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Abstract—Vehicular Networks (VN) have a huge potential to
increase roadway safety and traffic efficiency. Big Data analysis
can be instrumental in realizing this potential and enhancing the
Intelligent Transportation Systems (ITSs). We study the causes
of road accidents using big real-time accidents data obtained
from Florida Department of Transportation (FDOT) - District
4. The ultimate goal is to prevent or at least decrease traffic
accidents and congestions. Qur approach is based on dividing the
roadway into segments, based on the infrastructure availability
and the secondary accidents factors. We design a real-time Big
Data system that receives online streamed data from vehicles
on the road in addition to real-time average speed data from
vehicles detectors on the road side to (1) Provide accurate
Estimated Time of Arrival (ETA) using a Linear Regression
(LR) model (2) Predict accidents and congestions before they
happen using Naive Bayes (NB) and Distributed Random Forest
(DREF) classifiers (3) Update ETA if an accident or a congestion
takes place by predicting accurate clearance time. To make
this system fast, accurate, and reliable we have implemented
Lambda Architecture (LA) in our framework because of its
speed, scalability, and fault tolerance. Furthermore, we have
optimized the efficiency, the speed, and the accuracy of the
designed model by securely selecting the most relevant and
significant set of features required for the analysis.

Index Terms—Big Data, Machine Learning and Data Mining,
Vehicular Ad-hoc Network (VANET), Intelligent Transportation
Systems (ITSs),Lambda Architecture (LA), Traffic Crashes Pre-
diction, Traffic Congestions Prediction.

I. INTRODUCTION

Today the world is overwhelming with all kinds of data
from all domains. People have discussed and studied almost
all aspects of Big Data such as their sources, characteristics,
complexity, availability, privacy and a lot more. Big Data
is the information of extreme size, diversity and complexity.
Actually Big Data is not just a realm of voluminous data, it is a
systematic way to collect, process, mine, and analyze the data
to represent the uncovered trends, relationships, patterns, and
insights in the data to make better decisions [1]. A formal
definition of Big Data by International Data Corporation
(IDC)is: ”A new generation of technologies and architectures
designed to economically extract value from very large volume
of a wide variety of data, by enabling high-velocity capture,
discovery and/or analysis”

In the domain of Intelligent Transportation Systems (ITS),
there is so many potential solutions for traffic congestion and

crashes. Congestion and crashes are lives, money, time, and
environment drains [2]. Comprehensive cooperation between
traffic engineers and computer scientists should be done to
minimize the losses resulting from congestion and crashes.
One of the most important available sources for traffic data is
the accidents data which usually has extreme size. Studying
and analyzing this data will give us true insight, which will be
helpful in designing new rules and policies to improve traffic
flow and safety [3].

Increased attention has been directed in recent years towards
Vehicular Networks (VN) or Vehicular Ad-hoc Networks
(VANETS), because of its huge potentials, which could save
lives, time, environment, and money as well. Furthermore,
VANET would be one of the most important components of
Intelligent Transportation Systems (ITS) [4] [5].

VANET is a special form of Mobile Ad-hoc Networks
(MANETS) that formulate the framework of Intelligent Trans-
portation Systems (ITS). In VANET, each vehicle represent
a node in MANET. VANETs based on short-range wireless
communication (e.g., IEEE 802.11p) between vehicles. The
Federal Communications Commission (FCC) has allocated
75 MHz in the 5.9 GHz band for licensed Dedicated Short
Range Communication (DSRC) [6], aimed at enhancing
bandwidth and reducing latency for vehicle-to-vehicle (V2V)
and vehicle-to-infrastructure (V2I) communication. More elab-
oration about VANET could be found on [4]. Developing a
real-time Big Data mining system for VANET to handle real-
time streamed Big Data is very important. Such a system will
enable countless applications.

In this work, we apply Big Data mining and analysis tech-
niques to real-life accidents data in VN. We propose a system
that aims at preventing or at least decreasing traffic congestions
as well as crashes. Our method uses DSRC, cellular, wi-fi, and
hybrid communication. The data analysis is carried out in the
cloud that combines the historical data and the real-time data
received from the vehicles operating on the road and queued
into the lambda engine [7]. In this work, we have divided the
roadway into segments to make the prediction process more
precise based on a spatiotemporal technique.

