
Identification of Program Signatures From Cloud
Computing System Telemetry Data

Nicole Nichols, Mark Greaves, William Smith
Pacific Northwest National Laboratory

1100 Dexter Ave N, Suite 400
Seattle, WA 98109

Ryan LaMothe, Gianluca Longoni, Jeremy Teuton
Pacific Northwest National Laboratory

902 Battelle Boulevard
Richland, WA 99352

Abstract—Malicious cloud computing activity can take many
forms, including running unauthorized programs in a virtual
environment. Detection of these malicious activities while preserv-
ing the privacy of the user is an important research challenge.
Prior work has shown the potential viability of using cloud
service billing metrics as a mechanism for proxy identification
of malicious programs. Previously this novel detection method
has been evaluated in a synthetic and isolated computational
environment.

In this paper we demonstrate the ability of billing metrics to
identify programs, in an active cloud computing environment,
including multiple virtual machines running on the same hyper-
visor. The open source cloud computing platform OpenStack, is
used for private cloud management at Pacific Northwest National
Laboratory. OpenStack provides a billing tool (Ceilometer) to
collect system telemetry measurements. We identify four different
programs running on four virtual machines under the same cloud
user account. Programs were identified with up to 95% accuracy.
This accuracy is dependent on the distinctiveness of telemetry
measurements for the specific programs we tested.

Future work will examine the scalability of this approach for a
larger selection of programs to better understand the uniqueness
needed to identify a program. Additionally, future work should
address the separation of signatures when multiple programs are
running on the same virtual machine.

I. INTRODUCTION

According to an article by Neal Leavitt for the IEEE
computer society [1], cloud computing is becoming one of
the fastest growing specialties in information technology.
However, many industry experts have voiced concerns over
the unique security and privacy challenges that occur in large
clouds. A key report by the Cloud Security Alliance describes
the top ten security challenges for this type of infrastructure
[2]. Other key publications provide additional background [3],
[4], [5], [6], [7].

The resonant themes of these papers include:

1) Data security - Breaches of data security can occur
through a variety of mechanisms including theft or loss
due to drive failures and inadequate backup.

2) Nefarious use of cloud services - Cyber criminal activi-
ties take advantage of the anonymity of cloud services,
using them to host spammers, malicious code, botnets,
and phishing websites.

3) Malicious insiders - Employees of cloud providers have
potential access to private customer data. Without ad-

equate monitoring and breach notification policies, this
activity could go undetected.

4) Insufficient isolation of virtual machines - Several attack
methods exploit vulnerabilities between tenant virtual
machines

In the presented research, we look specifically at the prob-
lem of cloud providers detecting malicious programs running
on their cloud. Privacy laws often prevent detailed inspec-
tion of cloud users activity, however several cloud company
executives have noted this as a significant problem for their
businesses [8].

II. PRIOR WORK

In the field of cloud security, there are a few specific
research topics and considerations that inform our approach to
detecting malicious programs running in a cloud environment:

1) Malware detection
2) Intrusion detection
3) System noise and background activity

A. Malware

There is significant prior work in malware detection, both
for cloud computing and for traditional computing infras-
tructure [9], [10], [11]. Regardless of the domain, cloud or
traditional computing, the methods for performing malware
detection can be grouped by similar frameworks. Yuxin et al.
provide a comprehensive interpretation of such a framework
[10]. At the top level, methods are divided into two categories,
signature-based and behavior-based detection methods.

Signature based approaches typically analyze binary in-
structions and use regular expressions or statistical models
of codeword frequency to predict if a program matches the
signatures of known malicious programs. Signature based
methods can be very accurate, but they are confusable, brittle,
and do not generalize well. In the context of the cloud domain,
these methods also require privileged access to memory in
order to make a prediction, which would violate our goal of
privacy preservation for the end-user. Privacy, in the context
of cloud computing, is typically discussed in relation to data
auditing, to ensure the correctness of the data and privacy
preserving techniques do so without direct access to the data
[12].



