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Abstract—We consider the dynamic EEG source localization EEG signals has been the subject of intense research [4], [5]
problem with additional constraints on the expected value bthe However, until recently, the brain sources were assume@to b
state. In dynamic EEG source localization, the brain source,  giaiignary. That is, the locations of these sources in the 3D

also called dipoles, are not stationary but vary over time. brain d t ch ith ti o t K
Moreover, given our specific EEG experiment, we expect the rain does not change with ime. Lur recent work was one

dipoles to be located within a certain area of the brain (here Of the pioneers of the idea of tracking (rather than statipna
the visual cortex). We formulate this constrained dynamic surce estimation) of brain sources over time [5]. The problem is
localization problem as a constrained non-linear state-ésnation  formulated as a state-space model and a beamformer-particl
problem. Particle filters (PFs) are nowadays the state-offie-  ger js ysed to simultaneously track the positions of the
art in optimal non-linear and non-Gaussian state estimatio. . -

However, PFs cannot handle additional constraints on the ste sources and estimate Fhe'r moments [5_]' In our framework,
that cannot be incorporated within the system model. In this the moments and positions of the brain sources or neural
case, the additional constraint is on the mean of the state, generators are the components of the unknown or hidden

which means that realizations of the state, also called padles state while the EEG measurements are the system obsewvation
within the PF framework, may or may not satisfy the constrairt. model

However, the state must satisfy the constraint on average. his | B . text timal estimati f the hidd
is indeed the case when tracking brain dipoles from EEG n a bayesian context, optimal estimation o € hiaden

experiments that try to target a specific cortex of the brain. State is based on the posterior density function (pdf) of
Such constraints on the mean of the state are hard to deal with the state given the observations. In a linear and Gaussian
because they reflect global constraints on the posterior deity of  system, optimal estimation is given by the Kalman filter

the state. The popular solution of constraining every parttle in [6]. However, the EEG state-space model is non-linear and

the PF may lead either to a stronger condition or to a differen . . - .
(unrelated) condition; both of which result in incorrect estimation may be non-Gaussian. Particle filters (PFs) solve the optima

of the state. We propose the Iterative Mean Density Truncabn ~€stimation problem in non-linear and non-Gaussian state-
(IMeDeT) algorithm, which inductively samples particles that are  spaces [7]. PFs approximate the posterior density of the sta

guaranteed to satisfy the constraint on the mean. Applicatin of py a set of weighted samples, callpdrticles The particles
IMeDeT on synthetic and real EEG data shows thatincorporaing 4y sampled from any accessilpimposal distributionwhose
a priori constraints on the state improves the tracking accuacy . . .
as well as the convergence rate of the tracker. support_contalns_the support of the post(_erlor density, bad t
appropriately weighted to make up the difference between th
|. INTRODUCTION proposal and posterior densities.The PF solution congeige
Electroencephalography (EEG) is an electrophysiologiddle mean-square error, to the optimal state [7]. However, a
monitoring technique that records the electrical activify major weakness of the PF resides in the difficulty of handling
the brain at the scalp by placing multiple electrodes at tlditional constraints within the state space model.
surface of the head. It is non-invasive, cheap, portable andWe seek to improve the tracking performance of the EEG
has high temporal resolution. These advantages led to gwrce localization problem by introducing additional apr
widespread application of EEG for research and diagnosiskimowledge as constraints on the hidden state. In fact, in our
understand brain function, disorders, strokes as well dd buparticular EEG experiments, we expect the brain sources to
brain-computer interfaces [1], [2]. be in the visual cortex most of the time [4]. We subsequently
However, the advantages of the EEG and particularly itgld a constraint to the state-space model that imposes 3D
high temporal resolution are counterbalanced by i) a lowalig coordinates within the visual cortex. In constrained et
to noise ratio and ii) the non-linearity of the EEG signaltwit filtering, the current research [8], [9] simply imposes the
respect to the brain source generating these surface sifjnatonstraints on all particles of the PF. This approach agtual
is postulated that the EEG signals are generated by few braonstrains the support of the state posterior density. \Wa te
sources [3]. Localizing these brain sources helps us utadets this approach of constraining all particles Pointwise DOtgns
the different areas in the brain. Brain source localizafrom Truncation abbreviated as the PoDeT method.



