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Abstract— In recent years, there has been growing interest in 

the design of intelligent transportation systems (ITS) using 

vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) 

communication technologies. These systems allow vehicles to 

share GPS-based information, such as latitude, longitude, speed 

and heading, as well as important vehicle data such as brake 

events, throttle position, turn signal status, etc. A pre-crash 

detection and warning system in a host vehicle (i.e. vehicle of 

interest) needs to accurately determine not only the position of 

each remote vehicle in its vicinity, but also the context of the 

driving environment because the context can provide important 

information about whether or not the remote vehicle poses a 

threat to the host. For example, remote vehicles in the same lane 

or one lane over typically pose more of a threat than remote 

vehicles two or more lanes over. In this paper, we propose a real-

time algorithm that computes the relative position and driving 

context of all remote vehicles within a region of interest of the 

host vehicle. Experimental results on real-world V2V data show 

that the proposed method can effectively compute the position 

and context of remote vehicles in real time. 

  

I. INTRODUCTION 

Accurate detection of vehicle position plays an important 
role in many vehicular safety applications. The most advanced 
crash detection and avoidance technologies present in vehicles 
today include a host of on-board sensors, cameras, and radar 
applications. These technologies may warn drivers of 
impending danger so that the driver can take corrective action, 
or may even be able to intervene on the driver’s behalf. While 
pre-crash detection technologies based on these on-board 
sensors can provide improved vehicle safety, vehicle-to-
vehicle (V2V) communications represent a new technology in 
helping to warn drivers about impending danger. V2V 
communications use on-board dedicated short-range radio 
communication (DSRC) devices to transmit messages about a 
vehicle’s speed, heading, brake status, and other information 
to other vehicles (and receive such information, as well) with 
range and “line-of-sight” capabilities that exceed current 
sensor-based vehicle safety systems—in some cases, nearly 
twice the range [1]. This longer detection distance and ability 
to see around corners or through other vehicles helps V2V-
equipped vehicles perceive some potential crash scenarios 
sooner than sensors, cameras, or radar can, and warn drivers 
accordingly. According to the National Highway Traffic 
Safety Administration, V2V and V2I applications have the 
potential to address 80% of unimpaired crashes [2].  
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Our research is focused on developing a pre-crash 
detection system based on V2V communication technology.  
In particular, we present our research in vehicle positioning 
technology. The vehicle that has the pre-crash detection 
system is referred to as the host vehicle (H), and a vehicle 
which communicates with  the host is referred to as a remote 
vehicle (R).  Note that, at any given time, there may be several 
remote vehicles communicating with the host, as shown in 
Figure 1.  

 

Figure 1. A schematic diagram showing the position of the 

host vehicle and several remote vehicles. 
 

The design of a pre-crash detection and warning system in 
a host vehicle requires the determination of not only the 
position of each remote vehicle in its vicinity, but also the 
context of the driving environment because the context can 
provide important information about whether or not the remote 
vehicle poses a threat to the host. For example, with respect to 
Figure 1, the present context of the host includes the fact that 
remote vehicle 1 is ahead of the host and one lane over to the 
right, while remote vehicle 3 is behind the host in the same 
lane. Remote vehicles 4 and 6 are driving parallel to the host, 
one on either side. Of particular interest are scenarios of 
occlusion; for example, in Figure 1, the host vehicle closely 
follows both remote vehicles 5 and 7. With V2V 
communication, the host vehicle can be alerted if vehicle 7 
comes to an abrupt stop, even though vehicle 7 may not be 
visible to the host and even though vehicle 5 does not slow 
down (as one would expect). Hence, this GPS and 
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communication-based technology offers the promise of 
expanding and enhancing the driver’s field of view.  

In this paper, we propose a real-time algorithm that 
computes the relative position of all remote vehicles with 
respect to the host, resulting in the determination of the driving 
context.  It is important to note that in this paper, we focus on 
what can be achieved with the most basic of information 
communicated via V2V technologies; namely, the GPS 
coordinates of both the host and remote vehicles, as well as the 
speed of each vehicle. Of course, a complete pre-crash 
detection and warning system would combine this rudimentary 
information with other important technologies, such as camera 
and radar systems in order to achieve a better understanding of 
the traffic environment. 