Behavior based approaches model a program’s behavior, and
behaviors are actions initiated by the program such as opening
a file, writing a log file, changing user permissions, etc. Be-
havior based methods can be refined into three sub-categories:
static behavior detection, dynamic behavior detection, and
heuristic behavior detection. The heuristic based approach,
[9], uses expert-defined rules to classify specific behaviors as
malicious or benign. This can provide some effectiveness for
detecting previously unseen malware, but only for previously
used or specifically foreseen attack behaviors.

Dynamic behavior based methods [13], [14] analyze system
calls for specific execution patterns of the program code. This
approach is typically implemented in a controlled environment
or a cloud virtual machine (VM), to protect the end-user. The
primary drawback is the limited number of test cases it can
execute.

Static behavior based analysis evaluates all possible execu-
tion paths of a program, without actually running the program.
Because of the exhaustive nature, it will be guaranteed to
trigger the malicious actions. However, it is not guaranteed
that malicious program actions will be identified as such, it
is computationally expensive, and feature representation is
difficult. Shabtai et al. [9] and Yuxin et al. [10], provide
additional detail on static methods.

Some aggregate systems combine both signature and be-
havior based methods [11]. Other more recent work utilizes
machine learning techniques to identify anomalies [15], [16]
or combine statistical learning with static and dynamic code
analysis [17]. The research presented in this paper is also a
hybrid, however we present signatures of program behaviors,
rather than binary instructions of the source code. Additionally,
our features are derivatives of actual program behavior, in
order to preserve privacy of VM users.

B. Intrusion Detection

The task of intrusion detection is subtly different from
malware detection, but malware can also be a precursor to
intrusion. Both fall under the umbrella of cloud security and
can have similar techniques, but the underlying actions to be
detected are different. Because of the overlap in methodology
used for intrusion detection it is worth reviewing intrusion
detection, as some of the same techniques can be applied to
malicious program detection.

The work of Modi et al. [18] and Patel et al. [19] provide
comprehensive discussions of types of intrusion techniques as
well as methods for both prevention and detection of these
events. Intrusion prevention is an important aspect of security,
but for the purposes of our discussion, intrusion detection
is more relevant as they also use signature and behavior
based techniques. Some of the intrusion methods are common
between traditional and cloud computing environments. For
example, root attacks and port scanning are common to both,
while hypervisor based attacks are unique to the cloud.

One proposed approach to intrusion detection is virtual
machine introspection [20]. This method leverages the virtual
machine monitor, which has access to all the states and

registers of the virtual machines running in a particular cloud
environment. A set of signature detectors and policy modules
are then used to detect intrusions based on the machine state.

C. System Noise

The noisy neighbor phenomenon is the impact of other
tenants and virtual machines have on each other when residing
on the same hypervisor. This is normally discussed in the
context of system performance when trying to run large scale
high performance (memory or cpu intensive) experiments in
the cloud. However, this impact can additionally lead to cyber
attacks as described by Varadarajan et al. [21].

III. SUMMARY OF PAPER CONTRIBUTION

This work demonstrates the ability of simple, privacy pre-
serving metrics to identify potentially malicious programs.
Earlier work [22], [7] have made related contributions, but
our contribution is differentiated by its explicit focus on the
impact of noise. Our data was collected from the Pacific
Northwest National Laboratory private cloud computing envi-
ronment. Two data collection configurations were compared:
first, when programs are isolated on a single virtual machine
and hypervisor; and second, when multiple virtual machines
run concurrently on the same hypervisor. The experiments
presented here are a first test of this methodology when
realistic noise is included in the data collection process.

Two earlier papers present similar methodology for program
and cyber attack recognition, however data from both were
collected in more isolated environments. The first paper [7]
emphasized detection of the five most common attacks as
defined by the Cloud Security Alliance [2]: denial of service
(DoS), cross VM side channel attack (CVMSC), malicious
insider (MI), attacks targeting shared memory (ATSM), and
phishing attacks (PA). Each of these scenarios are represented
by specific actions on isolated server hardware. Details of their
data collection can be found in [7].

