
Preserving Diversity in Auxiliary Objectives
Provably Speeds Up Crossing Plateaus

Tatyana Polevaya, Maxim Buzdalov
ITMO University

49 Kronverkskiy prosp.
Saint-Petersburg, Russia, 197101

Email: tanusha2406@gmail.com, mbuzdalov@gmail.com

Abstract—Using auxiliary objectives often speeds up opti-
mization in different conditions. However, actual results depend
heavily on how exactly these auxiliary objectives are used.

In one of the methods which uses auxiliary objectives, the
EA+RL method which uses reinforcement learning algorithms to
choose between objectives, the following use case was considered.
When the target objective has plateaus, reinforcement learning
is unable to learn which auxiliary objectives can be used to cross
these plateaus, and if an auxiliary objective is simply a refined
version of the target one, reinforcement learning hardly helps, if
at all.

On the other hand, it is known that optimizing auxiliary
objectives may help crossing plateaus, because it may introduce
an additional slope which helps the optimizer to decide where to
move. In this paper, we propose two ways to keep diversity in
terms of auxiliary objectives while optimizing the target objective.
We prove that simple duplicate elimination already speeds up
optimization of XDIVK, a coarse-grained version of ONEMAX,
when ONEMAX – or any injective function of unitation – is
used as an auxiliary objective, provided the population size is
large enough. When selection explicitly maximizes the spread of
population according to ONEMAX, it is already fast when the
population size is 2.

I. INTRODUCTION

Single-objective optimization can often benefit from mul-
tiple objectives [11], [12], [15], [16]. Different approaches
are known from the literature. Some researchers introduce
additional objectives to escape from the plateaus [1]. Decom-
position of the primary objective into several objectives also
helps in many problems [9], [12], [15]. Additional objectives
may also arise from the problem structure [13], [14].

Different approaches may be applied to a problem with the
“original” objective, which can be called the target objective,
and some auxiliary objectives. The multi-objectivization ap-
proach is to optimize all auxiliary objectives at once using a
multi-objective optimization algorithm [9], [12]. The helper-
objective approach is to optimize simultaneously the target ob-
jective and some (one or more) auxiliary objectives, switching
between them from time to time [11].

The approaches above are designed in the assumption that
the auxiliary objectives are crafted to help optimizing the target
objective. However, in some cases such auxiliary objectives
are automatically synthesized [5], and it is not known a priori
which of them are good or bad. For this case, with participation
of one of co-authors of the current paper, the EA+RL method
was developed [4] which chooses the objective to optimize

(by a single-objective optimization algorithm) using one of
the reinforcement learning algorithms [18].

While the EA+RL method was shown to be practically
efficient in certain settings [5], and was theoretically proven
to be efficient for the case of bad auxiliary objectives [3],
the similar research for the case of a supporting objective [2]
revealed certain problems. In EA+RL, the reward, which
is used to distinguish good or bad objectives, is typically
calculated as the difference between the best target objective
values in subsequent generations. When the target objective
function contains large plateaus, this difference is zero for
most of time. This means that the reinforcement learning
algorithm cannot learn anything while the algorithm is on
the plateau; in particular, this makes it hard to escape from
the plateau. In [2], the XDIVK problem is defined, which is a
“coarse-grained” version of ONEMAX and has regular plateaus
of width k, where k is the parameter of the problem. This
problem is solved in Ω(nk−1) for constant k by (1 + 1)-type
optimizers, so one can expect that the presence of ONEMAX
as the auxiliary objective may help speeding up optimization.
This indeed happens, but only to a small degree (only by
a factor of 2k−2). Additionally, the paper [2] shows that
reinforcement learning never learns anything in the setting of
this problem.

In this paper, we seek how to use auxiliary objectives such
that plateaus can be efficiently crossed. The main idea is to use
an elitist scheme for the target objective while preserving di-
versity in the worst individuals using auxiliary objectives. This
idea, commonly known as phenotypical diversity, is typically
used for the target objective; several techniques for this were
analyzed in [8]. From this perspective, auxiliary objectives can
be seen as a form of phenotypic information. It is known that
using phenotypic information speeds up finding optima, see,
for instance, a recent work by Dang et al. [6]. We present
two diversity preserving schemes along with their theoretical
analysis on the benchmark problem with the XDIVK target
function and the ONEMAX auxiliary function.

II. PRELIMINARIES

The ONEMAX problem is probably the most classic test
function in evolutionary computation. The problem instances

are functions ONEMAXn,z , z ∈ {0, 1}n, which are defined on
bit strings of size n by

ONEMAXn,z : {0, 1}n → R;x 7→ |{i ∈ [1..n] | xi = zi}|,

that is, ONEMAXn,z counts the number of bit positions in
which x and z agree. All problem instances with the fixed
n and every possible bit string z of length n constitute the
ONEMAX problem of size n.

In [2], the problem XDIVK was proposed. It has a parameter
k > 1 and is defined for problems sizes n = mk for integer
m. Formally, XDIVK is defined as follows:

XDIVKn,z : {0, 1}n → R;x 7→
⌊

ONEMAXn,z(x)

k

⌋
.

For simplicity, we also assume that k 6= n, which means that
k ≤ n/2. This function has m = n/k plateaus of width k.
Typically, simple optimizers, such as randomized local search
or the (1 + 1)-EA, have certain problems optimizing this
function because of these plateaus. In particular, they typically
need to flip Θ(k) bits at once to reach the optimum from the
last plateau. Randomized local search finds an optimum of this
function in time which is O(nk) and Ω(nk−1), see [2] for the
details.