The remainder of this paper is organized as follows. 
Section 2 reviews related work in the area of relative position 
detection. All position detection systems rely on a distance 
measure. When it comes to computing geographical distances 
(geodistances), though, there is no one way to do it, and several 
options are available. In Section 3, we introduce and evaluate 
five different well known geodistance functions in terms of 
accuracy and computational efficiency. Section 4 presents the 
proposed relative position detection method. Section 5 
presents experimental results using naturalistic V2V driving 
data in an urban setting in the USA with vehicles equipped 
with dedicated DSRC communication devices. 

II. RELATED WORK 

Much of the pre-crash detection research has focused on 
using vehicle-resident sensors such as cameras, radar, and/or 
LIDAR, along with computer vision algorithms for solving 
problems related to vehicle safety systems, such as vehicle 
detection, pedestrian detection, traffic sign detection, etc.  
Some of these vehicle safety technologies have been deployed 
in existing vehicles, such as forward collision warning systems 
and blind spot detection systems.  However, systems based on 
vehicle-resident sensors are not reliable in a variety of 
conditions, such as bad weather, poor lighting, and 
occlusions—conditions where the driver would most benefit 
from a safety system.  

V2V communication technologies allow for vehicle safety 
systems that are capable of detecting potential vehicle 
collisions that are not possible using camera-based systems.  In 
many traffic scenarios, camera-based systems are not able to 
detect the presence of another vehicle that can potentially 
cause a collision, let alone determine the other vehicle’s 
heading, speed, or operational status. Examples of such 
scenarios are: a host vehicle is approaching a vehicle stopped 
in the roadway but not visible due to obstructions, a lane 
change that encroaches on the travel lane of other vehicles that 
are not yet in the blind spot, and intersections where a vehicle 
encroaches onto the lane of another vehicle, but is in a blind 
spot, or an intersection without a traffic signal. A number of 
vehicle safety technologies have been developed based on 
V2V technologies, including vehicle positioning algorithms, 
and time to collision detection [3] – [8]. 

Bhawiyuga, Nguyen and Jeong pointed out that a key 
component in a V2V communication-based vehicular safety 
application is to find a method to accurately estimate vehicle 
positions and overcome the position bias and random position 

errors inherent in low-cost GPS devices used in the automotive 
industry [4]. The authors proposed a vehicle positioning 
algorithm based on V2V communications and a radar sensor 
used in the host vehicle. The algorithm constructs two 
polygons of position estimates: a GPS    polygon and a sensing 
polygon.  The GPS polygon is formed by connecting the GPS 
measures for remote vehicles provided by V2V 
communications. The sensing polygon is formed by 
connecting the relative locations of remote vehicles provided 
by the radar sensor mounted on the host vehicle. The position 
of the host vehicle is adjusted by the difference between the 
mass center of the GPS polygon and that of the sensing 
polygon. 

 In [5], Cho and Kim presented an algorithm to estimate 
the degree of risk at an intersection using a time-to-intersection 
(TTI) value based on V2V communication. The algorithm first 
calculates the distance from the host vehicle to the intersection, 
as well as the distances of each remote vehicle to the same 
intersection. The time-to-collision for each vehicle is obtained 
by dividing the distance to the intersection by the vehicle 
speed.  The degree of collision risk at an intersection can be 
determined through monitoring the change in the absolute 
value of the difference between the TTI of the host vehicle and 
the TTI of each remote vehicle. The algorithm was verified by 
applying it to a real collision detection system, and the results 
showed that the cooperative intersection collision detection 
system has better accuracy than a V2I-based system. 

III. GEODISTANCE MEASURES 

Many functions have been used to calculate geographical 

distance, such as the Haversine formula and the great circle 

formula. We chose five such functions in order to compare 

their performance both in terms of accuracy and 

computational efficiency. Let (𝜑1, 𝜆1) and (𝜑2, 𝜆2) be two 

geographical coordinate points, where 𝜑 is the latitude and 𝜆 

is the longitude. Both 𝜑 and 𝜆 can be measured in radians or 

degrees. The first distance measure assumes a spherical Earth 

projected to a plane and is given by: 

𝑑1 = 𝑅√(𝜑2 − 𝜑1)2 + [cos (
𝜑1 + 𝜑2

2
) (𝜆2 − 𝜆1)]2 

Here, R = 6,371.009 km is the radius of the earth.                                                                                               

The earth is actually ellipsoidal and not a perfect sphere, 

and the second distance measure is based on an ellipsoidal 

projection of the earth to a plane. 