The remainder of this paper is organized as follows. Section II
presents the related work. Section III presents the challenges,
problem components and the architecture for our proposed



system. Section IV presents our experiments, experimental
results, and analysis. Finally, conclusions and future work are
presented in Section V.

II. RELATED WORK

Bedi and Jindal [8] studied and surveyed the use of
Big Data technologies in VANETs. Their paper indicated
that most of VANETS characteristics overlap with Big Data
characteristics, allowing VANET problems to be treated and
solved as Big Data problems. In addition, they motivated the
need for building real-time adaptive models to optimize the
traffic flow in an efficient and safe way.

As the era is mainly going towards the cloud solutions, data
analysis can certainly benefit from this direction. A recent
survey has been done on identifying and discussing the ability
and the challenges of carrying out the analysis on clouds.
Marcos et, al. [9] surveyed the approaches, technologies and
the environment for carrying out analytics on clouds for Big
Data. Changing the business model in analytics to a cloud
based model has a great return on investment despite its
complex high-level required resources and demands.

"How Fast is Fast?” . This question has been asked by
Mike Barlow in his book [10]. Most of the literature agree
that VANET should be treated as a Big Data problem. We
believe that having a real-time analytics for VANET is key
to solving traffic problems and catastrophes. Predicting acci-
dents and congestions is not an easy task, mainly because
“computation speed” is key challenge in this domain. The
vehicles are moving fast and the topology is changing fast
so, the computation, analysis, and the response should be
done very fast. Mike in his book specified the predictive
analytics procedure in five phases: Data distillation, model
development, validation and deployment, real-time scoring,
and model refresh. Claiming that following this procedure will
provide the real-time analysis for streamed big data.

Because there is no single tool that runs a single command
to give a solution or analyze multiple, diverse, and scattered
datasets, Nathan Martz [7] designed Lambda Architecture
(LA) to help in running and processing functions on the fly and
get results from arbitrary datasets. LA has three layers: speed
layer, serving layer, and batch layer. LA proved its scalability,
robustness, ability for generalization, extensibility, and fault
tolerance, which make it a good fit for real-time solutions in
Big Data analytics [7].

A conceptual model for vehicular Big Data analysis has been
proposed by Daniel et, al. [11] in which the author claims
that such a model will keep pace with the latest trends to the
emerging Big Data paradigm. The model aims at efficiently
utilizing the huge datasets by near real-time data streaming
in vehicular networks environment. This work has not used
real-life data to test the model or validate the concept they
came with. This work has proposed an algorithm to analyze
the vehicle density on the road in real-time, but without any
validation for this algorithm.

III. SYSTEM, CHALLENGES, COMPONENTS, AND
ARCHITECTURE

A. Challenges

Fortunately, the number of accidents is decreasing over the
years in the USA. But, the National Safety Council estimates
38,300 people were killed and 4.4 million injured on U.S.
roads in 2015, which saw the largest one-year percentage
increase in half a century [12]. This assures that scientists
should take serious actions to cut down this rise. Solutions
should be proposed through incorporating the technology with
the available infrastructure, since the available roads and
infrastructure cannot be significantly expanded and people
safety is the main target, in addition to the economical loss.
We can see that vehicular networks are going to be very
important in providing significant solution to this problem.
This can be achieved through giving proper timely alerts
and directions to the drivers on the roads in advance since
the vehicles are communicating interactively together. Taking
into consideration that vehicles are moving very fast, and the
topology for VANET is changing faster as well. VANET is
a massive Big Data generator and we believe strongly that
data always has trends and gives useful insights. We don’t
yet have VANET’s data, but we have a valuable data right
now in our hand, which is the accidents data that has rich
information. Our work is based on a real data that has been
obtained from Florida Department of Transportation - District
4 (FDOT-D4). The data has all information for more than 200
miles of the three highways (I-95, 1-595, and I-75). The data
has information about cameras, speed detectors, road devices,
and all accidents information over a period of 7 years. This size
of the data is challenging, and this poses additional challenges
that should be overcome in order to get the right solution.
Primarily when it comes to mine the vehicles’ data in real-
time, two main issues raised, and solving them will strongly
affect the system’s efficiency. The first issue raised, comes
from the fact that every car has its own mobile database of
information (distributed). The second issue that the mining
technique is centralized in one central server. A real-time
system will face the problem of increased overhead on the
network communication to send and receive alerts, new pat-
terns and updating patterns. We are focusing in this research
on getting the most efficient models, with less overhead on the
network and less response time to get the maximum potential
towards safer roads. In this paper we are improving the
prediction results and decreasing the processing time needed
to get the useful patterns and check the new patterns that sent
out from any vehicle in real-time as well.