For simplicity, further in this paper we assume that the
hidden optimum z is a string consisting of one-bits. This does
not have any impact on the validity of the proofs for any other
hidden optima.

III. SIMPLE DUPLICATE REMOVAL EA AND ITS RUNTIME
ANALYSIS

In this section, we describe a simple (µ+ 1)-EA which not
only optimizes the given fitness function, but also attempts to
keep the current solution set duplicate free according to the
given auxiliary function.

We also analyze the running time of this algorithm on the
XDIVK problem, while ONEMAX is used to preserve diversity.
We show that the performance of this algorithm depends on
the relation of the population size µ to the problem parameter
k: if µ ≥ k, the running time is O(µn log n), while if µ < k,
it becomes exponential in k − µ.

A. The Algorithm

We define the (µ+ 1) duplicate removal evolutionary algo-
rithm, or the (µ+ 1)-DR-EA, as follows. The population size
of this algorithm is µ, it uses a nullary individual generation
operator δ0 and an unary variation operator δ1. We denote as
f the fitness function to be maximized, and as g the auxiliary
function which is used to preserve diversity. The algorithm
uses the function g only to detect whether for the two given
individuals p and q the equality g(p) = g(q) holds.

Initially, the population P of the algorithm, |P | = µ,
consists of random individuals (the ones generated by δ0). In
every iteration, a new individual p is sampled (by uniformly
choosing an individual from P and applying the mutation
operator δ1) and added to the population. Then, one individual

1: procedure (µ+ 1)-DR-EA(f , g, δ0, δ1, µ)
2: – f : the fitness function to maximize
3: – g: the auxiliary function to preserve diversity
4: – δ0: the new solution generator
5: – δ1: the mutation operator
6: – µ: the population size
7:
8: P ← ∅ – the population
9: while |P | < µ do

10: P ← P ∪ {δ0()}
11: end while
12: while true do
13: q ← δ1(UNIFORMLYRANDOM(P))
14: P ← P ∪ {q}
15: fmin ← min{f(p) | p ∈ P}
16: Q← {p | p ∈ P, f(p) = fmin}
17: QD ← ∅
18: for p ∈ Q do
19: if |{p′ ∈ Q | g(p) = g(p′)}| > 1 then
20: QD ← QD ∪ {p}
21: end if
22: end for
23: if QD = ∅ then
24: P ← P \ {UNIFORMLYRANDOM(Q)}
25: else
26: P ← P \ {UNIFORMLYRANDOM(QD)}
27: end if
28: end while
29: end procedure

Fig. 1. The (µ+ 1) Duplicate Removal EA

has to be selected and removed from the population. The
selection procedure works as follows:

• First, the set Q of individuals with the worst fitness value
is generated.

• Second, the set of duplicates QD is generated as follows.
If for an individual p ∈ Q there exists another individual
p′ ∈ Q such that g(p) = g(p′), then p is added to the
set of duplicates QD. In other words, if this individual
is not unique according to the auxiliary function, it is
considered a “duplicate”.

• If there are no duplicates (QD = ∅), a random element of
Q is deleted from the population. Otherwise, a random
element of QD is deleted from the population.

The algorithm is outlined in Fig. 1. In a sense, this is a
simplest modification of the (µ + 1) evolutionary algorithm
which uses an auxiliary function to preserve diversity, as this
algorithm requires no knowledge about this function, except
for the fact that it is not good to have equal values of this
function in the population. In fact, the auxiliary function can
be transformed with any equality preserving transformation
without changing the algorithm’s performance.

The diversity preserving mechanism is similar to the one
introduced by Jansen and Wegener [10], where, together with

the use of crossover, it helps to optimize certain jump functions
in polynomial time. However, in this paper it does not allow
the duplicates to enter the population at all, which resembles
the (2 + 1) GA from Storch and Wegener [17]. Of course, the
main difference is that this diversity preservation is applied to
auxiliary objectives, not to the target one.

In the following section we show that large enough popula-
tion sizes help this algorithm to cross plateaus, provided that
the auxiliary function gives enough information to distinguish
the solutions residing in these plateaus.

B. The Analysis

We analyze the running time of the (µ + 1)-DR-EA on
the fitness function XDIVK with the problem size n and
the plateau size parameter k. Here, ONEMAX is used as the
auxiliary function, but, due to the properties of the (µ+1)-DR-
EA, any injective function of unitation – that is, any function
f := x 7→ g(|x|) where g : {0, 1, . . . , n} → IR is injective –
can be used as the auxiliary function without any change to
the result.

In the first part of the analysis we consider an arbitrary
initialization operator δ0 and an arbitrary mutation operator
δ1 which makes it possible to solve ONEMAX for the (1+1)-
EA. This can be, for example, the single bit mutation, or the
standard mutation which flips each bit independently with the
probability of 1/n. We show that, for large enough population
sizes µ ≥ k, this algorithm is only at most µ times slower than
the (1+1)-EA on ONEMAX with the same mutation operator
δ1.

Theorem 1: Assume that the initialization operator δ0 and
the mutation operator δ1 are such that the expected running
time of the (1 + 1)-EA on ONEMAX is T (n) for the problem
size n. Consider the XDIVK problem with the problem size
n and the plateau parameter k. If the (µ + 1)-DR-EA uses
the same operators δ0 and δ1, and µ ≥ k, then the considered
XDIVK problem is solved by the (µ+ 1)-DR-EA in expected
time of at most µ · T (n).

