
Evolving Random Graph Generators:
A Case for Increased Algorithmic Primitive Granularity

Aaron S. Pope∗†, Daniel R. Tauritz∗ and Alexander D. Kent†
∗ Department of Computer Science,

Missouri University of Science and Technology,
Rolla, Missouri 65409

† Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Email: aaron.pope@mst.edu, dtauritz@acm.org and alex@lanl.gov

Abstract—Random graph generation techniques provide an
invaluable tool for studying graph related concepts. Unfor-
tunately, traditional random graph models tend to produce
artificial representations of real-world phenomenon. Manu-
ally developing customized random graph models for every
application would require an unreasonable amount of time
and effort. In this work, a platform is developed to automate
the production of random graph generators that are tailored
to specific applications. Elements of existing random graph
generation techniques are used to create a set of graph-based
primitive operations. A hyper-heuristic approach is employed
that uses genetic programming to automatically construct
random graph generators from this set of operations. This
work improves upon similar research by increasing the level
of algorithmic sophistication possible with evolved solutions,
allowing more accurate modeling of subtle graph characteris-
tics. The versatility of this approach is tested against existing
methods and experimental results demonstrate the potential
to outperform conventional and state of the art techniques for
specific applications.

1. Introduction

Graphs are a powerful tool for modeling a wide variety
of concepts. Social, computer, transportation or communi-
cation networks are common examples. Others include in-
frastructure applications such as power or water distribution
systems. The transmission patterns of contagious diseases
are also commonly modeled using graphs. Because these
concepts translate so well to graphs, many application spe-
cific algorithms are designed to work directly with the graph
representations. For example, computer networks use graph
theory to avoid problematic cycles in traffic routing [1].

When new graph algorithms are developed, they typi-
cally need to be tested on a variety of graphs to demonstrate
versatility and scalability. For some applications, informa-
tion is readily available to create graphs which model real-
world data, such as actual computer networks. In other
application domains, this data is in limited supply. For
example, deploying wireless sensors to build a graph model

can be infeasibly expensive. In these situations, researchers
have commonly turned to random graph generation to test
their graph algorithms.

However, not all random graph generation techniques
are suitable for all applications. Certain types of random
graphs are better at naturally representing specific con-
cepts. For instance, wireless sensor network deployment is
typically modeled with random geometric graphs, because
this random graph model captures the physical proximity
requirement needed for short-range communication. When
generating random graphs for testing the performance of a
new graph algorithm, it is important to select an appropriate
random graph model. Whether or not a partitioning algo-
rithm can find high-quality partitions of random geometric
graphs is of little importance if the algorithm is intended to
be applied to enterprise computer networks, for example.

The selection of a random graph model for a specific
application is typically done by comparing a few characteris-
tics of the graph, such as degree distribution or edge density.
These coarse selection methods have the potential to miss
some of the more subtle characteristics of the concepts to
be modeled. For instance, a preferential attachment random
graph model produces the power-law degree distribution
observed in social networks, but the process might not cap-
ture the common presence of certain community structures.
When less obvious graph characteristics are not considered,
the random graphs produced are likely to be artificial repre-
sentations of the actual concept. For this reason, random
graph generators that are specifically tailored to certain
applications can improve the accuracy and appropriateness
of these graphs as conceptual models.

Manually developing an application specific random
graph model is a complicated process, even when the model
only needs to capture a single characteristic, such as an
arbitrary degree distribution [2]. Hyper-heuristics employing
genetic programming (GP) have been used in the past to
automate the process of developing novel algorithms that
are customized to an application [3]. This work leverages
the power of GP to create new random graph generation
algorithms that are capable of capturing the more subtle
graph characteristics often missed by traditional techniques.

Figure 1. Erdös-Rényi random graph for n = 20 with p = 0.2.

