sharing 
new algorithms. The number of different programming 
languages used by the developers does not compromise the 
platform availability or efficiency. 

B. Architecture 

The architecture and functionalities of SEAS SI can be seen 
in Figure 2. On the top of the figure platform characteristics are 
presented. SEAS SI is based on a Web Service Aggregator that 
combines all the Web Services distributed by the partners and 
present them as a unique and unified platform.  

SEAS SI is available as a website with an authentication 
service, to restrict algorithms availability only for SEAS 
partners [3]. 

Algorithms execution is available through online and 
offline modes. These modes are automatically chosen 
according to the execution time of each algorithm. For 
example, if an algorithm execution time is about 15 minutes 
it’s not convenient to freeze the user browser during for such a 
time. So, the algorithm will run in its server and, when finished 
data will be available on SEAS SI.  

Results tab, on the top of Figure 1, provides a list with all, both 
online and offline, executed algorithms results. The online 
mode executes the algorithm in real-time and gives the result to 
the user afterwards. In the offline mode algorithms run in 
background, without hanging the user computer, and results 
will be available when processing finishes. 

 

Fig. 2. SEAS SI Description 

SEAS SI integrates not only the current algorithms but also 
a case study repository, a new EVs scenario generator and a 
multi-agent system platform. In the near future, the algorithms 
will have the ability to run using input data coming from the 
case study repository and the EV scenario generator, using a 
seamless approach. 

The case study repository will receive data from an adapter 
that allows the conversion of data from the IEEE Intelligent 
Data Mining and Analysis (IDMA) [4] and Sofia 2 into the 
SEAS SI standard. 

Built for the SEAS project, SEAS SI will also be used in 
SEAS pilots and demonstrators running in several European 
countries, such as: France, Finland, Portugal and Turkey. The 
pilots and demonstrators will use SEAS SI web services to 

execute algorithms. The data produced in the Pilots and 
demonstrators will be sent to Sofia 2 platform. These data can 
also be available in SEAS SI using data adapter to retrieve it 
from Sofia 2 and storage in the case study repository, where it 
becomes available for SEAS SI users input to execute SEAS SI 
algorithms or to be download. 

C. Algorithms 

By now 10 algorithms from 4 different partners are 
available in the platform. Some of them will be briefly 
described: 

 ANN – Artificial Neural Network for forecasting; 



 FreqRegSingleBat – calculates the profitability of one 
up/down request from the main grid for one EV battery 
used for frequency regulation; 

 FreqRegScenarioSimul– simulates the dynamic behavior 
of an EV battery for frequency regulation. It predicts the 
vehicle availability, battery State of Charge (SOC) and 
calculates the net profit evolution per request 

 IMT-TSP’s - approximation algorithms for EV charging 
scheduling in SEAS microgrids: optimizing peak and 
revenue; 

 Metalearner – provides a methodology that considers 
several different strategies’ outputs as basis to build the 
metalearner’s final output, depending on the confidence 
weight that the system has on each strategy. This means 
that the better a strategy is performing, the higher its 
influence on this method’s results will be. This is done 
through the application of a weighted average of the outputs 
of all strategies, using their confidence values in each 
context as weights. The confidence values on each strategy 
can be the result of a learning process; 

 Net_Profit_F_R_SB – calculates the annual profitability of 
frequency regulation service from the main grid for one EV 
battery used for frequency regulation; 

 SVM – Support Vector Machines (SVM) for forecasting, 
using the regression of historic data and training by several 
alternative kernel functions. 

The number of algorithms available will be expanded in the 
very near future. 

IV. EVESSI AND FREQREG ALGORITHMS DETAILING 

In this section SEAS SI algorithms that will be used in the 
case study, to be presented in section V, will be deeply 
described. 

The algorithms belong to different partners: GECAD and 
ICAM, and although they run in each owner’s server, they are 
both available at SEAS SI for authenticated partners to make 
use of them.  

A. EVeSSi 

The EVeSSi tool has been actively engineered since 2011 

[5]–[7]. Its main goal is supporting the development of 

realistic case studies that include EVs scenarios, eliminating 

the need to create manually each individual vehicle profile, 

but other uses have been identified, e.g. to help to determining 

the optimal site and size of EVs charging stations in 

distribution networks [8]. 