Proof: First we prove that, under the conditions of the
theorem, at least one of the best individuals according to the
value of ONEMAX survives the selection. Indeed, if there are
at least two such individuals, one of them survives as only
one individual is removed. If the best individual is unique,
two cases are possible:
• Some duplicates exist. In this case, one of them is deleted,

and the best individual survives.
• No duplicates exist. As there are µ+ 1 individuals at the

time of the selection, by the pigeonhole principle there
exist at least one individual with the value of XDIVK
worse than the one of the best individual, as there are
only k < µ+ 1 different ONEMAX values corresponding
to the same XDIVK value. So the best individual does not
appear in the set Q of the worst individuals according to
XDIVK, and survives as well.

In each iteration, a random individual from the population
is chosen to generate a new offspring. With the probability of
at least 1/µ, this individual will be the best individual. Thus,

TABLE I
RUNNING TIMES OF (1 + 1)-DR-EA ON XDIVK WITH ONEMAX WITH
k = 10 AND µ = 20. COLUMNS ARE NUMBERED FOR CONVENIENCE

n Runtime en ln en+ 5eµn+ µ #2
#3

µen ln en #2
#5

#1 #2 #3 #4 #5 #6
1000 2.210 · 105 2.933 · 105 0.753 4.299 · 105 0.514
2000 4.893 · 105 5.904 · 105 0.829 9.352 · 105 0.523
5000 1.353 · 106 1.489 · 106 0.909 2.587 · 106 0.523

10000 3.026 · 106 2.996 · 106 1.010 5.551 · 106 0.545
20000 6.621 · 106 6.029 · 106 1.098 1.186 · 107 0.559
50000 1.821 · 107 1.520 · 107 1.198 3.213 · 107 0.567

100000 3.745 · 107 3.058 · 107 1.224 6.803 · 107 0.550
200000 7.914 · 107 6.155 · 107 1.286 1.436 · 108 0.551
500000 2.171 · 108 1.551 · 108 1.399 3.839 · 108 0.565

with probability of at least 1/µ one step of the (1 + 1)-EA
optimizing ONEMAX is simulated, which proves the result.

A simple corollary of Theorem 1 is that for both single flip
mutation and the standard bit flip mutation with p = 1/n, the
expected running time of the (µ+ 1)-DR-EA on XDIVK with
the auxiliary ONEMAX is O(µn log n) when µ ≥ k. As this
algorithm is clearly not faster than (1 + 1)-EA on ONEMAX,
it runs in Ω(n log n).

Our upper bound of O(µn log n) may seem weak, as Witt
proved an O(µn + n log n) upper bound for a very similar
case of the (µ+ 1) EA optimizing ONEMAX [19]. However,
there is empirical evidence that in our case the running time is
actually Θ(µn log n). To support this, we ran the experiments
with k = 10, µ = 20, n = {1, 2, 5} × {103, 104, 105}, and
the standard bit mutation. Results for all configurations were
averaged over 100 runs. The results are presented in Table I.
In this table we put the experimental results, as well as the
en ln en+5eµn+µ bound proven by Witt for the (µ+1) EA
and the value of µen ln en which follows from Theorem 1.

The fourth and sixth columns of Table I suggest that Witt’s
type of upper bound does not hold for the runtime of the
(µ + 1)-DR-EA on XDIVK with ONEMAX, as the actual
runtime grows faster. In the same time, a more conservative
Θ(µn log n) expression demonstrates good estimation quality
with a rather stable constant factor.

Now we show that the population size matters. The next
theorem states that if µ < k, the running time becomes
exponential in k− µ for the single bit mutation operator. The
proof of this theorem, due to its size, is given in the appendix.

Theorem 2: Consider the single bit mutation δ1 and the
XDIVK problem with the problem size n and the plateau
parameter k, while ONEMAX is used as the auxiliary function.
If µ < k, the running time of the (µ + 1)-DR-EA is
O(µ2nk−µ+1) and

Ω

((
n
√
µ

6k

)k−µ+1
1

6µ−1k ·
√
µ3

)
.

IV. SIMPLE SPREAD MAXIMIZING EA AND ITS RUNTIME
ANALYSIS

In this section, we describe a simple modification of the
(µ+1)-DR-EA. It also uses the auxiliary function to determine

1: procedure (µ+ 1)-SM-EA(f , g, δ0, δ1, µ)
2: – f : the fitness function to maximize
3: – g: the auxiliary function to preserve diversity
4: – δ0: the new solution generator
5: – δ1: the mutation operator
6: – µ: the population size
7:
8: P ← ∅ – the population
9: while |P | < µ do

10: P ← P ∪ {δ0()}
11: end while
12: while true do
13: q ← δ1(UNIFORMLYRANDOM(P))
14: P ← P ∪ {q}
15: fmin ← min{f(p) | p ∈ P}
16: Q← {p | p ∈ P, f(p) = fmin}
17: s← −∞
18: QS ← ∅
19: for p ∈ Q do
20: S′ ← S \ {p}
21: sp ← maxq∈S′ g(q)−minq∈S′ g(q)
22: if sp > s then
23: s← sp
24: QS ← ∅
25: end if
26: if sp = s then
27: QS ← QS ∪ {p}
28: end if
29: end for
30: P ← P \ {UNIFORMLYRANDOM(QS)}
31: end while
32: end procedure

Fig. 2. The (µ+ 1) Spread Maximizing EA

which individual, among the worst, to remove, but does it in
a different manner.