2. Background

Random graphs and their applications have been studied
extensively in previous research. Traditional random graphs
are usually described in terms of the mathematical model
used to generate them; two of the most common random
graph models are Erdös-Rényi and Barabási-Albert.

2.1. Erdös-Rényi Random Graph Model

The Erdös-Rényi random graph model, usually referred
to as G(n, p), is one of the most basic models, but also one
of the most studied [4], [5]. Each of the possible

(
n
2

)
edges is

included in the graph with probability p. See Algorithm 1 for
an implementation of the Erdös-Rényi random graph model,
and Figure 1 for an example graph it generated.

Algorithm 1 Erdös-Rényi random graph
1: procedure G(n, p)
2: G← newGraph()
3: for i ∈ 1 . . . n do
4: u← newV ertex()
5: for v ∈ G.vertices do
6: if random() < p then
7: G.addEdge(u, v)
8: G.addV ertex(u)
9: return G

This simple random graph model has proven useful for
demonstrating a variety of graph theoretic properties [6].
Unfortunately, it has also been shown to poorly represent
real-world systems such as computer networks due to the
vertex degree values produced, which follow a Poisson
distribution [7], [8].

2.2. Barabási-Albert Random Graph Model

The Barabási-Albert model [9] improves upon the unre-
alistic degree distribution of the Erdös-Rényi model. Instead
of using a constant probability for including each edge,
each new vertex is connected to c existing vertices that
are chosen with probability proportional to their degree. As

Figure 2. Barabási-Albert random graph with n = 20 and c = 2.

Figure 3. Comparison of degree distributions for Erdös-Rényi (n = 20,
p = 0.2) and Barabási-Albert (n = 20, c = 2) random graph models.

a result, high-degree vertices are connected to more often.
This phenomenon is referred to as cumulative advantage or
preferential attachment and produces a power-law degree
distribution that is common in graphs which model real-
world networks [10], [11]. The Barabási-Albert model is
implemented in Algorithm 2 and Figure 2 shows a random
graph created using the Barabási-Albert model.

Algorithm 2 Barabási-Albert random graph
1: procedure G(n, c)
2: G← newGraph()
3: for i ∈ 1 . . . n do
4: u← newV ertex()
5: for j ∈ 1 . . . c do
6: v ← randomV ertexByDegree(G)
7: G.addEdge(u, v)
8: G.addV ertex(u)
9: return G

Figure 3 compares the degree distribution of Erdös-
Rényi and Barabási-Albert random graphs. Although graphs
produced by the Barabási-Albert model are similar to real-
world networks in terms of their degree distribution, the
process still resembles Erdös-Rényi in that it places no

limitations on which pairs of vertices can be connected.
Many real-world networks have restrictions on connections
that cannot be captured by the Erdös-Rényi and Barabási-
Albert models. For instance, social networks are often mod-
eled using graphs where vertices represent people and edges
correspond to a relationship between two people. Although
it is possible for any two people to form a relationship
(especially in the case of online social networks), it is
more likely for relationships to form between individuals
if they are physically nearby, or share mutual contacts.
Unfortunately, traditional random graph models lack the
complexity needed to reflect such considerations.

3. Related Work

Instead of producing a single random graph with the
desired properties, this research aims to provide random
graph generation heuristics. One possible solution would be
to employ heuristic selection techniques. Machine learning
has been used to automate the process of selecting the best
heuristic for a problem from a set of available heuristics with
high accuracy [12]. Unfortunately, this approach is limited
by the quality and variety of the set of predefined heuristics;
an optimal solution to a given problem cannot be selected
if it is not already present in the heuristic set. Techniques
that are capable of generating entirely new heuristics help
avoid this limitation.

A heuristic that searches to find or create new heuristics
is known as a hyper-heuristic [3], [13]. Unlike metaheuris-
tics [14], which search within the space of possible problem
solutions, hyper-heuristics search within the space of possi-
ble problem heuristics. This means that instead of searching
for a direct solution to a specific problem, hyper-heuristics
can select, create, or adapt a heuristic that efficiently finds
a solution to the specified problem.