The last developments regarding EVeSSi features was the 

integration with a traffic simulator, namely SUMO [9]. To 

achieve this some software modules and algorithms have been 

developed, which include: scenario and input configuration 

module, SUMO simulation connector, SUMO output data 

importer, an electric grid creator, and an intelligent grid 

allocator. These modules can be seen in Fig. 3.  

To prepare a scenario in EVeSSi using the traffic 

integration, some parameterization steps need to be made in 

order to introduce the input data necessary for the SUMO 

simulation. The first step is to generate/load the road network 

(load a real road network or generate a fictitious one by 

introducing specific parameters), a second step is related to the 

creation of EVs and its parameters, and then it is necessary to 

specify the charging points or, instead, generate those 

charging points randomly. Finally, an algorithm can perform 

the daily activities and generate the necessary trips, which are 

then simulated by SUMO engine (the actual traffic simulation 

results).  

The data importer module reads the files generated by 

SUMO application and then filters, treat and analysis the 

necessary data to be executed by the subsequent developed 

algorithms. The grid creator can generate an electric grid 

taking into account the dimensions of the road network. This 

creates a grid with intelligently distributed electrical buses and 

respective branches. After this step, the intelligent grid 

allocator finds the corresponding grid bus where EVs can 

connect, depending on the location, i.e. the street of the arrival 

or where it is parked. 

The traffic model allows evaluating the chaotic behaviour 

of traffic, which is affected by numerous factors, including the 

road network topology, the number of cars and its routes, the 

types of vehicles, the traffic lights and the users’ driving 

behaviour, which is hard to predict. The influence of traffic 

patterns in travel times can be analyzed, and the energy 

consumption measured. In fact, there is a huge potential in 

applications with EVeSSi, for instance, evaluating 

performance of electric public transports, analyzing optimal 

location of charging points and charging stations, estimating 

electricity network impacts, testing different control strategies 

like smart charging and V2G approaches, enabling adequate 

remuneration schemes, and predicting traffic patterns and user 

behavior, just to name a few. 

 

 
Fig. 3. Overview of EVeSSi components 

EVeSSi traffic simulation integration can make the bridge 

between transportation department data with grid and energy 



operator tools, contributing to increased knowledge and 

improving the efficiency and sustainability of increasingly 

complex integrated infrastructures. More details about this 

topic can be founded in [6], [10]–[12]. 

The EVeSSi also features a version without SUMO 

integration, which substitutes the SUMO engine with its own 

algorithm that simulates the trips behavior and locations 

without the information of road transportation (see [5] for 

more details). This feature is most useful when road 

information is not available or a less detailed simulation is 

needed. This is the version available in SEAS SI. 

B. Frequency Regulation 

The power storage offered by EVs batteries appears to be a 

good solution to develop smart grid approach while supporting 

renewable sources of energy. In fact, a good storage potential 

will be available, if Vehicle to Grid (V2G) is developed in 

view of grid services. 

The EV is particularly adapted to the primary frequency 

regulation service. First, it is used only 5% of the time for 

mobility. Moreover, the initial capital cost of the battery is not 

totally assigned to the V2G service because the battery was 

purchased for mobility. Finally, the battery response time is 

quick which makes it very suitable for grid support purposes.  

In the literature, the potential of EVs as actors in the 

regulation market is confirmed for frequency regulation [13]–

[17]. In fact, some markets like CAISO’s one defined Non-

Generator Resource (NGR) such as batteries and flywheels, to 

bid in the regulation market. Besides, Studies for the European 

parliament presented storage resources (stationary and EVs) as 

opportunities to improve renewable sources integration 

through better participation to standard balancing 

requirements and leading to grid balance improvement [18]. 

The Net_Profit_F_R_SB algorithm allows calculating the 

annual net profit for an EV used for frequency regulation [13], 

[19] depending on the EV owner behavior and the service 

remuneration conditions. It helps a fleet owner to apprehend 

the profitability at various smart grid development levels: 

short, medium and long term at the contract level. 