We also analyze the running time of this algorithm on the
XDIVK problem, while ONEMAX is used to preserve diversity.
We show that the running time is O(µn log n) not only for
large population sizes, but for all µ ≥ 2.

A. The Algorithm

The (µ+ 1) spread maximizing evolutionary algorithm, or
(µ + 1)-SM-EA, is defined as follows. The population size
of this algorithm is µ, it uses a nullary individual generation
operator δ0 and an unary variation operator δ1. We denote as
f the fitness function to be maximized, and as g the auxiliary
function which is used to preserve diversity.

By spread of a set of individuals Q we denote the value
maxq∈Q g(q)−minq∈Q g(q). The bigger the spread, the larger
portion of the search space the solution set is thought to
occupy. The (µ + 1)-SM-EA chooses one of the solutions
with the minimum fitness value to remove such that the spread
of the remaining population is maximum possible. All other

details are similar to the (µ + 1)-DR-EA. The algorithm is
outlined on Fig. 2.

B. The Analysis

We analyze the running time of the (µ + 1)-SM-EA on
the fitness function XDIVK with the problem size n and
the plateau size parameter k. Here, ONEMAX is used as
the auxiliary function. We consider an arbitrary initialization
operator δ0 and an arbitrary mutation operator δ1 which makes
it possible to solve ONEMAX for the (1 + 1)-EA. We show
that for all population sizes µ ≥ 2, this algorithm is only at
most µ times slower than the (1 + 1)-EA on ONEMAX with
the same mutation operator δ1.

Theorem 3: Assume that the initialization operator δ0 and
the mutation operator δ1 are such that the expected running
time of the (1 + 1)-EA on ONEMAX is T (n) for the problem
size n. Consider the XDIVK problem with the problem size
n and the plateau parameter k. If the (µ + 1)-SM-EA uses
the same operators δ0 and δ1, and µ ≥ 2, then the considered
XDIVK problem is solved by the (µ+ 1)-SM-EA in expected
time of at most µ · T (n).

Proof: It is easy to see that the selection scheme never
deletes the best and the worst individuals, according to ONE-
MAX, from the set of individuals with the worst XDIVK
value. Thus it never deletes the individual with the maximum
ONEMAX value. The rest of the proof follows the same way
as in Theorem 1.

As a corollary of Theorem 3, we can see that, for random
initialization and common mutation operators (standard muta-
tion or single bit mutation) the (µ + 1)-SM-EA runs on the
XDIVK fitness function and the ONEMAX auxiliary function
in O(µn log n) for µ ≥ 2. So, contrary to (µ + 1)-DR-EA,
this algorithm is capable of running fast with small population
sizes.

V. CONCLUSION

We presented two simple evolutionary algorithms which,
apart from the fitness function to optimize, make use of the
auxiliary function to preserve diversity. Both algorithms are
(µ + 1) steady-state algorithms with population size µ. The
first of them, the (µ+1) duplicate removal evolutionary algo-
rithm, or (µ+ 1)-DR-EA, removes a single random duplicate
(according to the auxiliary function), if exists, among the
individuals with the worst fitness value. The second, the (µ+1)
spread maximizing evolutionary algorithm, or (µ+1)-SM-EA,
removes a random individual in such a way that the spread of
the remaining population is maximum possible according to
the auxiliary function.

We analyzed these algorithms on a benchmark problem
taken from our previous research [2]. In this problem, the
fitness function is XDIVK, which is ONEMAX with all fitness
values divided evenly by k, the problem’s parameter, and the
auxiliary function is ONEMAX. The XDIVK function has n/k
plateaus of width k each and thus is quite hard to optimize:
for example, both randomized local search and (1 + 1)-EA
need Ω(nk−1) time to reach the optimum.

We proved the (µ + 1)-DR-EA algorithm, using certain
initialization operator δ0 and mutation operator δ1, given large
enough population size (µ ≥ k), runs on this benchmark
problem at most µ times slower than (1+1)-EA on ONEMAX
using the same operators. That is, (µ + 1)-DR-EA runs in
O(µn log n) if µ ≥ k and, for example, standard mutation
operator is used. We also showed experimentally that this
bound seems to be tight, i.e. should be read as Θ(µn log n).
However, for smaller population sizes (2 ≤ µ < k), this
algorithm slows down: for the single bit mutation, it takes
time which is O(µ2nk−µ+1) and has a similar lower bound.

The second algorithm, (µ+1)-SM-EA, appeared to be more
efficient: it reaches the O(µn log n) running time already for
µ ≥ 2, because its selection scheme never lets the individual
with the largest ONEMAX value die.

These algorithms have several useful invariance properties
for the auxiliary functions. For example, the behaviour of
(µ + 1)-DR-EA does not change if any injective function
of unitation is used instead of ONEMAX as the auxiliary
function. The (µ + 1)-SM-EA is less invariant, however, it
tolerates linear transformations, including those with negative
linear coefficient. For example, ONEMAX can be changed to
ZEROMAX without any change in the running time.

The proposed algorithm schemes have several possible ex-
tensions to support multiple auxiliary objectives. For example,
the selection scheme of (µ + 1)-SM-EA may delete the
individual with the smallest crowding distance [7], or the least
hypervolume contribution [20]. We think that the algorithmic
ideas proposed in this paper may be helpful in combinatorial
optimization, where the presence of plateaus is often an issue.
Some theoretical future work may be necessary to justify
certain design choices for using multiple auxiliary objectives.

ACKNOWLEDGMENTS

This work was partially financially supported by the Gov-
ernment of Russian Federation, Grant 074-U01.