Hyper-heuristics most commonly employ genetic pro-
gramming (GP) to search a problem-specific space of algo-
rithmic primitives. GP is a field of evolutionary computation,
which uses a biologically inspired process to evolve a pop-
ulation of solutions to a given problem. In GP, the solutions
being evolved take the form of programs or heuristics. One
common method of representing these program solutions is
through the use of parse trees [15].

Previous work has demonstrated the potential for GP to
evolve custom random graph generation algorithms. Bailey
et al. evolved new random graph generation algorithms that
mimic the output of traditional random graph models [16].
Harrison implemented a similar approach and studied the
use of various graph similarity metrics during solution eval-
uation [17]. Both of these works assume a common structure
for the random graph generator solutions, which can be
seen in Algorithm 3. Three components of this process
are controlled by the evolved parse tree solutions. Graph
initialization (line 3) determines if the graph is initially
empty, or contains some basic topology, such as a ring.
Inside the main loop body, the graph is “grown” by adding
new vertices one at a time. The edge addition step (line 6)
determines which vertices, if any, a new vertex is connected

to as it is added. During finalization (line 8), existing edges
can be removed or rewired at random.

Algorithm 3 Basic structure of a random graph generator
1: procedure RANDOMGRAPH(n)
2: G← newGraph()
3: initializeGraph(G)
4: for i ∈ 1 . . . n do // “grow” loop
5: u← newV ertex()
6: addEdges(u)
7: G.addV ertex(u)
8: finalizeGraph(G)
9: return G

This common structure is obviously inspired by tradi-
tional random graph generation techniques, such as those
discussed in Section 2. This representation lends itself well
to reproducing traditional models, as well as new models
that are similar in structure. However, this restriction on the
structure limits the search space of possible random graph
generating algorithms. For that reason, evolved solutions
suffer some of the same drawbacks as the traditional models
when attempting to accurately simulate certain types of
networks.

This work aims to improve on previous research by
relaxing the restrictions on the basic algorithm structure.
A more expansive set of operations are made available to
the GP when constructing graph generation algorithms. The
new operation set breaks down some of the constructs used
in previous work into lower level functionality. For example,
the basic “grow” loop is replaced by more general for and
while loop operators, as well as basic if and if/else con-
ditionals. A larger set of primitive operations will increase
the search space of possible algorithm solutions. Previous
work has demonstrated that using a larger set of primitive
operations can increase the evolution time required to reach
convergence, but also improve the overall final solution
quality [18].

4. Methodology

In order to accommodate a wide variety of possible
applications, some of which might involve multiple com-
peting measures of quality, a multi-objective optimization
approach is employed. The nondominated sorting genetic
algorithm II (NSGA-II) [19], which promotes population
diversity without a significant increase in complexity, is
used to evolve a population of random graph generating
algorithms.

Representation: Solution algorithms are represented us-
ing strongly-typed GP parse trees [20]. While it has been
demonstrated that the choice of representation can impact
the overall performance of the GP [21], the choice of
representation was made to isolate the effect of changing
the primitive operation set when comparing against previous
work.

Initialization: An initial population of parse tree solu-
tions is randomly constructed from the available input and

TABLE 1. NSGA-II AND GP PARAMETER VALUES

Parameter Value
Population size and offspring per generation 400

Iterations per evaluation 10
Minimum initial parse tree height 3
Maximum initial parse tree height 5

Recombination probability 65%
Mutation probability 35%

operation nodes. A configurable maximum height parameter
is used to limit the size of the initial parse tree solutions.
Ramped half-and-half solution generation is used, which
produces full parse trees of maximum height for half the
population and variable height trees (up to the maximum)
for the remainder.

