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Abstract—Many real-world problems have multiple, conflict-
ing objectives and a large complex solution space. The conflicting
objectives give rise to a set of non-dominating solutions, known as
the Pareto front. In the absence of any prior information on the
relative importance of the objectives, none of these solutions can
be said to be better than others, and they should all be presented
to the decision maker as alternatives. In most cases, the number
of Pareto solutions can be huge and we would like to provide a
good representative approximation of the Pareto front. Moreover,
the search space can be too large and complex for the problem to
be solved by exact methods. Therefore efficient heuristic search
algorithms are needed that can handle such problems.

In this paper, we propose a double archive based Pareto
local search. The two archives of our algorithm are used to
maintain (i) the current set of non-dominated solutions, and (ii)
the set of promising candidate solutions whose neighbors have not
been explored yet. Our selection criteria is based on choosing
the candidate solutions from the second archive. This method
improves upon the existing Pareto local search and queued Pareto
local search methods for bi-objective and tri-objective quadratic
assignment problem.

I. INTRODUCTION

The multi-criteria approach to decision making is based on
the observation that many real-world optimization problems
admit multiple conflicting objectives, and hence, different so-
lutions can be incomparable and show different possible trade-
offs between the objectives. Without any a priori information
about the decision maker’s preferences and weights, multi-
objective problems are usually addressed by providing the set
of all non-dominated solutions. Specifically, a solution s is said
to dominate solution s′ only if it is at least as good as s′ in
all cost criteria and is strictly better in at least one criterion.
The set containing all such non-dominated (and mutually
incomparable) optimal solutions is known as the Pareto front.

For hard problems having a large solution space, computing
the Pareto front is intractable. In such cases, one has to
be content with a sub-optimal solution, a set of mutually
incomparable solutions that approximates the Pareto front. Pro-
viding such an approximation is the general aim of the multi-
objective evolutionary algorithms (MOEAs) [14], [25], [24],
[23], [4], [12] and multi-objective local search algorithms [19],
[2], [3], [18], [1], [6], [8], [9]. MOEAs are widely studied
under different scenarios and have been applied to a large
variety of multi-objective problems like scheduling, mapping,
vehicle routing, etc. Stochastic local search algorithms, which
are quite successful in solving a wide variety of NP-hard
single objective combinatorial optimization problems, have
also been extended to multi-objective problems. Pareto Local

Search [19], [20] (PLS) algorithm is one such kind of extension
of an iterative improvement algorithms to multi-objective case.

The PLS algorithm employs a simple heuristic to find a
reasonably good approximate Pareto front in a short amount
of time. It maintains the set of all non-dominated solutions
found so far in its archive and explores the neighborhood
(search space) of each such solution. Upon finding a new
non-dominated solution, the archive is updated. This process
is repeated until no such improvement is possible in the
neighborhood of the current archive. Since the size of archive is
not limited, this method can be applied to a variety of problems
where the cardinality of the optimal Pareto front is large. From
our perspective PLS can be viewed as a greedy algorithm since
it can remove some promising (unexplored) solutions from
the archive if they became dominated by a newly discovered
solution. Such exclusions can lead to premature convergence
of the PLS algorithm to a local optimum. Moreover when PLS
is used in conjunction with MOEA to speed up the latter, as
in the case of the GSPLS algorithm [5], ignoring these points
may reduce the genetic diversity and limit the effectiveness of
combining the two methods.

To counter this problem, Inja et al. [13] proposed a new
algorithm, QPLS which stores promising solutions in a queue.
When such a solution is popped off the queue, QPLS performs
strict Pareto improvement, better in all objectives, until no such
improvement is possible. It is then compared to the Pareto
archive. Unlike PLS algorithm, the queued approach doesn’t
remove dominated solutions until they are improved to locally
optimal ones. Inja et al. [13] combined their algorithm with
a genetic algorithm framework (GQPLS) where QPLS was
restarted with a set of new solutions, consisting of mutations
and recombinations of solutions obtained from the previous
QPLS run. The major drawback of the QPLS algorithm is that
it performs only strict Pareto improvement. The neighborhood
of a solution may consist of many dominating solutions and
in this case, QPLS selects a single dominating solution while
discarding the rest.