Earlier work by Solanas et al. [22] demonstrated the ability
of this technique to identify specific programs, in addition to
attack types. However, their data collection system, though
accurate and well described, was a noise-less system com-
posed of three Intel NUC’s networked together and run in
isolation. A NUC (Next Unit of Computing) is a consumer
grade micro-PC for streaming media. In contrast, our work
reproduces the successes of this approach while systematically
increasing the sources of system noise by operating on a real
operational cloud environment and with multiple VM’s on a
single hypervisor.

IV. EXPERIMENT SETUP

A. Hardware and System Configuration

The data obtained from these experiments was collected
from an institutional private cloud computing system at Pa-
cific Northwest National Laboratory running OpenStack (Kilo
release). The underlying physical compute nodes that are
exposed via a hypervisor are dual socket AMD Opteron 6272
CPUs, with each CPU consisting of 16 physical cores, 2.1



GHz clock, 512 KB of L3 cache memory, and 64GB RAM per
socket (128GB total per node). Local physical storage consists
of 2TB of RAID 1 disk.

The computing hardware exposed in each virtual machine
consisted of eight AMD Opterons, with a 2.1 GHz clock and
512 KB of L3 cache memory, and a total of 16 GB of RAM
per node. The cloud VMs are interconnected via 40GB IP over
InfiniBand.

B. Programs and Data Collection

We chose an initial set of programs as proxies for known
malicious programs (FFmpeg [23], Boltzmann [24], Cam-
bridge Stars [25], and MSGF+ [26]). These programs were
selected because they each represent a type of computation that
may realistically be processed in batch, using cloud computing
resources. These programs are all scientific simulation pro-
grams with the exception of FFmpeg which is an audio/video
processing utility. Each program was scripted to run in loop
for a designated time, using standard example files as input.

OpenStack is the cloud infrastructure management tool and
the built-in Ceilometer system was used to collect real-time
telemetry from the virtual machines. Ceilometer metrics are
traditionally used to process billing. The sampling period
of Ceilometer was set for all experiments to 5 seconds. Of
the available meters, seven were used as input features for
classification:

• CPU utilization
• disk.read.bytes.rate
• disk.read.requests.rate
• disk.write.bytes.rate
• disk.write.requests.rate
• network.incoming.bytes.rate
• network.outgoing.bytes.rate
All data was written to .csv log files that were processed

off-line.

V. RESULTS

For the following results, a base model was constructed
for each program from 4 hours of data. When this base
data was being collected, the program and its host VM were
the only machine running on the hypervisor. A separate and
independent collection of data was made for a noisy neighbor
scenario. In this case, four VM’s were running, one for each
program and all on the same hypervisor. This noisy neighbor
data was collected for 30 minutes and used to verify that the
base models were still capable of recognizing programs in
spite of potential system noise.

We used standard metrics to evaluate system performance:
precision, recall, f-score and normalized confusion matrices.
Two types of classification models, decision trees and K-
nearest neighbor, were used to determine if model choice
had a significant impact. Both models were implemented
with the python package scikit-learn [27] specifically De-
cisionTreeClassifier and KNeighborsClassifier. The decision
tree algorithm is an optimized version of CART [28], with
a maximum tree depth of 45. The K-nearest neighbor method

used K=2. These parameter values were chosen based on a
grid search from related but unpublished work.

TABLE I
SCORING STATISTICS FOR DECISION TREE CLASSIFIER

Precision Recall F-Score
Boltzmann .91 .95 .93
CS .96 .92 .94
ffmpeg 1.0 1.0 1.0
MSGF+ .96 .96 .96

TABLE II
NORMALIZED CONFUSION MATRIX FOR DECISION TREE CLASSIFIER

Boltzmann CS FFMPEG MSGF+
True Boltzmann 0.95 0.02 0.00 0.03
True CS 0.07 0.92 0.00 0.01
True FFMPEG 0.00 0.00 1.0 0.00
True MSGF+ 0.02 0.02 0.00 0.96

Fig. 1. Normalized Confusion Matrix for decision tree classifier

The performance metrics from the decision tree classifica-
tion method are summarized in Table I. Precision and recall
statistics across the programs range from 91% to 100%, with
Boltzmann being the most difficult to predict and FFmpeg
being the easiest to predict.