The algorithm is programmed using MATLAB. The inputs 

are in an excel file with a detailed description of each 

parameter and input. The outputs are also available in an excel 

file. 

a) Annual revenue 

The revenue is calculated using the following equation: 
 

𝑅𝑟𝑒𝑔 = (𝑝𝑐𝑎𝑝 𝑃 𝑡𝑝𝑙𝑢𝑔) + (𝑝𝑒𝑙  𝑅𝑑−𝑐 𝑃 𝑡𝑝𝑙𝑢𝑔) (1) 

 

 pcap, is the capacity price which is in €/kWh and paid for 
the service availability. It is fixed by the contract and 
benefits to the EV event if it is plugged in and not used 
for the service. The value is 17€/MW-h in the French 
market [13, 15]. In some markets it may not exist yet; 

 tplug is the time in hours per year when the EV is 
plugged in. It is an input, which depends on the EV 
owner behavior (supplied by EVeSSi). The study is 
realized for an average value of 16 hours for EV 
plugged in subtracting charging hours; 

 pel is the market selling price of electricity in €/kWh for 
the energy exchanged in real time. This value may vary 
during the day and in some markets, it does not exist; 

 Rd-c, is the ratio of the energy dispatched over the 
regulation contract period assumed to be 10% of the 
contracted power capacity [19]; 

 P is the contracted capacity available for the V2G, in 
kW. It is limited by the line power, the driven distance 
before the first connection to the grid to offer the 
service as well as the “range buffer” in km, which is the 
minimum remaining range specified by the driver 
and/or the EV aggregator for mobility purposes. It is 
supplied by EVeSSI algorithm. 

In regulation down, we assume that the operation is 
always financially positive because the battery will have to 
be charged anyway. 

b) Annual cost 

The cost from regulation up is defined as: 
 

𝐶𝑟𝑒𝑔−𝑢𝑝 = (𝑐𝑒𝑛 𝑃 𝑡𝑝𝑙𝑢𝑔 𝑅𝑑−𝑐) + 𝑐𝑐 𝐶𝑅𝐹 (2) 
 

 cc is the capital cost i.e. the one-time investment in € 
and is around 1800€ for 15kW [13]. CRF is the capital 
recovery factor for 10 years of amortization thus the 
lifetime of the V2G hardware;  

 cen is the cost per energy unit in €/kWh which includes: 
the cost of electricity, losses, plus battery degradation 
cost: 

 

𝑐𝑒𝑛 =
𝑐𝑝𝑒

𝜂𝑐𝑜𝑛𝑣
+

𝑐𝑏𝑎𝑡

𝐿𝐸𝑇
 (3) 

 

where: 

 cpe is the cost of purchased electricity for recharging in 
€/kWh. The online data for MIBEL spot market 
variable electricity prices per day shows a mean value 
of 0.0318€/kWh for the first 7 months of 2016 [20]; 

 ηconv is the Round trip electrical efficiency, grid-battery-
grid around 0.73 [14]; 

 cbat is the total battery replacement cost in € including 
the cost of the battery 300€/kWh [13], [19]as well as the 
cost of labor for the replacement 8h at 35€/h [13];  

 LET is the battery Lifetime Energy Throughput for a 
particular cycling regime in kWh. LET includes a factor 
3 due to shallow cycling having less impact on battery 
lifetime than the deep cycling [13].  

In contrast, we assume that the cost from regulation down 

is null because there is no need of additional equipment.  

V. CASE STUDY 

This section aims at illustrating the usefulness of SEAS SI 
in a case study where 2 algorithms, EVeSSi and 
Net_Profit_F_R_SB, are used to study a scenario with a total 
of 27.700 EVs, from which around 18.000 are participating in 
the frequency regulation in France. 



This case study illustrates, beside each algorithm 
capabilities, how the combined usage of them brings new 
knowledge that is relevant for the management of smart grids 
with a significant EVs penetration. 

The first algorithm, from SEAS SI, to be used is the 

EVeSSi, where some parameters need to be configured in 

advance. These parameters include the characteristics of the 

EV fleet (battery capacity, charge rate, traveling patterns, etc.) 

as well as the type and quantities of EVs to be considered in 

the simulation. EVeSSi is called remotely by the ICAM 

partner to perform the requested simulation. The results are 

then returned to its console, where it feeds the second 

algorithm from ICAM, namely the frequency regulation 

service, which calculates the net profit per vehicle in the 

French market. 