We propose a double archive Pareto local search (DAPLS)
algorithm which maintains two archive of solutions, the first of
which consists of the non-dominated solutions found so far and
is presented to the decision maker at the end of computation.
The second archive maintains a set of unvisited solutions. At
each step, a solution is removed from second archive and its
neighbors are generated. Upon finding improvements to the
first archive, the newly improved solutions are added to both
archives. This may remove some unexplored solutions from
the first archive as they are dominated by the newly improved
solutions. But all such unvisited solutions are “protected” in the



second archive and therefore they are not prematurely deleted.
As in previous PLS and QPLS work, we embed DAPLS in
a genetic scheme. We empirically compare Genetic DAPLS
with GQPLS and GSPLS using multi-objective quadratic as-
signment problems. We show that DAPLS can produce better
approximate fronts in comparison to both, PLS and QPLS
algorithms.

The rest of the paper is organized as follows. In Sec-
tion II we present the essential concepts of multi-objective
optimization. Section III describes some related work on
approximating Pareto fronts using heuristic based approaches.
Then in Section IV, we revisit in detail the Pareto local search
and the queued Pareto local search algorithms. Our local search
algorithm is presented in Section V, followed by an experi-
mental evaluation on several instances of quadratic assignment
problems in Section VI. Conclusions and suggestions for future
work close the paper.

II. MULTI-OBJECTIVE OPTIMIZATION

A multi-objective optimization problem can be viewed as a
tuple ϕ = (S, C, f) where S is the solution space represented
using fixed number of variables, C ⊆ Rd is the cost space
and f : S → C is a d-dimensional cost function. We assume
that S is a discrete solution space and a solution s ∈ S can
be transformed to some other solution s′ ∈ S by making a
change in single decision variable. The distance between two
solutions s and s′ is defined as the smallest number of changes
needed to transform s into s′. The neighborhood of a solution
s, denoted by N (s), consists of the solutions whose distance
from s is 1.

The domination relations on cost space C are (non-strict
and strict) standard partial order relations on Rd. Without
loss of generality, we assume that each objective needs to be
minimized.

Definition 1: Domination: For two solutions s, s′ ∈ S we
say that

1) Solution s weakly dominates s′, denotes as f(s) �
f(s′), if ∀i ∈ {1, . . . , d} : fi(s) ≤ fi(s′).

2) Solution s strictly dominates s′, denoted as f(s) ≺
f(s′), if f(s) � f(s′) and ∃i ∈ {1, . . . , d} : fi(s) <
fi(s

′).

Two distinct solution solutions s and s′ are considered
incomparable iff fi(s) < fi(s

′) and fj(s) > fj(s
′) for some

i, j ∈ {1, · · · , d}.
The set of minimal solutions of some S ⊆ S is defined as

the set of non-dominated solution

min(S) = {s ∈ S : ∀s′ ∈ S and f(s′) 6< f(s)}.

Note that the solutions in min(S) are mutually incomparable.

Definition 2: Pareto Front: The Pareto front of a multi-
objective optimization problem ϕ = (S, C, f) is defined as

Pϕ = min(S)

The outcome of an multi-objective optimization algorithm
which visits some S ⊆ S is

P̂ϕ = min(S).

This set will be different from Pϕ as it may miss minimal
points and include points which are minimal only relative to
S, hence it can be viewed as an approximation of Pϕ.

III. RELATED WORK

Several state-of-the-art local search algorithms have been
extended to multi-objective problems under the heading of
Pareto based local search (PLS). Paquete et al. [19], ini-
tially introduced the idea of using Pareto based techniques
in combination with local search that maintained an archive
of non-dominated solutions. They used exploration strategies
that select a solution from the current archive and visit its
neighborhood. Angel et al.[2] uses Dynasearch and dynamic
programming to explore the neighborhood of the bi-objective
travelling salesman problem. Liefooghe et al. [16] experi-
mentally compared various instances of PLS algorithms using
different parameters and settings on bi-objective instances of
travelling salesman and scheduling problems. They considered
two types of archiving methods: unbounded archive, where
all the non-dominated solutions during the search are stored
and bounded archive which stores only a subset of non-
dominated solutions. Lust et al. [18] first generate solutions
using a single objective solver and then use PLS to generate
more diverse solutions which were missed during the initial
phase. Other works like Guided PLS [1], Iterated PLS [6],
Anytime PLS [9] are also based on the PLS algorithm and
uses it as a key components. Recently Inja et al. [13] proposed
the idea of queued Pareto local search where the unvisited
solutions are protected in a separate queue. At each step,
QPLS pops an unvisited solution from the queue, and performs
iterative Pareto improvement strategy. We revisit PLS and
QPLS algorithm in next section.