All transportation data is valuable and important to solve
such a problem via Big Data analysis. But, what is the best
vehicles’ data that can be projected as vehicular networks data.
We mentioned before that transportation data is an important
source and key solution to our problem. However, not any
transportation data will help us solve this problem. To solve
the traffic congestion and accidents, we need traffic data. We
found that accidents’ data has all the attributes of the accidents



that ultimately caused the congestion on the road. So, we made
our decision to work on accidents data.

Fortunately, we are able to obtain a big accidents dataset
from FDOT - District 4 for this purpose. Preprocessing and
cleansing the data was not an easy task, it was a challenge.
The data was in relational database format, we had to convert
it into CSV and ARFF Big Data readable file formats. We
cleaned the data by getting rid of all incomplete records that
can cause noise to the data. We analyzed and validated the
data by using H20 and R Big Data tools [13] [14].

Another challenge that we have tackled in this work is the
processing and computation speed. The prediction system
would not be useful without being very prompt in sending
and receiving packets. The transmitted packets will be either
a prediction request or an alert response. For this purpose we
have proposed using LA which we have mentioned earlier in
our system to tackle the computation speed problem [7].

B. System Components

Our proposed model consists of a set of devices and
software modules. They work collaboratively in a cloud based
model to serve as a system for congestion and accidents pre-
diction. The proposed model will provide alerts to the vehicles.
The ultimate goal of this system is achieving the Intelligent
Transportation System (ITS) goals, mainly the roadway safety
and efficiency. Due to the space limitation we will describe
the system components briefly and provide the appropriate
references if possible.

1) On-Board Unit (OBU): Every mobile node is equipped
with this unit to facilitate the communication with other
moving nodes (vehicles) and fixed stations (Roadside
Units) via DSRC and has the capability to communicate
by using cellular radio networks such as (GSM, 4G,
WiFi and WiIMAX).

2) Road-Side Units (RSUs): These are base-stations that
support VANET’s applications and coordinate actions to
share and process information as well as disseminate
data, provide traffic directories, act as location servers,
and connect to the Internet and external centralized or
distributed servers [15].

3) Lambda Architecture in the Cloud (LA): This is a
generic, lault-tolerant, and scalable processing architec-
ture that best accommodates distributed data processing.
LA consists of three layers: batch layer, serving layer,
and speed layer [7].

4) Vehicle Detection System: Our case study is based on
the FDOT - District 4 system data and infrastructure.
They have a detection system consisting of roadside
detectors placed every half mile on 1-95, I-75, and I-
595 highways. Those detectors provide online traffic
data, such as speed, volume and occupancy to assist the
Regional Transportation Management Center (RTMC)
operators to detect abnormal traffic flows [16]. We use
this data to calculate the average speed on each segment
to update ETA for each registered trip on the road.

C. Framework Description

Our proposed work is mainly based on partitioning the road-
way into segments in order to easily predict and manage the
events occurring there. Selecting segment’s length is a critical
task, since long segments would pose certain challenges such
as complexity and inefficiency. On the other hand, selecting
short segments will not be helpful enough for the drivers to
get early alerts which will make it difficult for them to change
their route smoothly, if suggested. Furthermore, to make our
segment’s length selection decision reasonable and beneficial,
secondary accidents causes, circumstances, and attributes are
considered in this decision. A secondary accident is defined
as an accident that takes place in the same direction within
2 miles or/and 2 hours of the primary accident [17]. So,
segmenting the road into 2-mile segments will alleviate the
secondary accidents, as well as will give a driver early alert
and status about the road he/she is heading to. In our case
study, using 2-mile segments gives a driver the choice to freely
select at least one alternative route before he/she gets into a
congestion, e.g. on I-95, the 2-mile marker will have 2 exits
most of the time, which means 2 alternative routes.