𝑑2 = 𝑅√[𝐾1(𝜑2 − 𝜑1)]2 + [𝐾2(𝜆2 − 𝜆1)]2 

where φ, λ are in degrees. The two quantities 𝐾1 and 𝐾2 are 

given by: 

           𝐾1 = 111.13209 − 0.56605cos(𝜑1 + 𝜑2) 

                                                   +0.00120cos(2[𝜑1 + 𝜑2]) 

            𝐾2 = 111.41513 cos (
𝜑1 + 𝜑2

2
) 

                               −0.09455cos + 0.00012cos(5[
𝜑1 + 𝜑2

2
]) 



  

The third distance measure is based on a polar coordinate 
flat-Earth formula: 

𝑑3 = 𝑅√ɵ1
2 + ɵ2

2 + 2ɵ1ɵ2cos (𝜆2 − 𝜆1) 

where the colatitude values ɵ𝑖 are in radians. For a latitude 
measured in degrees, the colatitude in radians may be 

calculated as follows: ɵ𝑖 =
𝜋

180
(90𝑜 − 𝜑𝑖), 𝑖 = 1,2. 

The Haversine distance formula is widely used for 
computing geographical distances. The Haversine formula can 
be written in various forms, and the expressions below for 𝑑4 
and 𝑑5 are two such variations [10].  

𝑑4 = √𝑅𝑒𝑞
2(𝜑1 − 𝜑2)2 + 𝑅𝑝𝑜𝑙𝑎𝑟

2(𝜆1 − 𝜆2)2cos (
𝜑1 + 𝜑2

2
)

2

 

Here, 𝑅𝑒𝑞 = 6378.137 km is the radius of the equator, 

𝑅𝑝𝑜𝑙𝑎𝑟 = 6357.752 is the radius to the north pole, and φ, λ 

are in degrees.  Finally, 𝑑5 gives a more computationally 

efficient form: 

𝑑5 = 𝑅arccos ([cos(𝜑1) cos(𝜑2) + sin(𝜑1) sin(𝜑2)]) 

where R is the radius of the earth and φ, λ are in radians. 

To test and compare the performance of these geodistance 
measures, we used vehicle data from a 24 minute trip. The 
latitude and longitude were sampled at 10 Hz, resulting in a 
sequence of GPS coordinates: 

(𝜑0, 𝜆0), (𝜑1, 𝜆1), … , (𝜑𝑛−1, 𝜆𝑛−1) 

For each geodistance function 𝑑𝑖, 𝑖 = 1,2,3,4,5 we 
compute the partial sums of distances over the trip data: 

𝑑𝑖(𝑝) = ∑ 𝑑𝑖(𝜑𝑘 , 𝜆𝑘 , 𝜑𝑘−1, 𝜆𝑘−1

𝑝

𝑘=1

) 

where 𝑝 = 1,2, … , 𝑛 − 1 is the pth partial sum.  

Figure 2 shows the resulting partial sums over the trip and 
how they compare to the ground truth. The ground truth was 
obtained by multiplying the vehicle speed by the trip time. The 
results for distance measures 𝑑1, 𝑑4, 𝑑5 are so close that the 
curves overlap each other, and all three distances are close to, 
though slightly exceed, the ground truth. Distance measure 𝑑3 
also exceeds the ground truth, but by a larger margin. This type 
of distance overestimation is consistent with the result given 
in [11], where the authors use a statistical analysis to show why 
GPS distances typically overestimate the true distance. The 
distance measure 𝑑2 is the outlier here, as it consistently 
underestimates the ground truth. As mentioned in [3], though, 
measuring GPS distances without considering geographical 
information of the road, such as curves, elevations, etc., can 
lead to distance underestimation. Clearly, measuring 
geographical distance is not a simple as measuring distances 
in two dimensions. 