Below we mention some relevant work on multi-objective
evolutionary algorithm (EA). The common feature of our
approach and MOEAs is the maintenance of a set (population)
of solutions which are mutated and crossed over.

One of the earlier work of Schaffer [22] presents a multi-
modal evolutionary algorithm that performs selection for each
objective separately. It partitions the mating pool randomly into
d parts. After the selection procedure, the mating pools are
shuffled and crossed over and mutations are performed. They
use multiple fitness functions for the selection procedure. Ha-
jela et al. [11] used the weighted sum scalarization method for
fitness assignment. The scalar fitness values is then calculated
by summing up the weighted objective values. The diversity of
the weight combination is based on phenotypic fitness sharing.

Zitzler et al. [25] introduced Strength Pareto Evolutionary
Algorithm (SPEA) that combines the several features of the
above algorithms in a unified manner. It maintains the non
dominated points externally in a second continuously updated
population and the fitness of an individual depends on the
number of external points it dominates. They preserve diversity
using Pareto dominance. To keep the set of solutions small,
they incorporated a clustering procedure. Another version of
SPEA (SPEA-2) was proposed in [24], which includes a
fine-grained fitness assignment strategy, a density estimation
technique and an enhanced archive truncation method.

Another popular work in area of evolutionary algorithms is
Non-dominated Sorting Genetic Algorithm (NSGA) [23]. Here



the pool of individuals is split into multiple fronts according to
Pareto dominance. Individuals in first non dominated front are
assigned highest rank, those in the second front are assigned
a lower rank and so forth. The mating and environmental
selection is made on the basis of this ranking. Their archive
maintains both non dominated and dominated individuals and
the worst 50% of the pools of individual are truncated. Later,
NSGA-2 [4] was proposed to enhance the efficiency of previ-
ous version. It uses a fast non-dominated sorting approach to
alleviate complexity of previous version. Moreover, the mating
pool is constructed by a selection operator applied to the best
solutions.

Though all of these methods are known to give compet-
itive results, neither of these algorithm employ local search
algorithm for faster generation of better solutions. Therefore
the running time of these algorithms are huge in comparison
to evolutionary algorithm employing local search algorithms.
Inja et al. [13] showed that GQPLS, which employs QPLS,
outperforms both, SPEA-2 and NSGA-2. In this work, we
show that our algorithm which also employs local search,
achieves better solutions than GQPLS.

IV. REVISITING PARETO BASED LOCAL SEARCH
ALGORITHMS

In this section, we first revisit the Pareto local search (PLS)
described in [19]. Algorithm 1 presents the pseudo code for
the PLS algorithm. The input is an initial set S0 of mutually
incomparable solutions. All the solutions are marked as unvis-
ited. The algorithm randomly selects an unvisited solution s
and explores its neighborhood N(s). Line 10 attempts to insert
s′ ∈ N(s) to the archive P . The operation min is realized
using a Pareto filter, a procedure that takes as input a set K and
a solution c and returns a set consisting of the non-dominated
points in K ∪ {c}. The algorithm stops when all the solutions
in the set P are visited. Paquete et al. [20] showed that PLS
stops in a Pareto local optimum set.

Algorithm 1 Pareto Local Search (PLS) algorithm
1: Input: An initial set of mutually incomparable solutions
S0

2: P := S0

3: for each s ∈ P do
4: visited(s) := False
5: end for
6: repeat
7: s := select randomly a solution from P .
8: for each s′ ∈ N(s) do
9: visited(s′) := false

10: P := min(P ∪ s′)
11: end for
12: visited(s) := true
13: until ∀s′ ∈ P : visited(s′) = True

PLS has major advantages over other prior works. First,
it maintains only non-dominated solution, hence provides fast
convergence to a Pareto local optimum set. Moreover, since
it maintains an unlimited archive, it can provide a large
number of incomparable solutions. However, one of its major
drawbacks is that good candidate solutions are removed from

the archive if dominated by another solution. This premature
removal may limit the diversity of exploration [13].

