
A Cognitive Agent Architecture for
Feedback Control Scheme Design

Georgios M. Milis, Demetrios G. Eliades, Christos G. Panayiotou, and Marios M. Polycarpou
KIOS Research Center for Intelligent Systems and Networks

Department of Electrical and Computer Engineering
University of Cyprus

Nicosia, Cyprus
Email: {milis.georgios, eldemet, christosp, mpolycar}@ucy.ac.cy

Abstract—We present a novel architecture for the design of
feedback control schemes, aiming to automate the cognitive
process performed by human experts when designing control
schemes for certain systems. The work starts with the identi-
fication of types of cyber-physical modules participating in a
feedback control scheme. Each module is defined as a functional
mapping between inputs-vectors and an output vector. The inputs
and outputs are then mapped to a semantic space formed by
linguistic variables that model the expert knowledge. These
semantic annotations of the modules are then exploited by a
Cognitive Agent with semantic reasoning capabilities, to achieve
the online configuration of a feedback control scheme, given a
set of specifications and a database of available modules’ im-
plementations. The adopted knowledge modelling and reasoning
techniques are driven by past efforts of the World Wide Web
Consortium on the semantic composition of Web services. The
applicability of the method is tested via a paper-based simulation
of a use-case from the smart buildings domain.

I. INTRODUCTION

The recent efforts towards the Internet-of-Things (IoT)
paradigm, lead to the design of cyber-physical systems [1],
which consist of the physical-engineered modules and the
cyber modules that offer advanced internet-enabled commu-
nication and computation capabilities. The characteristics of
these modules turn them into promising candidates for the
adoption of large-scale systems monitoring and control ap-
plications, where the topology and dynamics of the systems
are complex and difficult to handle with traditional monolithic
architectures. Typically, there is a need for smaller modules
to work autonomously to accomplish certain tasks in some
part of the system and effectively co-operate with the rest
of the system as to address higher-level and heterogeneous
monitoring and control challenges [2].

Today’s engineered systems more and more employ sev-
eral cyber and physical modules, like sensors for monitoring
system states, electrical and mechanical actuators, controllers
and a number of other software tools for signal processing,
estimations and online-learning tasks. Utilising the capabilities
of these modules in implementing efficient systems’ moni-
toring and control, can considerably help in saving energy,
reducing economic cost and improving societal welfare. A
great challenge, however, faced in relation with these systems
is the fact that the utilized modules may need to change
during operation, due to replacements, availability of new

technologies or developments of new monitoring and control
capabilities.

During the last two decades, various methodologies have
been developed and proposed for system monitoring and con-
trol, ranging from applications of the classical control theory
of linear systems to techniques with control law adaptation
capabilities [3], to methodologies with online learning capa-
bilities of unknown dynamics, which combine model-based
analytical redundancy and computational intelligence tools, i.e.
neural networks, radial basis functions, etc. [4]. Going one
step further, the control community has also been addressing
the online re-configurability challenge of control systems [5],
including also the identification of newly introduced dynamics
in a plug-and-play fashion [6], [7].

Designing a feedback control scheme for a certain system
is a complicated procedure which relies on the knowledge
and (semantic) reasoning capabilities of human experts. In
practice, a human expert should have a broad background
knowledge of tools (e.g., classical control design methods,
non-linear system control methods, online learning methods
based on computational intelligence, state-estimation methods,
etc.) and in which situations these are best suited, in order to
make an informed selection that fully exploits the available
measurements, plant and actuation constraints. However, it is
very rare, if not impossible, to find and employ a human
expert of such breadth of knowledge whenever a feedback
control scheme is required for a certain system. An additional
drawback in current practices is the lack of mechanisms to
allow online (and where possible automatic) replacement of
individual modules or of the overall control scheme.

The explicit incorporation of semantics in the control sys-
tems’ design has been proposed in 1988 by Prof. Ervin Rodin
in its article titled “Semantic Control Theory” [8]. Prof. Ervin
proposed an architecture, which allows the control system to
reason upon the modelled knowledge and select appropriate
controllers from a pre-existing pool. A more system-theoretic
and philosophical approach to presenting the concepts of
semantic control systems can be found in [9]. More recently,
concrete examples of using ontological (semantic) knowledge
models are observed. For instance in the smart buildings
context, DOGont [10] deals with the current issues of domotic
environments, that is, the existence of many vendors, each with

separate not compatible solutions, the existence of different
technologies, different protocols, different device features, etc.
Moreover, an early effort introducing the need for a modular
architecture for the control system design, has been discussed
in [11]. In the Computational Intelligence domain, a significant
milestone was the approval of the IEEE Standard for Fuzzy
Markup Language (IEEE Std 1855-2016), which specifies an
interoperability framework for fuzzy logic controllers [12],
[13].