 

Figure 2. Comparison of five different geodistances 

computed over a vehicle trip of duration 24 minutes with a 

sampling rate of 10 Hz. The ground truth (G) is indicated in 

light blue. 

 
Table 1 shows the total distance computed by each distance 

function, as well as the computation time required. For 
comparison, the total trip length indicated by the ground truth 
is 21.3650m. Note that these experiments were run on a 
MacBook Pro with an Intel Core i5 2.6 GHz processor. Here, 
if we choose among the most accurate distance measures: 𝑑1, 
𝑑4, 𝑑5, then 𝑑5 is preferable because it is computationally the 
most efficient.  

Table 1. Comparison of geodistance measures.  

 

Distance 

Measure 

Distance 

(km) 

Time 

(sec) 

𝒅𝟏 21.8452 0.076359 

𝒅𝟐 16.7218 0.076319 

𝒅𝟑 22.7835 0.071223 

𝒅𝟒 21.8580 0.084919 

𝒅𝟓 21.8942 0.023949 

 

IV. RELATIVE POSITION DETECTION 

The goal of this section is to localize the relative position 

of a remote vehicle R with respect to a host vehicle H. The 

relative position is then used to provide a driving context for 

the two vehicles. Figure 3 shows a schematic diagram of the 

type of classification we want to make here. The vehicle in 

the red center square is the host vehicle. The surrounding blue 

squares show potential positions of a remote vehicle. In this 

relative road position analysis, we are interested in whether 

the remote vehicle is ahead (A), behind (B), or parallel (P) to 

the host vehicle. In addition, we are interested in whether or 

not the remote vehicle is in the same lane as the host. Lanes 

are numbered as follows: let 0 indicate the lane that the host 
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is in. Lanes to the right of the host are indicated using positive 

integers and negative integers are used for lanes to the left of 

the host. So the remote vehicle in the upper left hand corner 

of Figure 4 would be classified as 𝐀−2 as it is ahead of the 

host vehicle and two lanes over to the left. 

 

Figure 3. Categories for V2V relative position detection. With 
respect to the host vehicle, A indicates that the remote vehicle 
is positioned ahead, B behind, and P indicates the remote 
vehicle is driving parallel to the host. The subscript indicates 
lane number. The host’s lane is index 0, lanes to the right have 
a positive index and to the left, negative. 

Both the host and the remote vehicles are in motion. As 
shown in Figure 4, let 𝐇(𝑡) = (𝜑𝐻(𝑡), 𝜆𝐻(𝑡)),  denote the 
position of the host vehicle at time t and 𝐇(𝑡 − 1) denote its 
position at time 𝑡 − 1; similarly, let the temporal positions of 
the remote vehicle be denoted as  𝐑(𝑡) = (𝜑𝑅(𝑡), 𝜆𝑅(𝑡)) and 
𝐑(𝑡 − 1), respectively. The variables of interest in Figure 5 
are listed below. Let ∆𝐇 be the vector which points in the 
direction that the host is traveling: from 𝐇(𝑡 − 1) to 𝐇(𝑡). The 
magnitude of this vector 𝑑𝐻 is given by: 

|∆𝐇| = 𝑑(𝜑𝐻(𝑡 − 1), 𝜆𝐻(𝑡 − 1), 𝜑𝐻(𝑡), 𝜆𝐻(𝑡)) 

The adjacent (or horizontal) component of |∆𝐇| is given by: 

|∆𝐇|𝑎𝑑𝑗 = 𝑑(𝜑𝐻(𝑡 − 1), 𝜆𝐻(𝑡 − 1), 𝜑𝐻(𝑡 − 1), 𝜆𝐻(𝑡)) 

The direction of travel of the host vehicle can be computed 
as follows: 

𝜃𝐻
∗ = arccos (|∆𝐇|𝑎𝑑𝑗/|∆𝐇|) 

Note that angles are measured here using the normal 
convention where 0° is the direction along the positive x-axis 
(i.e., 𝜆-axis) and angles increase (in the range 0° − 360°) in 
the counter-clockwise direction.  