Inja et al. [13] introduced a queue based Pareto local search
(QPLS) which prevents the premature deletion of promising
candidate solutions by maintaining a queue of solutions, which
leads to more diverse Pareto archive. The pseudo code of QPLS
is presented in Algorithm 2.

Algorithm 2 Queued Pareto Local Search (QPLS) algorithm
1: Input: An initial queue Q
2: P := ∅
3: while Q 6= ∅ do
4: s := pop an element from Q
5: s := PI(s, f )
6: if ∃p ∈ P : f(s) 6≺ f(p) ∧ f(s) 6= f(p) then
7: P = min(P ∪ {s})
8: N := {s′ ∈ N(s) : f(s) 6≺ f(s′)}
9: Q.addK(N, k)

10: end if
11: end while
12: return P

QPLS starts with an initial queue Q of solutions and an
empty Pareto archive. A candidate solution s is popped from
the queue and a recursive Pareto improvement function (PI)
is applied. It improves the solutions by repeatedly selecting
a dominating solution from the neighborhood, until no such
improvements is possible. After a solution s is found that is
not weakly dominated by any of its neighbors, it is compared
to the Pareto archive. If no solution in the current archive
dominates s, then solution s is added to P using the min
operator. Then a set of k new incomparable candidate solutions
are randomly selected from the neighborhood of s and are
added to the queue. This entire procedure is repeated until Q
is empty.

QPLS has a major advantage over PLS as the solutions
which have not been optimized are stored in a queue. This
prevents the premature deletions of solutions. However, a
drawback of the QPLS algorithm is that it applies recursive
Pareto improvement strategy. PI improves upon a solution by
repeatedly selecting a single dominating solution from the
neighborhood. Note that a neighborhood of a solution may
consist of a set of dominating solutions which are incompa-
rable. In this case, QPLS selects only one such solution from
the neighborhood while discarding the rest.

V. DOUBLE ARCHIVE PARETO LOCAL SEARCH
ALGORITHM

In this section, we present our Double archive Pareto local
search algorithm that maintains an additional archive L which
is maintained as a queue. Algorithm 3 depicts the general
scheme of DAPLS.

Both archives P and L are initialized to a set S0 of
mutually incomparable solutions. While L is not empty, a
solution s is selected and its entire (or partial) neighborhood
N(s) is generated. The current Pareto archive P is updated
with solutions from N(s) using a min operator. If a solution
s′ ∈ N(s) is present in the updated Pareto archive, it is
added to archive L in line 10 and remains there even if it



Algorithm 3 DAPLS(S0, f )
1: Input: An initial set of incomparable solutions S0

2: P := S0

3: L := S0

4: while L 6= ∅ do
5: s := select a solution from L
6: L := L \ {s}
7: P := min(P ∪N(s))
8: for each s′ ∈ N(s) do
9: if s′ ∈ P then

10: L := L ∪ {s′}
11: end if
12: end for
13: end while
14: return P

is later removed from P . This procedure is repeated for all the
solutions in neighborhood of s (lines 8-11).

Note that as in previous work of SPLS [5], one can dis-
tinguish between two neighborhood generation strategies: best-
improvement and first improvement implementation. Note that
in Algorithm 3, DAPLS applies improvement once per iteration
and saves all dominating points from P in L. Moreover, we
maintain archive L as a queue. Hence, a solution s which
is added to L earlier (in sense of number of iteration) than
some other solution s′, DAPLS explores the neighbors of s
before the neighbors of s′. This provides fair chance to the
solutions for exploration and prevents premature convergence.
Therefore, DAPLS can also be seen as breadth first exploration
of search space using Pareto dominance criteria.

DAPLS admits some natural properties mentioned below.

Property 1: DAPLS is an iterative improvement algorithm
with respect to its neighbours and strict non-dominance rela-
tion.

Property 2: Let Pi and Li denote the archives P and L,
respectively at end of iteration i, then ∀s ∈ Li,∃i′ ≤ i : s ∈
Pi′ .