REFERENCES

[1] D. Brockhoff, T. Friedrich, N. Hebbinghaus, C. Klein, F. Neumann, and
E. Zitzler. On the effects of adding objectives to plateau functions. IEEE
Transactions on Evolutionary Computation, 13(3):591–603, 2009.

[2] M. Buzdalov and A. Buzdalova. OneMax helps optimizing XdivK:
Theoretical runtime analysis for RLS and EA+RL. In Proceedings of
Genetic and Evolutionary Computation Conference Companion, pages
201–202. ACM, 2014.

[3] M. Buzdalov, A. Buzdalova, and A. Shalyto. A first step towards the
runtime analysis of evolutionary algorithm adjusted with reinforcement
learning. In Proceedings of the International Conference on Machine
Learning and Applications, volume 1, pages 203–208. IEEE Computer
Society, 2013.

[4] A. Buzdalova and M. Buzdalov. Increasing efficiency of evolutionary
algorithms by choosing between auxiliary fitness functions with rein-
forcement learning. In Proceedings of the International Conference on
Machine Learning and Applications, volume 1, pages 150–155, 2012.

[5] A. Buzdalova, M. Buzdalov, and V. Parfenov. Generation of tests for
programming challenge tasks using helper-objectives. In 5th Interna-
tional Symposium on Search-Based Software Engineering, number 8084
in Lecture Notes in Computer Science, pages 300–305. Springer, 2013.

[6] D.-C. Dang, T. Friedrich, T. Kötzing, M. S. Krejca, P. K. Lehre, P. S.
Oliveto, D. Sudholt, and A. M. Sutton. Escaping local optima with
diversity mechanisms and crossover. In Proceedings of Genetic and
Evolutionary Computation Conference, pages 645–652, 2016.

[7] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist
multi-objective genetic algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation, 6(2):182–197, 2002.

[8] T. Friedrich, P. S. Oliveto, D. Sudholt, and C. Witt. Analysis of
diversity preserving mechanisms for global exploration. Evolutionary
Computation, 17(4):455–476, 2009.

[9] J. Handl, S. C. Lovell, and J. D. Knowles. Multiobjectivization by
decomposition of scalar cost functions. In Parallel Problem Solving
from Nature – PPSN X, number 5199 in Lecture Notes in Computer
Science, pages 31–40. Springer, 2008.

[10] T. Jansen and I. Wegener. The analysis of evolutionary algorithms–a
proof that crossover really can help. Algorithmica, 34:47–66, 2002.

[11] M. T. Jensen. Helper-objectives: Using multi-objective evolutionary
algorithms for single-objective optimisation: Evolutionary computation
combinatorial optimization. Journal of Mathematical Modelling and
Algorithms, 3(4):323–347, 2004.

[12] J. D. Knowles, R. A. Watson, and D. Corne. Reducing local optima
in single-objective problems by multi-objectivization. In Proceedings
of the First International Conference on Evolutionary Multi-Criterion
Optimization, pages 269–283. Springer-Verlag, 2001.

[13] D. F. Lochtefeld and F. W. Ciarallo. Deterministic helper-objective
sequences applied to Job-Shop scheduling. In Proceedings of Genetic
and Evolutionary Computation Conference, pages 431–438. ACM, 2010.

[14] D. F. Lochtefeld and F. W. Ciarallo. Helper-objective optimization
strategies for the Job-Shop scheduling problem. Applied Soft Computing,
11(6):4161–4174, 2011.

[15] F. Neumann and I. Wegener. Minimum spanning trees made easier via
multi-objective optimization. Natural Computing, 5(3):305–319, 2006.

[16] F. Neumann and I. Wegener. Can single-objective optimization profit
from multiobjective optimization? In Multiobjective Problem Solving
from Nature, Natural Computing Series, pages 115–130. Springer Berlin
Heidelberg, 2008.

[17] T. Storch and I. Wegener. Real royal road functions for constant
population size. Theoretical Computer Science, 320(1):123–134, 2004.

[18] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, USA, 1998.

[19] C. Witt. Runtime analysis of the (µ+1) EA on simple pseudo-Boolean
functions. Evolutionary Computation, 14(1):65–86, 2006.

[20] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A
comparative case study and the Strength Pareto approach. IEEE
Transactions on Evolutionary Computation, 3(4):257–271, 1999.

APPENDIX

A. Proof of the Upper Bound in Theorem 2

Let an integer m be equal to n/k. We denote as qi the
number of individuals x ∈ P such that XDIVK(x) = i for
i ∈ [0;m]. We also denote as v the smallest i such that qi > 0 –
that is, the worst ONEMAX fitness in the population. Let W (v)
be the expected value of the number of steps to increase v by
some non-zero amount, or until the search algorithm stops.
One more quantity is Zv(q), for 1 ≤ q ≤ µ, which is the
expected number of steps required for qv = q to eventually
drop below q, probably by visiting states with qv > q and
getting back.

A straightforward upper bound is W (v) ≤
∑µ
q=1 Zv(q) for

v < m−1, and W (m−1) ≤ Zm−1(µ). The latter is different
because we require only one individual, and not the whole
population, to reach the optimum. The total expected running
time, as a function of n and k, can be bounded as:

T (n, k) ≤
m−1∑
v=0

W (v) ≤
m−2∑
v=0

µ−1∑
q=1

Zv(q) +

m−1∑
v=0

Zv(µ).