Ebingeret al. [10] presented a new approach named, Mear), at every time stem, using the history of measurements
Density Truncation (MeDeT), that imposes the constraimts &" = [zq, ..., 2, UP tO timen.
the conditional mean estimate of the state without furtherIn a Bayesian context, the optimal state estimatés given
restricting the posterior distribution of the state. Speally, by the mean of the posterior distributigi(x,,|Z™). Using
MeDeT drawsN unconstrained particles from the proposaBayes rule, this distribution can be computed in two steps:
distribution as in the unconstrained PF. If the weighted mearediction and update as given by the following equations:
of these N particles, which corresponds to the conditional
state estimate, satisfies the constraints, it is kept asptimal plzn|Z2" ") = /g(wnlxn—l)]?(ffn—llzn_l) dzp_1, (3)
constrained state estimate. Otherwise,(ah+ 1)st particle
is sampled from a high likelihood region to enforce the n T(2n|T0)p(x0|Z2771)
constraints on the weighted mean. If one additional paritl pan|27) = [ rCalzn)p(a|Z7—T) da,’
not enough to ensure the constraints on the conditional me
more particles are draw one at a time until the constrain :
are satisfied [10]. It is important to realize that PoDet an -(2) are only a conce_ptual solution, due to the fact that t
MeDet have two different views on the constrained problerjrptegrals are generally intractable.

In PoDet, the constraint is assumed to bbhaad constraint q The %atrtlclet. f”t?r t'ﬁ a s?qgengal Izlo?te E_:arlofggthod
Thus, all possible realizations of the state (all particlesist esigned to estimate the posterior density function o s

satisfy this constraint. In MeDet, the constraint is asstittoe at ime, us_lngda set or: rafu?gm ‘?‘f}mj\?les’_ﬂ? I |cle_s anzf
be asoft constraintwhere the state satisfies the constraint o,‘He” assqmated We_'g ts{wn’, wn"}i=y - The posterior p
average or with high probability. IS approximated as:

(4)

fortunately, for the nonlinear case, the models givengs.E

In this paper, we propose a new contribution to the con- N ‘
strained particle filtering problem and apply it to the dym@m p(rn|Z"™) = Zw;l)(s(xn — (D), (5)
brain source localization problem based on EEG real data. In i=1

particular, we formulate the EEG source localization peabl wheres is the dirac delta function.
as a softly constrained state-space model because we expegi the ideal case, the particles are sampled from the true
the sources to be in a certain area of the brain with higfbsterior,which is not always available. Thus, anpor-
probability. Our proposed constrained PF method is differetance distributioror aproposal distributiong(z,, |z, —1, z,) is
from [10] in that, instead of drawing the additional pagil evoked. Theoretically, the only condition on the impor&nc
one at a time until the constraints are satisfied, we propagigtribution is that its support includes the support of the
a systematic and inductive procedure that guaranteesttbat gosterior distribution. However, in practice, the numbér o
constraints are satisfied with a draw &f particles. particles is finite and thus, the importance distributionusti

The paper is organized as follows: In Section Il, we revieye chosen to approximate the posterior distribution [7]e Th
the unconstrained PF framework. In Section Ill, we preseat timportance weights are given by:
PoDeT, MeDeT and IMeDeT approaches as the state-of-the-art @ @1 (0)
in constrained patrticle filtering methods. Section |V fotaias B = ® r(znlzn’ )g(an’ |z, ) ©6)
the brain source localization model as a constrained state- n nl q(Ig;')uggl,zn) ’
space model, and derives IMeDeT for the EEG dipole source
localization problem. Simulation and comparison results §e weights are then normalized such th%:wﬁf) -1
synthetic and real EEG data are presented in Section V. Fi-

.. . i=1 ..
nally, Section VI summarizes the main findings and concludes h€ conditional mean estimate of the state at tims then
given by the weighted mean of the particles:

the paper.
N
II. UNCONSTRAINED PARTICLE FILTERING &n = Elza|2" ~ Zw(i)x(i)_ )
Consider a discrete-time state-space model defined by a i=1
state transition model and a measurement model (or observa- |||. CONSTRAINED PARTICLE FILTERING

tion model). Both models may be non-Gaussian or nonlmear.We consider the state-space model given in (1)-(2) with the