Property 3: DAPLS terminates with a Pareto local opti-
mum set.

Property 1 holds since P is updated using the min operator.
Thus at all times, P consists of incomparable solutions. The
essence of our approach lies in Property 2. Essentially all the
solutions which are inserted to P at iteration i are also inserted
to archive L (line 10). At a later iteration i′, it may happen
that a new solution is removed prematurely from P in which
case, L protects the unvisited solution. Recall that a solution
from L can only be removed after its neighborhood has been
explored. Unlike QPLS, DAPLS prevents all the dominating
incomparable solutions from the neighborhood by inserting
them in L.

Next, we present a simple Genetic DAPLS, depicted in
Algorithm 4. Our Genetic DAPLS escapes local optima by
mutating and recombining the entire Pareto Archive. It starts
with executing DAPLS on an initial set of solutions. Once a
locally optimal Pareto archive P is obtained. It mutates (with
probability α) or recombines (with probability 1 − α) all the
solutions in P . Essentially, the skeleton of Genetic DAPLS is

Algorithm 4 Genetic DAPLS(S0, α, f )
1: Input: An initial set of incomparable solutions S0

2: P := DAPLS (S0, f)
3: while NOT Termination do
4: S := ∅
5: for each s ∈ P do
6: if α > rand(0, 1) or |P | < 2 then
7: s′ := mutate(s)
8: else
9: Select s′′ 6= s from P

10: s′ := Recombine(s”, s)
11: end if
12: S := min(S ∪ {s′})
13: end for
14: P := min(P ∪ DAPLS(S, f))
15: end while
16: return P

similar to Genetic QPLS where QPLS algorithm is replaced
with DAPLS algorithm and update to S is realized using non-
dominance relation. This helps us to explore only a small
number of candidate solutions. Note that Genetic DAPLS runs
until some stopping criterion is met.

VI. EXPERIMENTAL RESULTS

We compare DAPLS to QPLS and PLS on the multi-
objective quadratic assignment problem (MQAP) [15].

Single objective QAPs are NP-hard combinatorial opti-
mization problems that model many real-world situations like
the layout out of electrical circuits in computer aided design,
scheduling, vehicle routing, etc. In fact, travelling salesman
problem which is one of the most challenging problem in com-
binatorial optimization, is a special case of QAP. Intuitively,
QAPs can be described as the assignment of n facilities to n
locations where the distance between each pair of locations
is given and for each pair of facilities, the amount of flow
(or materials) transported is specified. The aim is to find an
optimal assignment of facilities to locations that minimizes the
sum of products between distance and flows.

In this work, we consider the multi-objective version of
QAPs (MQAP) introduced by Knowles et al. [15], where the
flows between each pair of facilities are multi-dimensional
values. The values in flow matrices are correlated with factor
ρ. If ρ is strongly positive then the Pareto front is small and
is closer to being convex. This makes the problem harder. On
the other hand if the value of ρ is small or negative, then
there exists large number of Pareto optimal solution which are
evenly spread out in the cost space.

Specifically, we are given n facilities and n locations such
that dpq denotes the distance between location p and location q.
Moreover, we are provided with d flow matrices F 1, · · · , F d,
where F ijk denotes the flow from facility j to facility k in the
i-th dimension. The aim is to minimize:

Ci(π) =

n∑
a=1

n∑
b=1

F iab.dπ(a),π(b), ∀i ∈ {1, · · · , d}



where π(.) is a permutation from set of all permutations
Π(n) of {1, 2, · · · , n}. Given a permutation π, it takes O(n2)
to compute the above cost functions.

Below we present a description of the neighborhood rela-
tion for QAPs. Furthermore, we also define a mutation and
a recombination operator applied in the genetic version of
local search algorithms. Lastly, we present a simple time-
based stopping criteria so as to have fair comparison of the
performance of the algorithms.

Neighborhood Relation: MQAPs are permutation problems
where a suitable neighborhood operator is q-exchange operator
that swaps the locations of q-facilities. In this work, we the
use a 2-exchange operator that swaps the location of two
difference facilities. It has two major advantages: the size of
neighborhood

(
n
2

)
, is relatively small and the time complexity

of computing the incremental change in cost is linear [21].