Evaluation: Solutions are evaluated in terms of multiple
objectives. The size of the parse tree of a solution is used
as a minimization objective to prevent the trees from grow-
ing to impractical sizes during evolution. Other objectives
used depend on the application, but typically evaluate some
metric of the graphs produced by the solution. For example,
one objective could be how closely the generated graphs
match the degree distribution of the graphs the generator is
meant to reproduce. Any objective that evaluates the graphs
produced by a solution are calculated by generating multiple
graphs and taking the average objective value.

Parent Selection: Standard NSGA-II parent selection is
used, which consists of binary tournaments that favor solu-
tions in less dominated Pareto fronts. Ties are broken using
NSGA-II’s solution distance metric to encourage population
diversity.

Recombination: Due to the destructive nature of parse
tree variation operators, offspring are generated using either
recombination or mutation, not both. If a pair of parent
solutions are selected for recombination, two offspring are
produced using random subtree crossover.

Mutation: If recombination is not selected, an offspring
is created by cloning a single parent, then performing ran-
dom subtree replacement.

Survival Selection: NSGA-II’s elitist survival selection
is used. This approach selects solutions from the least
dominated Pareto fronts. Solution diversity is encouraged by
using the distance to other solutions in the objective space
to break ties for partial Pareto fronts.

Parameters: The parameters for NSGA-II and GP ini-
tialization can be seen in Table 1. These values were auto-
matically tuned using a random restart hill climbing search.

Primitive Operation Set Solution individuals are con-
structed from the set of terminal and operation nodes shown
in Table 2. Except where individually noted, all operation
nodes have at least one child operation node, allowing for
variable length sequences of operations. The available values
for prob from integer, integer constant and prob constant
were chosen to be able to recreate or expand upon the
functionality of previous work [16].

5. Experiment

The flexibility of the implementation is tested by evolv-
ing random graph generators for two example applications.
The first application tests the ability of the GP to evolve
algorithms which mimic traditional random graph genera-
tion techniques. Another application targets a random graph
process that generates identifiable communities of well con-
nected subgraphs.

5.1. Traditional Random Graph Models

Random graph generator solutions are evolved to recre-
ate the behavior of two traditional techniques: Erdös-Rényi
(n = 100, p = 0.05) and Barabási-Albert (n = 100, c = 2).
The model parameter values were selected to produce small,
sparse graphs, since a large number of these graphs will
need to be generated throughout the course of evolution.
Solutions are evaluated by how similar the graphs they pro-
duce are to graphs generated by the target method. In [17],
Harrison demonstrated that when evaluating graph similarity
for purposes of guiding evolution, there are diminishing
returns in terms of solution quality as the number of different
metrics used is increased. Comparing the set of degree,
betweenness [22] and PageRank [23] centrality distributions
was found to strike a balance between evaluation complexity
and solution quality. For this reason, these three metrics
will be used as competing objectives. For each distribution,
the objective value is set to the test statistic returned by a
Kolmogorov-Smirnov (KS) test comparing the distributions
produced by both methods. This method has been used to
demonstrate similarity in distributions before [17], and pro-
duces a natural minimization objective as the more similar
the distributions, the lower the test statistic will be.

For comparison, a GP developed in previous work is also
used to evolve generators targeting this model. See [16] for
the implementation details of that approach. Both algorithms
are run until convergence is detected by ten consecutive
generations with no change to the non-dominated Pareto
front, as described in [24]. In order to select a representative
solution for comparison, the objective values of the final
populations are normalized and summed for each solution.
Since all objectives are minimization, the solution with the
lowest objective value sum is selected. The final solution
chosen from each method is used to generate 100 random
graphs, and the objective values of these graphs are com-
pared using Wilcoxon rank-sum tests at a 95% significance
level.