Tpi1 = fn(Tn) + Un, (1) following additional constraint on the state:

wherez,,, z, represent, respectively, the state and the me§hereen is the constraint function at time and ¢, (&,) =
surement vectors at time. fn,.hn are, re_spectively, the dn(Elzn|Z"]) = dn sz:w;i)x%i) _

state and measurement (non-linear) functions, v, are, =1

respectively, the transition and the measurement noiske wit Notice that the constraint is imposed on the conditional
known probability density functions, respectively,and ». mean estimate. In particular, not all realizations of thatest
The main objective is to estimate the state of the systemust satisfy this constraint but on average, we expect Hte st



to satisfy this constraint. We refer to such a constraint a@sawing 1 additional particle at a time may be time-consuymin
a soft constraint in contrast to &ard constraint, where all and not efficient. This is especially true for high-dimemsib
realizations of the state (with low and high probabilities)st systems where the number of particl¥smust be large; thus
satisfy the constraints. This soft constraint imposed am thkeading to a largen as well. To address this computational
mean is harder to solve in an optimal way because it imposasfficiency, we propose an inductive procedure where the
a global condition on the density. Thus, the constraingghrticles are chosen inductively from = 1,---, N such
posterior density, if it exists, is not merely the projeatiof that every subset aof particles satisfies the constraint on the
the unconstrained density onto the constraint set. weighted mean state. Mathematically, we want the constrain
) ) ) ) to be satisfied for any number of particlgs=1,---, N,
A. Point wise Density Truncation ‘
_ One popular. app_roag:h to dealing with constrained_ non- ¢"(XJ: wg)xg)) < by forallj=1,..,N. (9)
linear state estimation is to enforce the state constraints

—
all particles [8], [9]. Enforcing the constraint on all pales . ' . .
results, in this case, in a stronger constraint and possa'bl)}:or simplicity and without loss of generality, we assumet tha

totally different or even irrelevant condition. In fact,rsrain- e Proposal distribution is chosen to be the prior distién
ing every particle is equivalent to constraining the suppér and hence the weights are given by the likelihood. Separatin
the posterior distribution to the mentioned interval. This the summation of th¢j — 1) unconstrained particles from the

AR parti ; : .
a much stronger condition than constraining the mean of the Particle, the constraint expression (9) becomes:

distribution or any point estimate, to be inside the intefi@]. j=1 D () ()
We refer to this approach @int wise Density Truncatioar Z p(znlen’)zn” + p(zn|es’)2s
Particle Density Truncatior(PoDeT). We will show in our  a, < ¢n (=2 ; ) <bn. (10)
simulations that PoDeT leads to erroneous estimates of the ZP(ZMCCS))
=1

density and state when soft constraints are imposed.

If we further assume thak,, is given by the identity function,
which corresponds to an interval type constraint, the above

The mean density truncation (MeDeT) methods is coimequality can be expressed in terms of iié particle only
structed to satisfy the constraint on the conditional mea’ follows:

estimate rather than the posterior density itself [10]. frtaén _ o _ o

idea of MeDeT is to first sampl& unconstrained particles { a(e?) < C1({aP V), e2(a) > Co({alP Y,

from the proposal distribution. If thigv-order estimate the (11)
state satisfies the constraints, we keep it. Otherwise, mplsa Where:C1, C; are two constants that depend on the already
an (N + 1)*" particle from the high probability region (orsampled(;j — 1) particles andy;, g2 are given by

high likelihood), to enforce the constraints on the mean. ) ) )

The sampling of the N + 1) particle can be viewed as q1(27") = p(zn|zi”)(an —37),
a perturbation of the unconstrained posterior distributio CJ2(£C$LJ)) = p(zn|£v$f))($55) —bn),
that its mean shifts in the desired boundaries. If a ondgbart _. . th . -

perturbation does not suffice to shift the mean, we drawnd'n_g aj partlcle.that satisfies Eq. (11). could be done
another particle in the high-likelihood region and rechémk analytically or numen_cally. The set of _s_olut|ons o Eq. Xll
the condition, and so on. We keep drawing particles unﬁlnf_orces the constraint on t_hg cond|t|onal_ mean _est|mate
the desired condition is satisfied. Assumeis the number es“”?ate for any subset (.)f part!clﬁsThe following algorithm

of additional particles required to shift the mean. Notibatt details the steps of the inductive MeDeT approach.

whenm = N, the N-particle perturbation is still very differgqt IV. BRAIN SOURCE TRACKING

from the PoDeT method: In the PoDeT method, the original

constraint is enforced on all particles, whereas Mwparticle A The EEG state-space model

MeDeT imposes the desirable condition only on the meanBrain electrical activity at the macroscopic level is gexted

B. Mean Density Truncation

(12)

estimate. by the neuronal brain sources as equivalent electric dspole
) ) _ Normally, there are several active sources (or dipole) at th
C. Inductive Mean Density Truncation same time in different brain regions with different inteies