Mutation Operator: We present mutation q-exchange mu-
tation operator described in [7]. The q-exchange mutation
randomly selects q > 2 locations {l1, · · · , lq}, without re-
placement from a solution. A new solution is generated by
exchanging these location from left to right or from right to
left with equal probability. For example, when exchanges are
made right to left, facility at li is shifted to location li−1 where
i > 2 and facility at location l1 is shifted to location lq . Note
that a new solution is q-swaps apart from the original solution.
Since our neighborhood operator is 2 exchange operator, we
use q > 2 exchange mutation to escape from the local optima.

Recombination Operator: Drugan et al. [7] also introduced
the idea of path-guided mutation for QAP problems where two
solutions s and s′ are selected from the current Pareto archive
such that the distance is at least q. An offspring s′′ is generated
by copying the solution s. The set of common cycles for two
solutions, s′′ and s′ are identified. A cycle is a minimal subset
of locations such that the set of their facilities is the same
in both parent solutions. Then a cycle c is randomly chosen.
For q − 1 times, choose at random a location i in the cycle c
from solution s′′, where s′′[i] = s′[j] and i 6= j. Exchange the
facilities of s′′[i] and s′[j]. Thus, the distance between s′′ and
its first parent s, is increased by 1 and the distance between s′′
and the second parent s′, is decreased by 1. If the size of c is
smaller or equal to q, a second cycle is chosen. This process
of randomly selecting a cycle and swap locations is repeated
until the distance between s′′ and s is q. If there are no parent
solutions at distance larger or equal with q, we generate a
solution with the mutation operator.

Stopping Criteria: In the majority of the MOEA literature,
the algorithms are compared using the number of fitness
function evaluation instead of time. The neighborhood gener-
ating operators do not perform full fitness evaluations. Instead
they perturb many small changes to the solutions, which can
be evaluated in a fractional amount of time. Therefore, we
measure the outcome of different algorithm as a function of
time. We run each algorithm for the same fixed amount of time
for each instance.

Methodology

We generated multiple QAPs problem instances with dif-
ferent correlation factors and facilities. For bi-objective QAP

Bi-qap Volume
n, ρ GSPLS GQPLS DAPLS

50,−0.75 0.92± 0.008 0.93± 0.002 0.94 ± 0.001
50,−0.25 0.94± 0.010 0.97± 0.011 0.99 ± 0.008
50,+0.25 0.93± 0.015 0.95± 0.002 0.98 ± 0.005
50,+0.75 0.84± 0.012 0.82± 0.015 0.88 ± 0.006

75,−0.75 0.80± 0.007 0.83± 0.010 0.86 ± 0.002
75,−0.25 0.75± 0.001 0.79± 0.007 0.81 ± 0.009
75,+0.25 0.81± 0.006 0.83± 0.001 0.86 ± 0.001
75,+0.75 0.77± 0.001 0.77± 0.013 0.83 ± 0.014

TABLE I: Performance of GSPLS, GQPLS and Genetic
DAPLS on 8 large bi-objective instances of QAP in terms of
normalized hypervolume

Tri-qap Volume
n, ρ1, ρ2 GSPLS GQPLS DAPLS

20, 0.25, 0.25 0.81± 0.027 0.84± 0.003 0.86 ± 0.001
20, 0.25, 0.75 0.79± 0.001 0.81± 0.001 0.83 ± 0.003
20, 0.75, 0.25 0.78± 0.013 0.80± 0.001 0.82 ± 0.002
20, 0.75, 0.75 0.73± 0.011 0.75± 0.002 0.82 ± 0.001

25, 0.25, 0.25 0.90± 0.019 0.92± 0.003 0.96 ± 0.002
25, 0.25, 0.75 0.82± 0.012 0.84± 0.006 0.87 ± 0.001
25, 0.75, 0.25 0.80± 0.014 0.82± 0.008 0.84 ± 0.001
25, 0.75, 0.75 0.78± 0.012 0.82± 0.023 0.87 ± 0.001