5.2. Random Community Graphs

Algorithm 4 describes a process of creating a random
graph with k communities. Vertices within the same com-
munity are connected with probability p1. Vertices from
different communities are connected with probability p2. If
p1 � p2, edges will be more likely within communities,
making them tightly connected. Figure 4 shows an example
of a graph generated with the random community model

TABLE 2. PRIMITIVE OPERATION SET

Operation Name Description
root Initializes empty graph, executes child operations, returns final graph

for index range Executes subtree a number of times equal to an integer input value
for node/edge loop Executes subtree once for each node (vertex) or edge in input list

do while loop Executes subtree repeatedly until input conditional is false
if(then) Branching based on an input conditional

noop “no-op”, terminates sequence of operations
create ring/clique/star Add edges incident to an input list of nodes to create a ring, clique, or star topology

connect to nodes with prob As create star, but add edges according to an input probability
add edges with prob As create clique, but add edges according to an input probability

remove/rewire edges(with prob) Removes or rewires input edges from the graph (optionally according to an input probability)
add pairwise edges(with prob) Add pairwise edges connecting two input node lists (optionally according to an input probability)

create triangles(with prob) As add pairwise edges, but for triplets of nodes taken from three input lists
add stub Add node to a queue of nodes awaiting edges

connect stub Pops node from queue of nodes awaiting edges, connects to another input node
get all nodes/edges List of all nodes or edges

get incident nodes/edges Nodes incident to an input list of edges, or edges incident to an input list of nodes
get internal edges Returns the list of edges whose endpoints are both within an input list of nodes

list intersection/union Intersection or union of two lists
list filter with prob Randomly filters a list according to an input probability

list portion First bl ∗ pc elements of the input list of length l for probability p
list shuffle Returns randomly re-ordered input list

sort nodes/edges by map Sorts a list of nodes or edges using a (node : value) or (edge : value) mapping
node degree/betweenness/closeness map Returns a mapping of node centrality values for an input node list
edge degree/betweenness/closeness map Returns a mapping of centrality values for the incident nodes of an input edge list

average/max degree Current average or maximum degree
node/edge count Current number of nodes or edges present

true/false constant Constant boolean terminal
true with prob True or false according to a probability

bool and/or Logical conjunction or disjunction of inputs
less than True if the first input numeric is less than the second input, false otherwise

math add/subtract/multiply/divide/modulus Standard math operations (note: division by zero instead divides by 10−10)
prob add/subtract/multiply/divide/modulus Same as previous, but clamps output to [0, 1]

prob from integer Returns probability from [0.01, 0.02, 0.025, 0.05, 0.1, 0.2, 0.3, . . . , 1.0] selected using input integer
prob from float Floating point input clamped to [0, 1]
integer constant Constant chosen randomly from {0, 1, 2, . . . 9}

prob constant Constant chosen randomly from {0.001, 0.01, 0.02, 0.025, 0.05, 0.1, 0.2, 0.3, . . . , 1.0}

using a force based layout. Both random graph GP imple-
mentations are run targeting this graph model to determine
if evolution can reproduce the underlying community struc-
ture.

Algorithm 4 Random community graph generator
1: procedure COMMUNITYGRAPH(n, k, p1, p2)
2: G← newGraph()
3: for i ∈ 1 . . . n do
4: u← newV ertex()
5: G.addV ertex(u)
6: for i ∈ 1 . . . n do
7: u← getV ertex(i)
8: for j ∈ i+ 1 . . . n do
9: if (i mod k) == (j mod k) then

10: if random() < p1 then
11: G.addEdge(i, j)
12: else
13: if random() < p2 then
14: G.addEdge(i, j)
15: return G

Figure 4. Graph generated using Algorithm 4 with n = 200, k = 4,
p1 = 0.2, and p2 = 0.005.

6. Results

This section shows some representative experimental
results and associated statistical tests. The next section
discusses their implications.