In MeDeT, the minimum number of particles required tthat are projected above the scalp with positive or negative
shift the conditional mean estimate to the desired bouedarpolarity depending on the orientation of the dipole rekatio
depends on the state-space model at hand and especiallyhenposition of the electrodes. We denote by M the number of
the choice of the proposal distribution from which the g8 active dipoles in the brain that are the source of the etsdtri
are drawn. If the proposal distribution is chosen poorly,,i. activity measured by the multichannel EEG sig#alfrom n.,
far from the posterior density of the state, it may take adargensor at time: Let s,,(m) be the moment signal generated
number of additional particlesr( < 1) to shift the mean of the at dipole m at time n. Let d,,(m) denote the location of
distribution to the desired boundaries. This iterativecgss of the m'" dipole at timen. The EEG signal is related to the



Algorithm 1 Inductive Mean Density Truncation (IMeDeT) measurement can be derived from the Gaussianity of the noise
Denote byC,, the constraint regior, = {x, : a, < and Eq. (16) [5] aZ(z,|(zn, Sn))

G(In) < bn}. .
Unconstrained sampling  exp|— (20 = L(x0)30)"Cy (20 — L(x")sn)], (16)
for n = 1,2,..., T(whereT : time lengh)do 2

for j =1,2,..., N(whereN is the number of particles) B. Constrained EEG source tracking using IMeDeT

do . ... Our EEG experiments are focused on the visual cortex of the
Geperatg) samples from an accessible proposal dlsgf'éin (the experiments are detailed in the sequel). Thezefo
bution x5 ~ Qn(l_'n)- ) G) we expect the estimated dipoles to be in the visual cortex mos
Calculate the weights);”" of 2, using EQ.(6); then , ¢ the time, which corresponds in our head model geometry
normalize the weights.

to dy, < 0, wheredy is the estimated location of the dipole

M ) along they-axis. We therefore add the constraffifdy,,] < 0.
for "}'2""’1 do We expect that adding this constraint will improve the tiagk
it S w2 ec, then accuracy. The IMeDeT algorithm applied to the EEG dynamic

i=1 source localization problem in (15) is presented below.
Go to the next step.

else , N Algorithm 2 EEG dynamic source localization using IMeDeT
Find a particle:r%” such thaty" wPal?) e o, Initialization
end if =t The constraint region is given b¢;, = {z,, : F[dy,] < 0}.
end for For all points of the grid, compute the lead field matfix
end for by solving the Maxwell equations in [5].
N H-
o (i) ,.(4) for j=1,2,...,Ndo ‘
= ;:1 s samplez) ~ go(a).
end for Set initial weightsuw} = L .
end for
i ) ) Sampling
dipoles locations and moments through the following non-for n=12.. n=12.... T do
linear equation [2,10] : for j=1,2,....N do
M Generate samples from the state transition model:
20 =3 Lan(dn(m)) su(m) + up, (13) 2 =29 1 ud).
m=1 For the predicted dipole, find the lead field matrix

L(xﬁf)) from the calculation made at the initial step.
Compute the weights by :

w), = w Lz (@, L)), s17).

Normalize the weights so they sum up to unity.
Compute the weighted mea, = >°7_, w’z{.

whereL,,(d,(m)) is then, x 3 lead field matrix at time for
dipole m, which depends on the dipoles locatia. is a zero
mean, white Gaussian noise with covaria€g. The EEG
observation equation in (13) can be written in vector form as

Zn = L(dyn) Sn + Un, (14) Enforcing the constraint
for i=1,2,...,j do

Where d, = [d.(1),---,d,(M)]* has the 3D if 2, € C,, then
location coordinates of all M dipoles, L(d,) = Go to the next step.
[L1(dn(1)),- -, Lar(dn(M))] is then, x 3M lead field matrix else ,
of the M dipoles at timen, and s, = [sn (L), -, sn(M)J Find a particler?’ such that$" w('z) € C,.
is the vector of dipole moments for th&/ dipoles. The ) i=1
unknown state vector in the EEG problem is defined by the end if
dipoles positions and source moments, i=,, = [d!, st ]t end for
The EEG state-space model is given by: end for

N o
Tn = w2,

Tp = Tp—1 + Un, i=1
{ (15) end for

Zn = Ln(dn) Sn + Un,

Observe that we used a random walk for the state transition

model. This random walk model reflects the fact that we V. SIMULATIONS RESULTS

have no specific a priori knowledge (flat prior) on the state | . )

dynamics. We would like to use the model in (15) to estimaté: Simulation results on synthetic data

at every time step, the dipole locations, and moments We assume that the observed EEG measurements are gen-
sn given the EEG measuremeny. The likelihood of each erated by one moving dipole. The moments are supposed to



Fig. 1. A group of images shown to the subjects in the experiaidramework.