The system begins to work when a driver starts the vehicle.
By using the OBU the driver signs into the cloud via cellular
or DSRC connection if possible (if an RSU is available) to
register his/her trip by entering the desired destination. The
cloud gets back to the driver with a random ID every time
he/she signs in. Random ID is mapped to an IP address in
order to identify the car, but the ID does not hold any driver’s
information in order to maintain the driver’s privacy. Based on
the navigation map and the road status updated in the cloud
the driver will be able to select a route with the computed
ETA.

Computing ETA in this model is based on the real-time
average speed we get from the vehicle detectors for each
segment that are placed every half mile of the highway [18].
Since we have selected the 2 miles marker we are going to
use the sum of the expected time of travel (T) in each segment
for the whole trip trajectory as described in equations 1 and
2.

n—1
ETA = Z T, 1)
0
Distance;
Ti= Speed; @

Where Ti is the time needed to travel segment i and n is the
number of segments.

The aforementioned simply calculates ETA by getting a real-
time average speed from the vehicles detectors, since all data
is updated in the cloud and indexed by the segment number.
We don’t need to get all detectors data, we need to receive a
detector data every 2 miles. Average speed should be updated
whenever the average speed is increased or decreased by 5
miles/hour to update ETA accordingly. The other part in the
cloud is the Big Data analysis engine, which has the largest
impact on this system, since it is used to predict (1) Accidents
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TABLE I
FAU 10 FDOT - D4 TRIP ILLUSTRATION EXAMPLE
Seg. # | Seg. Len. | Speed ETA | Entry Departure
1 1.4 mile 25 mph | 34 10:00:00 | 10:03:24
2 1.3 mile 45 mph | 1.7 10:03:24 | 10:05:06
3 2 mile 65 mph | 1.8 10:05:06 | 10:06:54
4 2 mile 65 mph | 1.8 10:06:54 | 10:08:42
5 2 mile 65 mph | 1.8 10:08:42 | 10:10:30
6 2 mile 65 mph | 1.8 10:10:30 | 10:12:18
7 2 mile 65 mph | 1.8 10:12:18 | 10:14:06
8 2 mile 65 mph | 1.8 10:14:06 | 10:15:54
9 1 mile 65 mph | 0.9 10:15:54 | 10:16:48
10 3.1 mile 45 mph | 4.1 10:16:48 | 10:20:54

(2) Congestion (3) Clearance time when an accident happens.
This engine has historical data and a customized prediction
model. As well, it receives streams of real-time data from
vehicles operating on the roads to provide the analysis and
predict the road status. Next section will have more details
about this analysis engine. The Big Data analysis part in this
proposed system is the most important one because by getting
the data and providing the predicted response in a timely
manner we could save a lot of lives, money, time, and save the
environment. Our proposed model will calculate in addition
to ETA, the time of arrival and departure to and from each
segment in the planned trip.

For example, in Fig. 3 we can see a planned trip From FAU to
FDOT-District 4 at 10:00 a.m. It is an 18.8 miles trip. Inside
the city ETA will be calculated for each segment as the length
of each segment divided by the speed limit assigned to that
segment. On the highway, the speed will be the actual real-
time average speed reported by the vehicle detectors. In our
example we use the highway’s speed limit of 65 mph and a
trip of 10 segments for the entire trip as illustrated in Table I
and Fig. 3. In addition, we are going to have the entry and
departure time to and from each segment in order to use this
data in our prediction model to predict the accidents early
in a spatiotemporal scenario to prevent them and avoid the
congestion.

Our proposed system in the cloud will have the spatiotemporal
entries for the anticipated vehicles once they register their
trips. The system will stream the data for each segment
along with other features such as number of vehicles, weather
condition, road surface status, day light, day of the week ...
etc. to predict how likely an accident will happen. This process
is discussed later in the following section. According to the
results, ETA and current route either remain as they are if no
accident is predicted or get updated if an accident is predicted.