Finally, 𝜃H, the moving direction of the host, can be 
obtained by determining the proper quadrant for |∆𝐇| (see 
Table 2). Note that 𝜃H is measured in degrees using the 
standard coordinate system where 0° is east and angle 
increases in the counter clockwise direction.  

Similar calculations can be done for |∆𝐑|, the direction of 
the remote vehicle, and the associated angle 𝜃R. 

Table 2. Computing 𝜃H from 𝜃𝐻
∗ . 

𝐝𝐻 Position 𝜃𝐻 

1st Quadrant 𝜃* 

2nd Quadrant 180 − 𝜃∗ 

3rd Quadrant 180 + 𝜃∗ 

4th Quadrant 360 − 𝜃∗ 

  
  

Let 𝐝𝑅𝐻 be the vector which points from 𝐑(𝑡 − 1) to 
𝐇(𝑡 − 1) and 𝛽 be the relative angle between the host and the 
remote vehicle at time  𝑡 − 1. Similar to the computation of 
𝜃H,  𝛽 can be computed by first computing the adjacent 
distance: 

|𝐝𝑅𝐻|adj = 𝑑(𝜑𝑅(𝑡 − 1), 𝜆𝑅(𝑡 − 1), 𝜑𝑅(𝑡 − 1), 𝜆𝐻(𝑡 − 1)) 

And then 

𝛽∗ = arccos (|𝐝𝑅𝐻|adj/|𝐝𝑅𝐻|) 

𝛽 can be determined from 𝛽∗ by using a  table similar to Table 
2 to identify the proper quadrant for the angle 

 

Figure 4. Relative position of the host and remote vehicles 

at times 𝑡 and 𝑡 − 1. 

𝛼𝐻 is the angle between 𝐝𝑅𝐻 and the direction of motion 
∆𝐇 of the host vehicle. Similarly, 𝛼𝑅 is the angle between 𝐝𝑅𝐻  
and the direction of motion of the remote vehicle. By this 
geometry, we have: 

𝛼𝐻 = 𝜃𝐻 − 𝛽 

𝛼𝑅 = 𝜃𝑅 − 𝛽 

Let dH be the perpendicular distance from the host to the 

remote vehicle and dR be the perpendicular distance from the 

remote vehicle to the host. These are computed as: 

𝑑𝑅 = 𝑑𝑅𝐻|sin(𝛼𝐻)| 

𝑑𝐻 = 𝑑𝑅𝐻|sin (𝛼𝑅)| 



  

Using the value of 𝛼H, we can determine which vehicle is 
ahead of the other. There are 4 cases to consider: 

1. −90 < 𝛼𝐻 < 90:  Host is ahead of remote vehicle. 

2. −270 < 𝛼𝐻 < −90: Host is behind remote vehicle.  

3. 𝛼𝐻 = 90: The remote vehicle is moving parallel and 

to the right of the host vehicle. 

4. 𝛼𝐻 = −90: The remote vehicle is moving parallel 

and to the left of the host vehicle. 

Using the value of dH, we can determine if the host and the 
remote vehicles are on the same lane or adjacent lanes by 
setting up appropriate thresholds. For example, Figure 5 shows 
an analysis for a typical highway lane width: 3.7m and vehicle 
width: 2m. These thresholds can be adjusted accordingly for 
residential streets, which are typically narrower. There are 
three cases to consider here, as shown below. 

 
Figure 5. Typical calculations to determine the thresholds to 
decide if two vehicles are in the same or adjacent lanes. 

 

1. 𝑑𝐻 < 1.7m:  Host and remote vehicles are in the 

same lane.  

2. 2 < 𝑑𝐻 < 5.4m: The host and remote vehicle are  on 

adjacent lanes 

(a) −180 < 𝛼𝐻 < 0: The remote vehicle is on 

the adjacent lane to the left of the host. 

(b) 0 < 𝛼𝐻 < 180: The remote vehicle is on the 

adjacent lane to the right of the host. 

3. 𝑑𝐻 > 5.4m: There is one or more lane separation 

between the host and remote vehicle. 

(a) −180 < 𝛼𝐻 < 0: The remote vehicle is on a 

distant adjacent lane to the left of the host. 