TABLE II: Performance of GSPLS, GQPLS and Genetic
DAPLS on 8 tri-objective instances of QAP in terms of
normalized hypervolume

problem, we choose a large number of facilities, n = {50, 75}
with correlation factors ρ = {−0.25,−0.75, 0.25, 0.75}. Since
the number of non-dominated solutions in the Pareto front
increases exponentially with dimension, we restricted our
choice to rather small number of facilities n = {20, 25} with
the combination of correlation factor ρ = {0.25.0.75} for tri-
objective QAP. To have a fair comparison, we kept the runtime
for each instance across all the algorithms a constant. For
example, for a small bi-objective instance with 50 facilities and
ρ = 0.25, all algorithms were executed for 20 minutes. Due to
stochasticity of the algorithms, each experiment was executed
20 times for each instance. The comparison of performance
is carried out using a hypervolume unary indicator [25]. This
indicator measures the volume of the cost space that is weakly
dominated by an approximating set.

Table I shows the average performance, in terms of nor-
malized hypervolume 1 for bi-objective QAP instances. For all
instances, genetic DAPLS outperforms both algorithms. More-
over, we observe that for small and negative correlation factors
the difference between genetic DAPLS and other methods are
almost negligible. This can be explained by the fact that for
such instances the solutions are evenly spread out in the cost
space and all algorithms can find them easily. On the other
hand, for strongly positive correlation factors, the number of
solutions are small and rather restricted to some part of the
cost space. This in turn increases the complexity of finding

1We used hypervolume generating tool from http://lopez-
ibanez.eu/hypervolume for comparison.
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Fig. 1: Median attainment surfaces for n = 50 with ρ = 0.25 (on left) and ρ = 0.75 (on right)
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Fig. 2: Median attainment surfaces for n = 75 with ρ = 0.25 (on left) and ρ = 0.75 (on right)

solutions approximating the Pareto front for such instances.
Our method improves upon the previous algorithms and finds a
much better approximate Pareto front for these hard instances.

Similarly, Table II shows the average performance for tri-
objective QAP instances. Here, ρ1 represents the correlation
factor between objective 1 and objective 2 while ρ2 presents
the correlation between objective 1 and objective 3. Like bi-
objective case, genetic DAPLS outperforms all other methods
in terms of hypervolume. As in bi-objective case, we observe
that for large correlation factors (ρ1 = 0.75 and ρ2 = 0.75),
DAPLS finds better approximate solutions.

Fonseca et al. [10] proposed the idea of empirical first-
order attainment function (EAF). This measure estimates the
probability that a random point in cost space is attained in one
optimization run of the considered algorithm independently
of attaining any other point in cost space. In this work, we
also use visualization of EAFs from outcomes of multiple
runs of an algorithm, for comparison.. An approximating set
is k% approximation set if it weakly dominates exactly those
solutions that have been attained in at least k percent of
runs. We show 50%-approximation set of EAFs for biobjective
instances with positive correlation. These plots are generated
using the R-statistical tool with the library EAF. The details
of the generating algorithm can be found in [17].

Figure 1 shows the median attainment surfaces for bi-
objective instance of 50-facilities with correlation factors 0.25
and 0.75. Similarly, Figure 2 shows the median attainment sur-
face for 75 facilities for ρ equal to 0.25 and 0.75. For instances
with correlation factor 0.25, it is clearly visible that genetic

DAPLS achieves better spread of solutions (diversity) in the
cost space than GSPLS and GQPLS. Similar improvements are
also observed for the instances with correlation factor 0.75,
where genetic DAPLS not only achieves better diversification
but also provides solutions which are closer to the Pareto front.

VII. CONCLUSION AND FUTURE WORK

We developed a new local search algorithm for approxi-
mating Pareto fronts. Our algorithm is based on the principle
that the neighbors of solutions that were non-dominated at
some stage of the search process should be explored be-
fore they are discarded. Like PLS and QPLS, we embedded
DAPLS in a genetic framework. We showed empirically that
genetic DAPLS outperforms GSPLS and GQPLS algorithms
on several instances of bi-objective and tri-objective quadratic
assignment problems.

In the future, we would like to study DAPLS for higher
dimensional cost spaces where the size of Pareto front is
typically huge. This in turn causes an increase in the runtime
of the inner loop of genetic DAPLS. Our next aim would be
to use some heuristics to limit the size of neighborhood. We
would also like to see how DAPLS performs on other multi-
objective problems like knapsack, coordination graphs, etc.
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