The double sum corresponds to the phases of the optimiza-
tion when there are at least two different values of XDIVK in
the population, while the single sum corresponds to the phases

when all individuals in the population have the same XDIVK
value, i.e., when the entire population is located on the same
plateau. We estimate these sums separately.

1) The Case of Different XdivK Values: In this part we
estimate the value of Zv(q), 0 < q < µ, and the corresponding
sum in the expression for the running time. The case of q < µ
corresponds to the situation when there are q individuals with
the XDIVK value of v, and µ− q > 0 individuals with greater
XDIVK values.

On every step, an individual is selected at random, then
its offspring is added to the population, after that, survival
selection is performed. So there are two possible cases:

1) If an individual x with XDIVK(x) = v is selected, which
happens with probability q

µ , then at most q individuals
with the XDIVK value of v will remain in the population
after survival selection.

2) Otherwise, an individual x with XDIVK(x) > v is
selected, which happens with probability µ−q

µ . Its off-
spring may have the XDIVK value of v with the proba-
bility of at most (v+1)k

n , in this case, q individuals with
the XDIVK value of v will remain in the population.
Otherwise, the number of such individuals will be q−1.

This constitutes the following estimation for Zv(q):

Zv(q) ≤ 1 +
q

µ
Zv(q) +

µ− q
µ

(v + 1)k

n
Zv(q);

Zv(q) ≤
nµ

(n− (v + 1)k)(µ− q)
.

The corresponding sum in the expression for the running
time is thus at most:
m−2∑
v=0

µ−1∑
q=1

Zv(q) ≤
m−2∑
v=0

µ−1∑
q=1

nµ

(n− (v + 1)k)(µ− q)

=
nµ

k

(
m−2∑
v=0

1

m− (v + 1)

)(
µ−1∑
q=1

1

µ− q

)
≤ mµ(1 + logm)(1 + log µ)

< nµ(1 + log n)(1 + log µ).

2) The Case of Equal XdivK Values: In this part we
estimate the value of Zv(µ), which corresponds to the situation
when all individuals in the population share the same value of
XDIVK.

Denote the maximum ONEMAX value in the population as
ξ. We denote as Xv(j) the expected number of steps required
for ξ to eventually become greater than vk + j, where 0 ≤
j < k, provided that currently ξ = vk+j. Using this notation,
we can prove an upper bound of the following form: Zv(µ) ≤∑k−1
j=0 Xv(j). Indeed, when the best individual acquires the

ONEMAX value of vk+ k, it also increases its XDIVK value.
We continue by estimating Xv(j). Two cases have to be

considered: the case 0 ≤ j < µ and the case µ ≤ j < k.
Consider the first case. If a best individual (the one with

the ONEMAX value of ξ) is chosen for reproduction, which
happens with the probability of at least 1/µ, then ξ will
be increased with the probability of 1 − ξ/n. Otherwise, an

offspring with a worse ONEMAX fitness appears. In this case,
either the offspring has a worse value of XDIVK, so will not
survive selection, or there is a duplicate in the population,
so one of the duplicates will be removed. In any of the latter
cases, at least one of the best individuals survive, so ξ remains
the same. The overall probability of increasing ξ is at least
(1− ξ/n)/µ, so:

Xv(j) ≤
µ

1− ξ
n

=
nµ

n− (vk + j)
, 0 ≤ j < µ.

Consider the second case, µ ≤ j < k. We always consider
the worst case when there is only one individual with the best
ONEMAX value, since its deletion decreases ξ. There are two
cases:

1) If the best individual is selected for reproduction (which
happens with probability 1/µ), the following happens:
• With probability ξ

n , one of the one-bits flips. Then
with probability 1

µ+1 , the best individual is re-
moved, and its child becomes the best: ξ ← ξ − 1;
otherwise, the best individual remains the same.

• With probability n−ξ
n , one of the zero-bits flips. If

the child is subsequently removed, which happens
with probability 1

µ+1 , the parent remains the best,
otherwise the child takes over and ξ ← ξ + 1.

2) If some other individual is selected for reproduction
(with probability of 1 − 1/µ), with probability 1

µ+1 ,
the best individual is removed, and in the worst case
ξ ← vk. Alternatively (with probability µ

µ+1), the best
individual remains intact.

We can put a recursive upper bound as follows:

Xv(j) ≤ 1 +
vk + j

µn

(
Xv(j − 1) +Xv(j)

µ+ 1
+
µ ·Xv(j)

µ+ 1

)
+
n− (vk + j)

µn

1

µ+ 1
Xv(j)

+
µ− 1

µ

(
1

µ+ 1

j∑
i=0

Xv(i) +
µ

µ+ 1
Xv(j)

)

= 1 +
µ− 1

µ(µ+ 1)

j−1∑
i=0

Xv(i) +
vk + j

µ(µ+ 1)n
Xv(j − 1)

+

(
1 +

1

µ

n− (vk + j)

n

−µ
µ+ 1

)
Xv(j)

After putting all Xv(j) instances together, we get that:

Xv(j) ≤
(µ+ 1)n

n− (vk + j)

(
1 +

µ− 1

µ(µ+ 1)

j−1∑
i=0

Xv(i)

+
vk + j

µ(µ+ 1)n
Xv(j − 1)

)
≤ (µ+ 1)n

n− (vk + j)

(
1 +

1

µ+ 1

j−1∑
i=0

Xv(i)

)

≤ 2nµ

n− (vk + j)
+

n

n− (vk + j)

j−1∑
i=0

Xv(i). (1)

Now we prove the following lemma:
Lemma 1: The upper bound on Xv(j) for µ ≤ j < k is:

Xv(j) ≤
n

n− (vk + j)

2µ+

j−1∑
i=µ

2nµ (1 + n)
j−i−1

n− (vk + j)

+ (1 + n)
j−µ

µ−1∑
i=0

Xv(i)

)
.