TABLE 3. ER OBJECTIVE VALUE COMPARISON

Low-GP High-GP
Metric Mean σ Comparison Mean σ

Degree 0.101 0.048 = 0.108 0.047
Betweenness 0.104 0.031 = 0.105 0.033

PageRank 0.110 0.032 = 0.112 0.029

TABLE 4. BA OBJECTIVE VALUE COMPARISON

Low-GP High-GP
Metric Mean σ Comparison Mean σ

Degree 0.058 0.025 = 0.060 0.021
Betweenness 0.127 0.049 = 0.127 0.043

PageRank 0.112 0.037 < 0.130 0.044

6.1. Reproducing Erdös-Rényi

Figures 5a and 5b show the parse trees of the best
solutions produced by the low-level and high-level GP ap-
proaches, respectively. Figure 6 shows the centrality distri-
bution comparisons for graphs produced using the Erdös-
Rényi random graph model (Actual), the high-level GP
from previous research (High-GP), and the low-level GP
implemented in this work (Low-GP). In each case, both
methods are able to closely mimic the required distribution.

The results of the statistical comparison are shown in
Table 3, with ‘<’, ‘=’, and ‘>’ indicating better, equiv-
alent, and worse performance, respectively. For all three
objectives, the performance difference between the solutions
produced by each GP method is statistically insignificant.

6.2. Reproducing Barabási-Albert

For brevity, the parse trees and distribution comparisons
produced for the Barabási-Albert random graph model ap-
plication are omitted, but the statistical comparison of the
objective values achieved for the two GP implementations
is shown in Table 4. These results indicate that the low-level
GP statistically outperforms the high-level GP in terms of
PageRank distribution.

6.3. Reproducing Random Community

Table 5 indicates that the solution produced by the low-
level GP statistically outperforms the solution produced by
the high-level GP in terms of all three objective values.
The reason for this discrepancy in performance is obvious
when examining sample graphs produced by each solution.
Figure 7a shows a graph produced by the high-level GP
solution, while Figure 7b shows one created by the low-level
GP solution. The low-level implementation clearly does a
better job of capturing the community structures present in
the original model.

7. Discussion

Not only are both GP implementations able to almost
perfectly reproduce the Erdös-Rényi (ER) graph model,

TABLE 5. RANDOM COMMUNITY OBJECTIVE VALUE COMPARISON

Low-GP High-GP
Metric Mean σ Comparison Mean σ

Degree 0.436 0.075 < 0.458 0.055
Betweenness 0.209 0.105 < 0.320 0.126

PageRank 0.127 0.029 < 0.150 0.036

but they both converge quickly on a good set of evolved
solutions. This does not come as much of a surprise, how-
ever, because the ER model is the simplest of the three
applications considered. Although this certainly provides a
proof-of-concept, the particular result is not likely to be of
much use considering how few real-world applications can
be accurately represented using the ER model.

Both GP approaches are able to recreate the behavior
of the Barabási-Albert model reasonably well; however, the
low-level GP solution manages to achieve a more accurate
PageRank distribution. Although in about 90% of the experi-
mental runs, the low and high-level GPs need about the same
number of fitness evaluations to converge on good solutions,
it is worth noting that in the remaining 10% of the cases, the
low-level GP requires almost twice as many evaluations to
converge. This is evidence of the drawback of increasing the
search space with a lower-level implementation. While the
low-level representation allows for a wider range of algo-
rithm possibilities, it also increases the difficulty of finding
any specific algorithm. However, the required a priori time
of the hyper-heuristic is not typically of critical importance,
since this time investment is amortized over repeated uses
of the evolved solutions.

The random community graph model application, on the
other hand, highlights the strengths of the lower-level imple-
mentation. The richer primitive operation set is better able to
capture the underlying community structure of the model,
which is very obvious when comparing graphs produced
by the resulting solutions. This is a promising result for
applications that require a more accurate model than what
can be achieved by simply comparing one or two basic graph
metrics, such as degree distribution. The fixed structure of
the high-level GP approach limits the information it can con-
sider when deciding how to place edges. It is easy to imagine
any number of graph applications where more information is
needed when placing edges. For instance, graphs that model
power grids need to account for geographic proximity when
connecting two devices due to the nature of the physical
properties of the object that the edge represents.