(b) 0 < 𝛼𝐻 < 180: The remote vehicle is on a 

distant adjacent lane to the right of the host. 

Using the above observations, we formulate the following 
algorithm for determine the relative position of a remote 
vehicle with respect to the host. 

Algorithm  

1. Calculate 𝛽, the relative direction from R to H 

2. Calculate 𝜃H and 𝜃R, moving directions of R and H 

3. Calculate 𝛼H and 𝛼R  

𝛼𝐻 = 𝜃𝐻 − 𝛽 

𝛼𝑅 = 𝜃𝑅 − 𝛽 

4. Calculate dH: vertical distance between the two 

vehicles  

𝑑𝐻 = 𝑑𝑅𝐻|sin(𝛼𝐻)| 

5. Use Figure 6 to map the values of 𝛼𝐻 and 𝑑𝐻 to the 

output classes shown in Figure 3.  

 

Figure 6. A summary of the positional information about the 
remote vehicle that can be obtained from 𝛼𝐻 and 𝑑𝐻. The sign 
of the resulting lane index is indicated with +/-. 

Note that we are tacitly assuming here that both vehicles 

have non-zero velocity. In fact, we assume that the vehicle 

moving direction gives us an indication of the lane direction. 

But if, for example, the host vehicle comes to a stop, then 

there is no motion vector between 𝐇(𝑡) and 𝐇(𝑡 − 1), and 

hence no angle 𝜃𝐻 to compute. The same applies to the remote 

vehicle and the calculation of  𝜃𝑅. Another problem with low 

vehicle speed is that the GPS coordinates tend to become 
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more erratic. We don’t want to determine travel direction on 

these noisy GPS measurements. Hence, we enhance step 2 of 

the algorithm as follows: 

If the host vehicle stops or moves very slowly (less than 5 

mph), go back in time to find a suitable previous position 

vector: 𝐇(𝑡 − ∆) = (𝜑𝐻(𝑡 − ∆), 𝜆𝐻(𝑡 − ∆)) to use. The  

motion vector ∆𝐇 is then computed between 𝐇(𝑡 − ∆) and 

𝐇(𝑡). Similarly, when the velocity of the remote vehicle is too 

small, choose a suitable previous position vector 𝐑(𝑡 − ∆) to 

compute 𝜃R. In the experiments below ∆ was determined by 

going back in time until the distance between 𝐇(𝑡) and 

𝐇(𝑡 − ∆) is at least 2.2m (which matches the 5 mph 

threshold). 

V. EXPERIMENTS 

V2V data was collected by the Michigan Mobility 

Transportation Center of drivers in and near Ann Arbor, 

Michigan, USA, over two days: June 2-3, 2013. There were a 

total of 1825 unique drivers over the two days. Using a 

sampling rate of 10 Hz, the following data was collected for 

each trip. 

1. Vehicle Id. 

2. Trip Id 

3. GPS Latitude (5 decimal digits) 

4. GPS Longitude 

5. Time stamp 

6. Vehicle speed (m/s) 

We mined this large data set to find examples of trips 
where two vehicles were in close proximity at the same time. 
In particular, the vehicles are within 10 m of each other. Figure 
7 shows a portion of three such trips. Here, the position of the 
host vehicle is shown as a red circle and the position of the 
remote vehicle as a cyan circle. The direction of travel is 
indicated by the white arrow. Note for clarity of display 
purposes, we sub-sampled the trip data using a sample rate of 
1 sec. In 7(a), the remote vehicle is initially ahead of the host, 
but then falls behind. The sequence of states was computed to 
be: 

𝐀1 𝐀1 𝐀1 𝐀1 𝐀1 𝐀1𝐏1 𝐏1 𝐁0 𝐁0 𝐁−1 𝐁−1 𝐏−1 𝐀−1  

Note that in this example, all of the states are correct. The 

accuracy of each state was determined by inspection of the 

trip data on the map. This inspection was done by viewing a 

video of the trip sequences on the map (the portion of the trip 

where the two vehicles interact). It is relatively easy to 

determine the driving  context of the two vehicles when seen 

in real-time as a dynamic sequence of GPS points. 