be sinusoidal waveforms with varying frequencies and am¥7, F8,Fpl, Fp2, F3, F4, C3, C4, P3, P4, O1, 02,) and two
plitudes. We apply the unconstrained PF and the constrairteléctrooculogram (EOG) electrodes (vertical and horiabnt
PF using PoDeT and inductive MeDeT algorithms on EEGOG) according to the 10/20 International system. In this
dynamic source localization based on synthetic data that weperiment, the data corresponds to VEP signals and the brai
generate using the model in (15). We use the mean-squactivity is perception of visual stimulus. Therefore, wepest
error (MSE) to assess the three algorithms. We perform fite dipoles to be located, on average, in the primary visual
Monte Carlo runs using 1000 particles for all methods. cortex. We assume the same constraint as in the synthetic dat
Figures 2, 4 and 3 show the tracking of the dipole (positissets, namely=[dy,,] < 0 for all time steps:. We implemented
and moment) using, respectively, the unconstrained partitMeDeT using 1000 particles. We considered estimating one
filter (Fig. 2), the inductive MeDeT (Fig. 4) and PoDeT (Figdipole source for each participant.
3). The star lines represent the estimated positions and th&Ve show the source localization results on two subjects
continuous lines represent the true state for each dimensim Figs. 6 and 7. In each figure, the top row shows tracking
Herein, z-position is in blue,y-position is in green and- of the dipole position and the bottom row shows the dipole
position is in red. Observe that adding the constraint (iD€D moments over time. Observe that the constraint is satisfied,
and IMeDeT) seems to increase the convergence and "locking-, the position of the estimated dipole is located in tiseial
on rate” of the PF. While the unconstrained PF locks ontmrtex(d, < 0). Another observation is that theposition of
the dy location trajectory around time step 23 and locks ontihe dipole location varies between positive and negatilizeg
the z-moment around time step 13, PoDeT and IMeDeT loakhich correspond to the right and left lobes of the brain.réhe
onto their respective trajectories (both location and matne are no significant differences in the dipole locations fog th
very early on. This result of higher convergence rate, thougwo subjects. However, the moment signals are different for
unexpected, is actually pretty intuitive because enfagrdhre the two subjects. Finally, we postulate that in order to olese
constraint helps direct the tracker to the optimal stattyear. significant or abrupt changes in brain source locations, we
Figure 5 shows the MSE of IMeDeT, PoDeT and thaeeed to design an experiment, where two or more areas of the
unconstrained PF. IMeDeT is able to track the dipole bettbrain (e.g., visual and motor) are invoked.
(with the minimum error) than PoDeT and the unconstrained

PF. Moreover, the unconstrained PF seems to have the highest VI. CONCLUSION

MSE both in the location and moment estimations. We proposed the Iterative Mean Density Truncation
o (IMeDeT) to optimally track a state in a non-linear statesp
B. Application to real data model with additional constraints on the expected valuéef t

We apply the proposed IMeDeT algorithm to real EEG dattate. In many dynamical state-space models, additiong} a p
recorded from twelve female subjects aged between 20 asrilknowledge on the state is available. The proposed approa
28 years old. The experimental application was elaborategtends the particle filter to handling constraints by iriety
by Santos et al. [11] for their study on subject perceptiairawing particles that satisfy the desired constraints e t
and attention using the evoked potential signals (VEP)t@&anmean state. We applied IMeDeT to the EEG dynamic source
and co-authors were interested in different facial expoess localization problem, where the brain sources are expected
such as fearful, disgusted and neutral of the subjects.eThés be located in the visual cortex of the brain. Our results
different facial expressions were displayed as the result showed that, incorporating additional a priori knowledge o
exposing the subjects to a sequence of images superimpabedstate as constraints improves the estimation accuracy a
on houses (see Fig.5). For each test, the participants task well as increases the convergence and locking-on rate of the
to determine if the current face or house is the same as the owa-linear tracker. Moreover, we showed that IMeDeT has a
shown on the previous test. Each test remains 1600 ms (4perior performance compared to the main approach, termed
points of digitized EEG samples with sampling rate 250 HBoDeT, widely used for constrained particle filtering. P®De
comprising a pre-stimulus interval of 148 ms (37 sampled) arelies on imposing the constraints on every realizationhef t
post stimulus onset interval of 1452 ms [5]. The distribntdd  state, which results in more stringent and may be completely
the electrodes whose responsible of recording the EEGIsignanrelated conditions than the original conditions on theme
emanate from the scalp around 16 electrodes (Fz, Cz, Pz, \@iue of the state. In our future work, we will investigate th
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