8. Conclusion

Random graph models provide an invaluable resource
in many research domains. Conventionally, a traditional
random graph model is selected to produce graphs which
represent some application specific concept. The selection
process is usually based on a small set of graph similarity
measures, and this process can even be automated using ma-
chine learning techniques. Unfortunately, a selected model

(a) Low-level GP (b) High-level GP

Figure 5. Random graph generators produced by both GP approaches when targeted to reproduce the Erdös-Rényi random graph model.

(a) Degree (b) Betweenness (c) PageRank

Figure 6. Comparison of centrality distributions for Erdös-Rényi random graph model as well as two evolved graph generators.

(a) High-level GP (b) Low-level GP

Figure 7. Graphs generated by both GP solutions trained on random community graphs.

might only be an accurate representation with respect to a
few graph characteristics, leading to artificial graphs. The
model selection process also relies on the set of available
models; if an accurate model is not present in the selection
set, this approach cannot generate a new, high-quality model
tailored to the particular application.

The goal of this research was to address this limitation
by automating the development of accurate random graph
models for new applications. The platform implemented in
this work features a richer set of lower-level primitive oper-
ations than those that have been used in the past, allowing

for more expressive algorithm representation. The increased
flexibility makes it is possible to evolve more sophisticated
algorithms that can truly capture a wider range of graph
characteristics. Experimental results illustrate that the less
restricted representation is capable of capturing more subtle
details of a random graph model than normally possible
with conventional methods. However, this improvement in
modeling accuracy can come at the cost of additional evo-
lution time. This trade-off might not be acceptable for some
applications, but the approach still has potential when the
accuracy of the model is of utmost importance.

9. Future Work

There are several obvious possibilities for continuation
of this work that might further improve the quality of
the random graph generators produced. Some amount of
improvement might be possible with a GP variant that uses
an alternate solution representation, such as a stack-based
GP [21].

The potential of this implementation could be further
demonstrated by applying it to real-world complex network
applications. Possibilities include modeling large scale com-
puter networks, or disease transmission patterns. The more
flexible representation also allows for the possibility of using
this approach to evolve algorithms that alter existing graphs.
With very little modification, this could be used to create
random dynamic graphs in addition to the static applications
already studied.

In this work, as well as previous research, the quality of
random graph generators is measured solely by how much
they resemble graphs taken from other sources. It is worth
noting that this method of evaluation is not strictly required.
Alternative methods of evaluation are possible as long as the
detection of desirable and undesirable graph characteristics
can be implemented as a fitness or objective function. This
would allow for the creation of suitable random graph
generators with absolutely no knowledge of the process used
to create them.

This work demonstrates the potential of evolving graph
related algorithms. Other types of graph algorithms, such
as graph partitioning heuristics, could also benefit from
the same approach. Since random graph models are often
used to test the performance of graph algorithms, it is
possible that the results might be further improved by co-
evolving such graph algorithms along with the random graph
generators used to test them. For example, a competitive
co-evolution strategy could be used to evolve new graph
partitioning algorithms while encouraging random graph
generators that produce graphs that are difficult to partition.
This could be used to develop a collection of highly special-
ized graph partitioning algorithms instead of using general
purpose algorithms off the shelf.

References

[1] R. Perlman, “An Algorithm for Distributed Computation of a Span-
ning Tree in an Extended LAN,” in ACM SIGCOMM Computer
Communication Review, vol. 15, no. 4. ACM, 1985, pp. 44–53.

[2] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, “Random
graphs with arbitrary degree distributions and their applications,”
Phys. Rev. E, vol. 64, p. 026118, Jul 2001. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevE.64.026118

[3] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan,
and R. Qu, “Hyper-heuristics: A survey of the state of the art,” Journal
of the Operational Research Society, vol. 64, no. 12, pp. 1695–1724,
2013.