Proof: We prove this lemma by induction in a more
general form, depending on the parameter τ , µ ≤ τ ≤ j:

Xv(j) ≤
n

n− (vk + j)

(
2µ+

j−1∑
i=τ

2nµ (1 + n)
j−i−1

n− (vk + j)

+ (1 + n)
j−τ

τ−1∑
i=0

Xv(i)

)
.

The induction base is (1), which is the inequation above for
τ = j, and the statement to be proven holds for τ = µ. The
induction step is proven by expanding Xv(τ − 1) using (1):

τ−1∑
i=0

Xv(i) ≤
τ−2∑
i=0

Xv(i) +

(
2nµ

n− (vk + τ − 1)

+
n

n− (vk + τ − 1)

τ−2∑
i=0

Xv(i)

)

≤ 2nµ

n− (vk + j)
+ (1 + n)

τ−2∑
i=0

Xv(i),

where the first addend goes to the second addend of the sum
in the induction statement, and the second addend forms the
new third addend of this sum.

Using the first case results (Xv(j) ≤ nµ
n−(vk+j) , 0 ≤ j < µ),

we get that:

Xv(j) ≤
n ·
(

2µ+
∑j−1
i=µ

2nµ(1+n)j−i−1

n−(vk+j)

)
n− (vk + j)

+
n ·
(

(1 + n)j−µ
∑µ−1
i=0 Xv(i)

)
n− (vk + j)

≤
n ·
(

2nµ+ 2nµ
∑j−1
i=µ(1 + n)j−i−1

)
(n− (vk + j))2

+
n ·
(
(1 + n)j−µnµ2

)
(n− (vk + j))2

=
n ·
(

2nµ+ 2nµ (1+n)j−µ−1
n + (1 + n)j−µnµ2

)
(n− (vk + j))2

≤
n ·
(
2nµ(1 + n)j−µ + nµ2(1 + n)j−µ

)
(n− (vk + j))2

≤ (1 + n)j−µn2(1 + µ)2

(n− (vk + j))2
.

Finally, we estimate Zv(µ) as follows:

Zv(µ) ≤
k−1∑
j=0

Xv(j) ≤
µ−1∑
j=0

nµ

n− (vk + j)

+
n2(1 + µ)2

(n− (vk + k − 1))2

k−1∑
j=µ

(1 + n)j−µ

<
nµ2

n− (vk + µ− 1)
+
n2(1 + µ)2(1 + n)k−µ

n(n− (vk + k − 1))2
.

The sum of Zv(µ) is thus at most:

m−1∑
v=0

Zv(µ) <

m−1∑
v=0

nµ2

n− (vk + µ− 1)

+

m−1∑
v=0

n2(1 + µ)2(1 + n)k−µ

n(n− (vk + k − 1))2

< nµ2(lnn+ 1) +

m−1∑
v=0

n2(1 + µ)2(1 + n)k−µ

n(n− (vk + k − 1))2

< nµ2(lnn+ 1) +
n2(1 + µ)2(1 + n)k−µ

n
· π

2

6
= O(µ2nk−µ+1),

which determines the running time of the algorithm.

B. Proof of the Lower Bound in Theorem 2

In this section, we prove the lower bound for the running
time of (µ+1)-DR-EA, when the problem size is n, the target
function is XDIVK with the plateau parameter k, the auxiliary
function is ONEMAX, and single-bit flip mutation is used.

It is clear that the best possible algorithm state among those
which do not contain an individual with an optimum XDIVK
value is the state with all individuals having the XDIVK
value of n/k − 1. The elitist selection ensures that, when the
algorithm starts from such a state, no individual with XDIVK
value less than n/k − 1 will ever survive. In this section we
describe the algorithm state as 〈u, v〉 which means that the
maximum ONEMAX value in the population is n−k+u, and
exactly v individuals have this value. By E〈u, v〉 we denote the
expected running time for the algorithm residing in state 〈u, v〉
to improve the best ONEMAX value in the population (and to
have it survived). If T (n, k) is the expected running time of
the algorithm, then obviously T (n, k) ≥ minµv=1E〈k − 1, v〉.

We derive lower bounds for E〈u, v〉 for all possible com-
binations of u and v. For states 〈u, v〉 where 0 ≤ u < µ, we
simply put E〈u, v〉 ≥ µ

v
n
k−u as it is the minimum expected

number of attempts to leave any state 〈u, v〉. For µ ≤ u < k,
we prove the lower bounds below.

In the following, we use the shortcut E〈u, 0〉 = E〈u, 1〉+
minµv=1E〈u− 1, v〉, which means that if all individuals with
ONEMAX value greater than or equal to u disappear, the level
u has to be conquered again. We also denote as [u = k − 1]
the function of u and k which equals one if u = k− 1 and is
zero otherwise. Consider two cases for the state 〈u, v〉:

1) A best individual is selected (with probability v
µ). Then:

• With probability k−u
n , a zero-bit is flipped. If u =

k − 1, the new individual is the optimum, so we
may safely think that this individual survives, and
the new state is 〈u + 1, 1〉. If u < k − 1, the
new individual survives with probability µ

µ+1 , so
the overall survival probability can be written as
µ+[u=k−1]

µ+1 . If the new individual does not survive,
the state remains 〈u, v〉.