D. Big Data Analysis (Lambda Architecture)

As we have mentioned before, our model is based on
real-time Big Data analysis for road segments. We are totally
aware that this critical part would not succeed without being
computationally prompt and very fast. For this purpose,
first, we have segmented the roads into 2-mile segments
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Fig. 3. Example of a trip to illustrate the road segmentation concept

regardless of the available number of lanes. Secondly, we
have utilized the Lambda Architecture [see Fig. 1] in our
proposed model since it has been proved as a fast, scalable,
and fault-tolerant scheme for data processing [7], [19], [20].
We are proposing to use our own cloud resources (storage,
processing, sending, and receiving) and our own-built cloud
applications to connect with external resources. Our master
dataset (accidents dataset) will be stored and clustered on our
cloud within LA in the batch layer. In the batch layer the data
will be divided into number of batches “batch views”, since
each batch has the most closely related examples and the
batching process continues as long as it receives new data.

The speed layer in LA is the real-time layer, which computes
views from the data it receives. The serving layer will query
the real-time views from the speed layer quickly. Furthermore,
the serving layer has all batch views from the batch layer
indexed to provide low latency query answers. Practically, (1)
A new example is streamed into the speed layer in real-time
(from the vehicle) (2) At the same time the same examples
will be stored in the main dataset (3) The new example,



which has the required features moves to the serving layer
to query (compare) this batch with the previously generated
batches (4) The serving layer gets the solution (answer) back
to the query (i.e. predict accident, predict congestion, predict
clearance time or predict new ETA).

IV. EXPERIMENTS, RESULTS AND ANALYSIS

In addition to LA, the cloud model will have the previously
built models for prediction as well. From our previous analy-
sis [2], we have selected two prediction models to implement
in our framework. For the reason why we have selected
those two prediction models here, please refer to our previous
study [2], which has used accidents data. First, we have
selected the Linear Regression model [21] to predict the
clearance time after an accident takes place. This aids in
updating ETA along with providing the alternative route which
is assigned to each segment. Secondly, for congestion and
accidents prediction we have selected Naive Bayes (NB), since
it is very fast and reliable. In addition, we are using Distributed
Random Forest (DRF) because it runs efficiently and unbiased
on Big Data [21].

A. Linear Regression Model

The equation below is the linear regression equation we
have computed to optimally predict the clearance time required
after feeding the system with the required parameters. The
Mean Squared Error (MSE) [see equation 3] obtained by
using this model with full parameters is equal to 78.46 and
the model building took 11.26 seconds. In this regard we
need to minimize the time needed to build the model as
well as decreasing MSE. To solve this and decrease the
computation time we have done a Correlation-based Feature
Selection (CFS) [22]. This decreased the number of features
to 4 features instead of 21. This decreased MSE to 67.51 and
the computation time to 3.37 seconds. Equation 4 shows the
linear regression equation before applying CFS. Equation 5
shows the linear regression equation after applying CFS on the
full dataset. Clearly, using fewer features improves the speed
of sending the features packet from the vehicles to the cloud,
as well as decreases the computation time on the cloud. The
purpose of calculating the clearance time is to: (1) Update ETA
for registered trips if the driver choses to use the same route (2)
Give the most accurate time depending on the accident severity
to update the digital signs and traffic status accordingly, and (3)
Measure the efficiency of the accident’s responders in clearing
and closing the accident.

MsE =2 Zn:(ff Y;)? (3)

- % i -
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Where n is the total number of examples, Y is the predicted
value and Y is the actual value.
From Fig. 4 we can sce that most of the accidents have
been cleared and closed within less than 30 minutes. Our
prediction results support this fact as well, which means that
predicting the clearance time will strongly assist in providing
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Fig. 4. Actual Clearance Time computed from the accidents dataset

more accurate ETA.

Actual Clearance Time =
(67.1377*is_cloned) +
(-8.1484*eventstatus_id) +
(0.0051*ownedby_org_id) +
(-0.0206*notifier_agency_id) +
(-0.0087*notifier_contact_id) +
(-0.4955*eventtype_id) +
(21.8524*is_hazmat) +
(15.9843*is_fire) +
(18.9766*is_rollover) +
(-7.8191*has_noapplicable_cctv) +
(-O*primary_event_id) +
(10.0435*injurytype_id) +
(O*point_latitude) +
(O*point_longitude) +
(21.1547*can_publish) +
(-0.5688*atis_severity_level) +
(-0.748*day_of_the_week) +
(0.0482*event_month) +