[4] P. Erdös and A. Rényi, “On Random Graphs, I,” Publicationes
Mathematicae, vol. 6, pp. 290–297, 1959.

[5] ——, “On the Evolution of Random Graphs,” Publ. Math. Inst. Hung.
Acad. Sci, vol. 5, pp. 17–61, 1960.

[6] ——, “On the Strength of Connectedness of a Random Graph,” Acta
Mathematica Hungarica, vol. 12, no. 1-2, pp. 261–267, 1961.

[7] D. J. Watts and S. H. Strogatz, “Collective Dynamics of ‘Small-world’
Networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[8] M. Newman, Networks: An Introduction. New York, NY, USA:
Oxford Univ. Press, 2010.

[9] A.-L. Barabási and R. Albert, “Emergence of Scaling in Random
Networks,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[10] D. J. Price, “Networks of Scientific Papers,” Science, vol. 149, no.
3683, pp. 510–515, 1965.

[11] S. Wasserman, Social network analysis: Methods and applications.
Cambridge university press, 1994, vol. 8.

[12] P. D. Hough and P. J. Williams, “Modern Machine Learning for
Automatic Optimization Algorithm Selection,” in Proceedings of the
INFORMS Artificial Intelligence and Data Mining Workshop, 2006,
pp. 1–6.

[13] E. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, and S. Schulenburg,
Handbook of Metaheuristics. Boston, MA: Springer US, 2003,
ch. Hyper-Heuristics: An Emerging Direction in Modern Search
Technology, pp. 457–474.

[14] L. Bianchi, M. Dorigo, L. M. Gambardella, and W. J. Gutjahr, “A
survey on metaheuristics for stochastic combinatorial optimization,”
Natural Computing: an international journal, vol. 8, no. 2, pp. 239–
287, 2009.

[15] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA, USA: MIT Press,
1992.

[16] A. Bailey, M. Ventresca, and B. Ombuki-Berman, “Genetic Program-
ming for the Automatic Inference of Graph Models for Complex
Networks,” IEEE Transactions on Evolutionary Computation, vol. 18,
no. 3, pp. 405–419, 2014.

[17] K. R. Harrison, “Network Similarity Measures and Automatic Con-
struction of Graph Models using Genetic Programming,” 2014.

[18] M. A. Martin and D. R. Tauritz, “Hyper-Heuristics: A Study On
Increasing Primitive-Space,” in Proceedings of the Companion Pub-
lication of the 2015 Annual Conference on Genetic and Evolutionary
Computation, ser. GECCO Companion ’15, 2015, pp. 1051–1058.

[19] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist
Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[20] D. J. Montana, “Strongly Typed Genetic Programming,” Evol. Com-
put., vol. 3, no. 2, pp. 199–230, Jun. 1995.

[21] S. Harris, T. Bueter, and D. R. Tauritz, “A Comparison of Genetic
Programming Variants for Hyper-Heuristics,” in Proceedings of the
Companion Publication of the 2015 on Genetic and Evolutionary
Computation Conference. ACM, 2015, pp. 1043–1050.

[22] L. C. Freeman, “A Set of Measures of Centrality Based on
Betweenness,” Sociometry, vol. 40, no. 1, pp. 35–41, 1977. [Online].
Available: http://www.jstor.org/stable/3033543

[23] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank
Citation Ranking: Bringing Order to the Web.” Stanford InfoLab,
Technical Report 1999-66, November 1999, previous number = SIDL-
WP-1999-0120.

[24] T. Goel and N. Stander, “A Study on the Convergence of Multiob-
jective Evolutionary Algorithms,” in Preprint submitted to the 13th
AIAA/ISSMO conference on Multidisciplinary Analysis Optimization,
2010, pp. 1–18.