The normalized confusion matrix for the decision tree
classifier is visualized in Figure 1 and the corresponding
numeric values are summarized in Table II. From this table,
we note that of the true Boltzmann samples, the most common
classification error is MSGF+ (3%) and Cambridge Stars (2%).
Of the true Cambridge Stars samples, the most common
classification errors are Boltzmann (7%) and MSGF+(1%).
For the MSGF+ program, it evenly splits the error between
Boltzmann(2%) and Cambridge Stars (2%).

Performance metrics from the K-nearest neighbor classifi-
cation method are summarized in Table I. Precision and recall



TABLE III
SCORING STATISTICS FOR K-NN CLASSIFIER

Precision Recall F-Score
Boltzmann .89 .96 .93
CS .94 .91 .93
ffmpeg 1.0 1.0 1.0
MSGF+ 1.0 .95 .98

TABLE IV
NORMALIZED CONFUSION MATRIX FOR K-NN CLASSIFIER

Boltzmann CS FFMPEG MSGF+
True Boltzmann 0.96 0.03 0.00 0.00
True CS 0.09 0.91 0.00 0.00
True FFMPEG 0.00 0.00 1.0 0.00
True MSGF+ 0.03 0.02 0.00 0.95

Fig. 2. Normalized Confusion Matrix for K-NN classifier

statistics across the programs ranged from 89% to 100%.
Boltzmann is again the most difficult to predict and FFMPEG
is the easiest to predict. One reason FFMPEG was selected
as a program to identify was because it was easy to run
continuously with variable input by compressing the audio
of live radio streams. We suspect this same trait made the
program easy to identify as it continuously used network I/O.

The normalized confusion matrix for the K-nearest neighbor
classifier is visualized in Figure V and the corresponding
numeric values are summarized in Table IV. The overall
performance is nearly identical as that obtained for decision
trees, however with the k-nearest neighbor approach, the
incorrect prediction of Boltzmann and Cambridge Stars, as
MSGF+ was eliminated. From Table IV, we note that of the
true Boltzmann samples, the classification errors only occur as

Cambridge Stars (3%). Of the true Cambridge Stars samples,
the only classification errors occur as Boltzmann (9%). For the
MSGF+ program, it splits the error between Boltzmann(3%)
and Cambridge Stars (2%).

VI. DISCUSSION

Both K-NN and decision tree classification resulted in
program detection statistics that were nearly identical, inde-
pendent of which classification model was selected. Due to the
high degree of separability of the signatures of these specific
programs, we believe additional tuning of parameters, or more
sophisticated models, would primarily result in overfitting. The
promise of this work is the methodology, which can be applied
to a larger and more diverse set of programs. Future work
should investigate the scalability and limits of program signa-
ture uniqueness. Identification of multiple programs running
on an individual VM could also be an interesting extension of
this work.

VII. CONCLUSIONS AND FUTURE WORK

We demonstrate the ability of simple network statistics to
reliably differentiate programs running individually on concur-
rent virtual machines on the same hypervisor. The collected
metrics are privacy preserving, as they contain no identification
of the user of the hypervisor.

There are many other mechanisms that occur in a real
world environment which add noise to program signatures. For
example, distributed programs running on a cluster, or multiple
programs running on a single virtual machine. Future work
will investigate the potential of this technique to differentiate
programs in these more complex environments.

ACKNOWLEDGMENT

The authors would like to thank PNNL Institutional Com-
puting (PIC) for infrastructure support. The research described
in this paper was conducted under the Laboratory Directed Re-
search and Development Program at PNNL, a multi-program
national laboratory operated by Battelle for the U.S. Depart-
ment of Energy.

REFERENCES

[1] Leavitt, Neal. ”Is cloud computing really ready for prime time.” Growth
27.5 (2009): 15-20.

[2] Alliance, Cloud Security. ”Top threats to cloud computing v1. 0.” (2010).
[3] Subashini, Subashini, and Veeraruna Kavitha. ”A survey on security

issues in service delivery models of cloud computing.” Journal of network
and computer applications 34.1 (2011): 1-11.

[4] Muttik, Igor, and Chris Barton. ”Cloud security technologies.” Informa-
tion security technical report 14.1 (2009): 1-6.