(42.723) @

The Regression equation after doing CFS is as following:

Actual Clearance Time =
(-0.4826*eventtype_id) +
(O*primary_event_id) +
(10.9234*injurytype_id) +

(O*point_latitude) +

(7.4681) 5)

(Table II provides the attributes description)

B. Classification Models

We have evaluated our model for predicting the accidents
using the full set of features. We apply FS and then compare
two different classifiers namely: NB and DRF. All results
have been obtained by doing 10-fold cross-validation on our
accidents dataset. The class attribute in this model is the
accident severity. Accident severity in the original dataset has
4 different values: minor, intermediate, major, and NULL. The
first three severities imply an accident, the last one implies a



TABLE II
DESCRIPTION OF THE USED ATTRIBUTES

# Attribute Description
1 Is cloned if congestion happens after the accident takes place
2 Event Status Active, Closed, or Unresolved event
3 Owned by org ID the agency in charge and responsible to manage the accident
4 Notifier the first individual or agency that notifies about the accident
5 Event type crash, road work, flood .... etc
6 HAZMAT if there is hazardous material
7 Rollover if a vehicles rollover happens
8 Fire if a fire happens in the accident scene
9 Latitude and Longitude | to show the location of the accident
10 | Severity slight, moderate, severe, and fatal
TABLE III accidents as well as the availability of infrastructure.
DRF AND NB CLASSIFICATION RESULTS The proposed system has a component that receives real-time
Classifi Before FS After FS average speed values from the vehicle detectors to provide
ASHer "Xee TAUC [ F ACC | AUC | F the most accurate ETA. The system is cloud based, where
NB 49.5 76.9 81.1 953 932 | 984 : : : :
DRF ST IEs e LA is proposed in the cloud to foster the Big Data analysis

false alarm, which means this is not an accident. Furthermore,
we have added false alarm accidents to our dataset marked as
no-accident. The full dataset has 775271 examples. The NB
classifier had the lowest time of computation. Table III shows
the summarized results of classification for all classifiers
before and after doing the feature selection. From the results
obtained in Table IIT we can see that applying feature selection
reduced the NB computation time. For DRF even-though the
classification results are better that the NB results, it took
more time. Feature selection didn’t affect DRF results because
DREF has a built-in feature selection functionality since it uses
pruning.

In VANET especially for real-time mode, having less features
to collect and using NB would be good in providing most
likely the right decision quickly. The alert will be sent to the
participating vehicle and the driver have the choice either to
accept it or reject it.

V. CONCLUSION AND FUTURE WORK

VANET is a huge Big Data generator. It seems that the
mechanism used in this work is easy and straightforward,
indeed it is not. The idea of projecting the transportation
data as the futuristic connected vehicles data is novel. Recent
research found that the properties of VANET intersect and
clearly map to the Big Data properties and characteristics. In
order to get the maximum benefits from VANET, applications
should be designed and developed in robust and scalable
modes. Scalable because vehicles are increasing everyday
which means data is growing bigger and bigger. The best
robust systems are those developed based on real-time data
rather than simulated data. In this paper, we propose a
real-time Big Data analysis and prediction system, which
directly assists in decreasing accidents on the roads and saves
lives. Our proposed model is based on real-time accidents’
data obtained from FDOT - District 4 for research purposes.
Our study has taken into consideration primary and secondary

when data is streamed from vehicles. The proposed system
has two main functions one is before the accident happens
and the other one is after it happens. The former is to prevent
the accident from taking place by prediction, which will
prevent congestion as well. The latter, will assist in giving
the time needed by both drivers and responders who are
in charge of clearing the accident to clear the accident. In
addition, the system can help in predicting the severity of
the accident, which is important to get the needed resources
efficiently. Our experiments and results show that applying
such a system will decrease accidents significantly, since our
classification results have high accuracy and low latency. Our
future direction is to design a human factor impacts module
to be added to this system based on and inferred from our
real-time data. Implementing this system on a real testbed
is an ongoing research in our lab by utilizing our designed
cloud on our own clusters. Our focus will be on efficiently
handling big growing heterogeneous data from all possible
sources with heterogeneous behaviors.
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