 Another example is shown in 7(b) where the host vehicle 

passes the remote vehicle on the left with the following 

sequence of states: 

𝐀1 𝐀1 𝐀1 𝐁1 𝐁1 𝐁1 

 
(a) 

 

(b) 

 
 (c) 

Figure 7. Three sample trips. Red dots indicate the position 

of the host vehicle and the blue dots the remote vehicle. The 

direction of travel is indicated by the blue arrow. 

Note that relative position classification is not always correct, 

as shown in Figure 7(c). Here, although the sequence of states 

shown are correct: 

𝐁−1 𝐁−1 𝐁−1 𝐀−1 𝐏−1  𝐀−1 𝐀−1  

-83.7515 -83.751 -83.7505 -83.75 -83.7495 -83.749

42.265

42.2652

42.2654

42.2656

42.2658

42.266

42.2662

42.2664

42.2666

-83.7274 -83.7272 -83.727 -83.7268 -83.7266 -83.7264 -83.7262

42.2985

42.2986

42.2987

42.2988

42.2989

42.299

42.2991

-83.685 -83.6845 -83.684 -83.6835 -83.683 -83.6825

42.1444

42.1446

42.1448

42.145

42.1452

42.1454

42.1456

42.1458

42.146



  

In another portion of the trip, though, the host vehicle comes 
to a stop, resulting in misclassifications. 

As mentioned in Section IV, inaccuracy stems from two 
main sources: (1) the inherent inaccuracy of the GPS position 
data and (2) difficulty in determining the direction of vehicle 
motion at low speeds. The results of the proposed approach are 
better under freeway driving conditions, rather than local 
setting where there are many starts and stops. 

Table 3 shows the accuracy of several trips. The first four 
rows in Table 3 show trips where the host and the remote 
vehicle travel in opposite directions, while the remaining rows 
show trips where they travel in the same direction. The first 
two columns show vehicle speed at the moment when the two 
vehicles were at their closest. The third column shows the 
closest distance that the host and remote vehicles achieve. The 
fourth column shows how many seconds the two vehicles are 
in close proximity. 

Table 3. Accuracy of relative position detection. 
 

Velocity  
Vehicle #1 

(m/s) 

Velocity  
Vehicle #2 

(m/s) 

Closest 
Dist (m)  

Proximity 
Time (sec) 
 

Accuracy 
(%) 

16.66 0.180 2.37 15 86.7 

1.378 0.037 2.47 14 100 

33.54 33.94 2.71 13 100 

0.963 1.818 2.77 12 100 

17.97 17.92 2.22 12 91.6 

5.440 0.040 2.37 3 100 

0.076 3.400 2.37 6 83.3 

9.517 9.515 2.47 9 100 

2.222 0.002 2.47 9 100 

32.90 32.50 2.70 15 86.6 

0.020 4.044 2.71 5 100 

19.95 15.78 2.71 4 100 

 

The average computation time (using Matlab with a 
MacBook Pro Intel Core i5 2.6 GHz) per sample point pair is 
about 30 microseconds, which is fast enough for real time 
applications. 

VI. CONCLUSION AND FUTURE WORK 

A complete pre-crash detection safety system will typically 
make use of many on-vehicle sensors, such as cameras, 
LIDAR, etc. The focus of this paper, though, was to determine 
relative position and driving context using only GPS and 
vehicle velocity. Even with this limited amount of information, 
the proposed algorithm produced accurate results for both the 
vehicle position and traffic context. Although we focused our 
analysis here on analyzing a single host-remote vehicle pair, 
the same approach can be applied to determining the relative 
position of any number of remote vehicles that are within a 
region of interest to the host.  

In future work, we will extend this analysis by using V2V 
data to infer driver intent based on a dynamic analysis of 
transitions between relative position states. For example, 
Figure 8 shows a common maneuver whereby the remote 
vehicle passes the host vehicle on the left. This maneuver is 
characterized by the state sequence: 𝐁0 𝐏−1 𝐀0. To understand 
driver intent, we must go beyond mere localization and 
position information to analyze such real-time state sequences. 
For this purpose, a dynamic neural network can be trained on 
historical data.  

 

Figure 8. A sequence of states between the host and a remote 
vehicle. Here the remote vehicle passes the host on the left. 
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