[5] P. Balboni, K. Mccorry, and P.W David Snead, “Cloud Computing -
benefits, risks, and recommendations for information security”, European
Network and Information Security Agency, Tech. Rep. Nov 2009
http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-
risk-assessment/.

[6] Wei, Jinpeng, et al. ”Managing security of virtual machine images in a
cloud environment.” Proceedings of the 2009 ACM workshop on Cloud
computing security. ACM, 2009.

[7] Khorshed, Md Tanzim, ABM Shawkat Ali, and Saleh A. Wasimi. ”A
survey on gaps, threat remediation challenges and some thoughts for
proactive attack detection in cloud computing.” Future Generation com-
puter systems 28.6 (2012): 833-851.



[8] Grosse, Eric, et al. ”Cloud computing roundtable.” IEEE Security &
Privacy 6.8 (2010): 17-23.

[9] Shabtai, Asaf, et al. ”Detection of malicious code by applying machine
learning classifiers on static features: A state-of-the-art survey.” Informa-
tion Security Technical Report 14.1 (2009): 16-29.

[10] Yuxin, Ding, et al. ”Feature representation and selection in malicious
code detection methods based on static system calls.” Computers &
Security 30.6 (2011): 514-524.

[11] Schmidt, Matthias, et al. ”Malware detection and kernel rootkit preven-
tion in cloud computing environments.” 2011 19th International Euromi-
cro Conference on Parallel, Distributed and Network-Based Processing.
IEEE, 2011.

[12] Wang, Cong, et al. ”Privacy-preserving public auditing for data storage
security in cloud computing.” INFOCOM, 2010 Proceedings IEEE. Ieee,
2010.

[13] Martignoni, Lorenzo, Roberto Paleari, and Danilo Bruschi. ”A frame-
work for behavior-based malware analysis in the cloud.” International
Conference on Information Systems Security. Springer Berlin Heidelberg,
2009.

[14] Oberheide, Jon, Evan Cooke, and Farnam Jahanian. ”CloudAV: N-
Version Antivirus in the Network Cloud.” USENIX Security Symposium.
2008.

[15] Marnerides, Angelos K., et al. ”Malware detection in the cloud under
Ensemble Empirical Mode Decomposition.” Computing, Networking and
Communications (ICNC), 2015 International Conference on. IEEE, 2015.

[16] Watson, Michael R., et al. ”Malware detection in cloud computing
infrastructures.” IEEE Transactions on Dependable and Secure Computing
13.2 (2016): 192-205.

[17] Zhang, Hanlin, et al. ”ScanMe mobile: a cloud-based Android malware
analysis service.” ACM SIGAPP Applied Computing Review 16.1 (2016):
36-49.

[18] Modi, Chirag, et al. ”A survey of intrusion detection techniques in
cloud.” Journal of Network and Computer Applications 36.1 (2013): 42-
57.

[19] Patel, Ahmed, et al. ”An intrusion detection and prevention system in
cloud computing: A systematic review.” Journal of network and computer
applications 36.1 (2013): 25-41.

[20] T. Garfinkel, and M. Rosenblum, “A Virtual Machine Introspection
Based Architecture for Intrusion Detection”

[21] Varadarajan, Venkatanathan, et al. ”Resource-freeing attacks: improve
your cloud performance (at your neighbor’s expense).” Proceedings of
the 2012 ACM conference on Computer and communications security.
ACM, 2012.

[22] Solanas, Marc, Julio Hernandez-Castro, and Debojyoti Dutta. ”Detecting
fraudulent activity in a cloud using privacy-friendly data aggregates.”
arXiv preprint arXiv:1411.6721 (2014).

[23] http://ffmpeg.org/
[24] Cannon, William R. ”Simulating metabolism with statistical thermody-

namics.” PloS one 9.8 (2014): e103582.
[25] http://www.ast.cam.ac.uk/ stars/
[26] http://omics.pnl.gov/software/ms-gf
[27] http://scikit-learn.org/stable/index.html
[28] Breiman, Leo, et al. Classification and regression trees. CRC press, 1984.