1) EVeSSi configuration 

The EVs market share in France represented 1,2% in 2015. 

By the end of the year around 74,000 light-duty EVs were 

circulating in France (less than 0,2% of the car park). 

According to [21] the expected EV stock is 2 million for 2020. 

In this case study, it is considered that around 18.000 EVs 

participate in the frequency regulation service. 

The EVeSSI simulated fleets represent various EVs types, 

mobility constraints and thus availability for the regulation 

service. Table I shows the type of fleets considered. 

TABLE I.  FLEETS SIMULATED BY EVESSI 

Fleet ID Description 

1 Medium passenger (e.g. Nissan Leaf) 

2 Luxury passenger (e.g. Tesla S) 

3 Small passenger (e.g. Renault Zoe) 

4 Commercial vans (Renault Kangoo) 

5 Micro electric fleet (Renault Twizzy) 

6 Large commercial fleet 

7 Passenger bus fleet 

 

In order to calculate a realistic annual net profit for the 

frequency regulation, it is necessary to take into account a 

multiplication factor of 1,5 consider all the vehicles that are 

not with the right SOC, not connected by the EV user or out of 

order 1,5 [14]. 

Among the vehicles, there are micro EVs with a battery 

capacity of around 6 kWh (Renault Twizzy), medium 

passengers’ vehicles which are also used for the commercial 

fleet with 22 kWh (Renault Zoe and Kangoo) to 24 kWh 

(Nissan Leaf). Finally, luxury cars fleet capacities are between 

60 kWh and 90 kWh (Tesla S) and electric buses have various 

capacities depending on their size, between 90 kWh and 170 

kWh (e.g. the blue bus and the Gepebus). 

Regarding electric cars, it is interesting to see that the 

frequency regulation service will be mainly limited by the 

charging station capability (wires and power electronics). In 

fact, the fast charging/discharging must be available to allow 

sufficient power flow. Moreover, the V2G must be possible 

with power electronics allowing power flow in both ways. 

Regular charging rate is around 3 kW, while frequency 

regulation service becomes interesting above 15 kW [14].  

In the case of high battery capacity like luxury cars (Tesla 

model S) or buses, the manufacturers develop very high 

charging rates (more than 100 kW). However, most of the 

physical installations where EVs usually charge do not allow 

V2G services. The additional investment costs and the 

manufacturers’ interest have not been investigated. 

Table II shows the general parameters used in EVeSSi as 

called by ICAM remotely. In this case EVeSSi road 

information is not used as for the aim of the case study it was 

not relevant. The 7 types of fleets represent the French EVs 

diversity, namely ranging from small, medium and large 

passenger vehicles to small and large commercial vehicles. 

2) Frequency regulation net profit 

In the actual Portuguese regulation market, Primary 

Frequency Regulation is realized through action on the turbine 

speed regulator and is not remunerated. Regarding secondary 

frequency regulation, the prices are variable during the day 

[22]. For instance, during a winter day (2016/01/19), the 

prices vary from 35 to 87 €/MWh, whereas, for a summer day 

(2016/07/19), the prices vary from 35 to 74 €/MWh. The study 

of the prices during 2016, shows that the average price is 

around 45€/MWh. Otherwise, the regulation markets are 

moving fast with the penetration of smart grid solutions and 

the opening to new bidders in the context of smart grid, the 

remuneration scheme will certainly change in the future.  

TABLE II.  EVESSI PARAMETERS 

Parameter Value 

EV fleets 7 types (≈18,000) 

Initial SOC Random 20% to 80% 

Vehicles permanently parked 2% 

Total simulation time 24 hours (1 day) 

Charging efficiency 90% 

Probability of returning to 
start location 

85% 

 

In Table III, we compare various market contexts. The first 

scenario without capacity price benefits from an electricity 

price which is high enough to allow profitable service 

regarding the service cost (battery wear and investments) thus 

superior to 0,14 €/kWh.  