• With probability n−k+u
n , a one-bit is flipped. Then,

if one of the best individuals dies (with probability
v

µ+1), the new state is 〈u, v−1〉, otherwise the state
remains 〈u, v〉.

2) An individual which is not the best is selected (with
probability µ−v

µ). Then:

• With probability at most k
n , a zero-bit is flipped.

The new individual may become one of the best
individuals. With probability at most µ−v

µ+1 , all best
individuals, including the new one, survive, and
the new state is 〈u, v + 1〉. Otherwise, at most
v individuals remain at the level u, and the state
remains 〈u, v〉. Here, we optimistically set to zero
the probability of decreasing the number of best
individuals, which is possible if the new individual
is not one of the best.

• With probability at least n−k
n , a one-bit is flipped.

Then, with probability v
µ+1 one of the best individ-

uals dies, and the new state is 〈u, v−1〉. Otherwise,
the state remains 〈u, v〉.

Putting things together, in the best case the probabilities
for new states are: v(k−u)(µ+[u=k−1])

nµ(µ+1) = PA
nµ(µ+1) for the state

〈u + 1, 1〉, (µ−v)2k
nµ(µ+1) = PB

nµ(µ+1) for the state 〈u, v + 1〉 and
v2(n−k+u)+v(µ−v)(n−k)

nµ(µ+1) = v(uv+nµ−kµ)
nµ(µ+1) = PC

nµ(µ+1) for the
state 〈u, v − 1〉. So the lower bound on E〈u, v〉 is:

E〈u, v〉 ≥
1 + PB

nµ(µ+1)E〈u, v + 1〉+ PC
nµ(µ+1)E〈u, v − 1〉

PA+PB+PC
nµ(µ+1)

≥ PBE〈u, v + 1〉+ PCE〈u, v − 1〉
PA + PB + PC

≥ v(uv + nµ− kµ)E〈u, v − 1〉
PA + PB + PC

≥ vµ(n− k)E〈u, v − 1〉
vµ(n− k) + kµ(µ+ [u = k − 1])

=
v(n− k)E〈u, v − 1〉

v(n− k) + k(µ+ [u = k − 1])
.

For v = 1, we substitute the shortcut E〈u, 0〉 by its value
E〈u, 1〉+ minµv=1E〈u− 1, v〉, which yields:

E〈u, 1〉 ≥ (n− k)(E〈u, 1〉+ minµv=1E〈u− 1, v〉)
(n− k) + k(µ+ [u = k − 1])

E〈u, 1〉 ≥ (n− k) minµv=1E〈u− 1, v〉

((n− k) + k(µ+ [u = k − 1]))
(

1− n−k
(n−k)+k(µ+[u=k−1])

)

=
n− k

k(µ+ [u = k − 1])

µ

min
v=1

E〈u− 1, v〉.

We denote v(n−k)
v(n−k)+kµ as δ(v) and v(n−k)

v(n−k)+k(µ+1) as δ′(v).
It is easy to see that for all v, 1 ≤ v < µ, δ′(v) < δ(v) < 1.
Now, using that E〈u, v〉 ≥ µ

v
n
k−u for 0 ≤ u < µ and all v,

we can state that:

E〈µ, 1〉 ≥ n− k
kµ

µ

µ

n

k − µ+ 1
=
n− k
kµ

n

k − µ+ 1

E〈µ, v〉 ≥
v∏
i=2

δ(i)
n− k
kµ

n

k − µ+ 1

E〈µ, µ〉 ≥
µ∏
i=2

δ(i)
n− k
kµ

n

k − µ+ 1
.

As for E〈µ, v〉 the lower bound gets smaller as v grows, it
holds that:

E〈µ+ 1, 1〉 ≥ n− k
kµ

µ∏
i=2

δ(i)
n− k
kµ

n

k − µ+ 1
,

so, subsequently, we may show similarly that:

E〈u, µ〉 ≥
(

n(n− k)

kµ(k − µ+ 1)

)
×

(
n− k
kµ

µ∏
i=2

δ(i)

)u−µ+1

T (n, k) ≥ E〈k − 1, µ〉 ≥
(

n(n− k)

kµ(k − µ+ 1)

)
×

(
n− k
k(µ+ 1)

µ∏
i=2

δ′(i)

)
×

(
n− k
kµ

µ∏
i=2

δ(i)

)k−µ−1

The only remaining thing is to estimate
∏µ
i=2 δ(i) and

the same product for δ′(i) as well. For this we have (using
Stirling’s formula):

µ∏
i=2

δ(i) =

µ∏
i=2

i(n− k)

i(n− k) + kµ

≥
µ∏
i=2

i(n− k)

nµ
= µ!

(
n− k
nµ

)µ−1
∼
√

2πµ ·
(µ
e

)µ
·
(
n− k
nµ

)µ−1
≥
√

2πµ · µ

eµ2µ−1
≥
√

6πµ3

6µ
.

As δ′(i) demonstrate the same asymptotic behavior, we
conclude that:

T (n, k) ≥ n(n− k)k−µ

kk−µ+1µk−µ(µ+ 1)(k − µ+ 1)

(√
6πµ3

6µ

)k−µ

= Ω

((
n

kµ

)k−µ+1 √
6πµ3(k−u)/2

k6µ(k−µ)

)

= Ω

((
n
√
µ

6k

)k−µ+1
1

6µ−1k ·
√
µ3

)
.