The second scenario is with an electricity selling price equal 

to the average electricity price in Portugal for 2016 (cpe) and a 

capacity price equal to the French regulation market capacity 

price 17 €/MWh for primary frequency regulation.  



The third and fourth scenarios present the result for a 

remuneration only based on a capacity price corresponding to 

the actual French situation [15] and the actual remuneration of 

the secondary frequency regulation in Portugal, which is close 

to CAISO market situation in [19]. 

Table III shows also very low net profit for micro electric 

vehicle (ID5). It can be explained by the low available energy 

because of the battery capacity as well as the high mobility 

needs (44km per day). The annual net profit becomes 

interesting under very favorable remuneration conditions with 

the fourth scenario and reaches 887€ per year per vehicle. 

TABLE III.  NET PROFIT COMPARISON 

Fleet 
Type 

ID 

EVs available for 
frequency 
regulation 

Average trip 
per day (km) 

Rated 
energy 
(kWh) 

Profit per vehicle per year 

Pel=0,16 
€/kWh 

Pcap =0,017 
€/kWh Pel=0,0318 

€/kWh 

Pcap=0,017 
€/kWh 

Pcap=0,045 
€/kWh 

1 6600 17.3 24 to 30 150 516 237 2690 

2 660 50 60 to 90 150 516 237 2690 

3 6600 18.6 22 150 516 237 2690 

4 1980 80 22 59 349 128.5 2073 

5 990 44 6.1 -145 3.4 -110 887 

6 660 53.2 22 150 516 237 2690 

7 792 108.3 85 to 170 150 516 237 2690 

Besides, Table III shows the importance of the capacity 

price, which can become the principal source of revenue 

because it allows to be paid even if there is no power flow 

between the EV and the grid. The third scenario reaches 237€ 

and the fourth 2690€ per vehicle per year. 

On the other hand, the first scenario, where a remuneration, 

to allow profitable service regarding the service cost (battery 

wear and investments) thus a little bit over 0,14 €/kWh, is 

used, may also be interesting for the frequency regulation 

service for a whole fleet. In fact, the annual profit for one 

vehicle is low (59 to 150 €), however, all the fleets (without 

ID5) reaches 2.413 M€.  

The frequency regulation may represent an interesting 

revenue stream able to push EVs use in the future. 

Nevertheless, it is highly dependent on the market regulation 

evolution regarding the grid development and the smart gird 

solutions penetration. 

Regarding the benefits sharing, the profitability must be 

ensured for the several actors: DSO, EV aggregator and EV 

owner. They are highly dependent on the regulation market 

context.  

For the EV owner, the service may be profitable at his level 

if a single-vehicle is able to provide the service under real-

time conditions in the regulation market through an aggregator 

able to offer significant level of power to the grid. The main 

remaining question is that if the aggregator does the necessary 

investments and sets contracts with the DSO, which benefits 

share will be applied?  

VI. CONCLUSIONS  

SEAS project has been promoting the intelligent 

management of smart grids by means of collaborative usage of 

algorithms and tools, while ensuring confidentiality and 

interoperability. In this scope, SEAS SI has been developed 

and presented in this paper, namely its features and 

architecture.  

A case study involving algorithms from two different 

partners, GECAD and ICAM, written and executed in 

different programming languages, illustrate SEAS SI 

advantages to foster new and overwhelming scenarios that 

cannot be studied using the algorithms independently.  

The case study makes use of EVeSSi, a GECAD algorithm, 

and a scenario with 18,000 EVs representing a diversified fleet 

of France EVs participating in the frequency regulation 

market. The results demonstrated that annual profit, calculated 

with Net_Profit_F_R_SB algorithm from ICAM, can be 

obtained while participating in frequency regulation, 

especially for larger vehicles with larger battery capacity such 

as the Tesla Model S (fleet ID 2). The results also indicate that 

the capacity price can be the most important source of revenue 

as EVs may offer its availability even if it is not used 

subsequently. 

Despite the relevance of both EVeSSi and 

Net_Profit_F_R_SB, the case study shows the sequential use 

of these algorithms available in SEAS SI and the way they can 

together address the management and business models 

definition for smart grids and microgrids with different 

penetration of EVs.  
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