The above motivate our work for the design of an archi-
tecture and a more systematic methodology which is able
to utilise expert knowledge and cognitive reasoning based
on semantics, to reproduce part of the reasoning procedure
of a human expert. This would allow new modules to be
gradually deployed as they become available, by automatically
configuring the feedback control scheme. The aim is to achieve
a syntactically and semantically valid composition and to
facilitate interoperability with the other available modules
using a common framework for efficient exchange of data
and knowledge. The concept is driven by past work for the
semantic composition of purely cyber entities (Web services)
[14]. The envisioned impact from the adoption of a module-
based feedback control design, is the faster exploitation, testing
and demonstration of academic research results (such as new
learning, control and optimisation algorithms), in industrial
applications. To demonstrate the application of the proposed
architecture, we present a paper-based simulation of a use-case
where a Cognitive Agent designs feedback control schemes
for smart-building-related plants. It is emphasized that our
work focuses on the online configuration of feedback control
schemes, using existing modules, and does not focus on the
design of any new feedback control algorithm or module.

The paper is organized as follows: Section II formulates
the problem by revisiting the feedback control theory from
the literature and breaking the feedback control scheme into
a set of individual modules. Section III then presents the
design of the proposed architecture, the knowledge space with
the semantic annotations of the modules and the Cognitive
Agent which utilizes semantic reasoning towards the automatic
configuration of feedback control schemes. Section IV presents
the use-case. Finally, Section V concludes the paper and
discusses future directions.

II. PROBLEM FORMULATION

Typically, a feedback control scheme is specifically de-
signed for a certain system/plant, taking into account the
system’s measurable variables, known dynamics, available
actuation capabilities, as well as other relevant information.
The output of the feedback control scheme is the action
applied on the system via the system inputs. In a discrete-
time implementation, the system input v(k), at time k, is a
vector of signals produced by the actuators. In the general
case, the feedback control scheme implementation, can be
considered as composed of sub-modules, some of which are
basic (mandatory) for all implementations of feedback control
schemes while others are required only in certain cases.

These are discussed in the sequel, adopting the approach
introduced in [15] for the module-based analysis of fault-
detection schemes.

A. Basic Modules

First of all, a control scheme is always implemented to offer
a service on a specific plant, therefore the first basic module of
a feedback control scheme is the “Plant” itself. The dynamics
of the plant, adopting a discrete time formulation, are generally
described by x(k) = fp(x(k − 1), v(k), w(k), φ(k), h(k); ζp),
where x(k) ∈ Rn is the vector of state-variables describing the
plant, fp(·) is the function representing the plant’s dynamics,
x(k− 1) is the vector of system-state memory, v(k) ∈ Rm is
the input signal produced by controlled actuators, w(k) is the
input signal produced by uncontrolled sources, φ(k) is a signal
modelling faults introduced in the plant’s dynamics, h(k) is
the input signal produced by third interdependent systems and
ζp is a set of other plant parameters.

The second basic module of a feedback control scheme is
the “Actuator”, given by v(k) = fa(u(k); ζa), where v(k) ∈
V is the system input signal discussed earlier, fa(·) is the
implementation of a function that produces the signal acting
on the controlled system, u(k) is a computed signal that drives
the action and ζa is a set of other parameters required by the
available actuation implementation.

The third basic module in a feedback control scheme is the
“Controller” given by u(k) = fc(y(k), r(k), x̂(k), ĝp(k); ζc),
where u(k) is the control decision signal defined earlier, fc(·)
is the implementation of a control method to derive the signal,
y(k) is the signal representing the plant’s feedback as given
to the controller, r(k) is the desired system state trajectory,
x̂(k) is the estimated system state (optionally used), ĝp(k) is
the estimated value of unknown plant dynamics (optionally
used) and ζc is a set of parameters required by the adopted
controller implementation.

As an example, the control function fc may be a bang-
bang controller that compares the measured states y(k) with
the desired states r(k) and returns a vector of binary signals
indicating whether the measurements are greater than the
desired values or not. Another example may be a fuzzy
control implementation, where the control decision is the
defuzzification of a linguistic value, e.g., “fast”, which was
the output of the triggering of a set of fuzzy rules on the
fuzzified system output.

A fourth basic module of a feedback control scheme is
the “Sensor”, which undertakes the task of measuring the
state of the system and is given by the function y(k) =
fs(x(k), v(k), w(k), φ(k), h(k); ζs), where y(k) is the sig-
nal produced by the installed sensing devices, fs(·) is the
implementation of the system measuring given the avail-
able sensing devices, x(k) is a vector of the system states,
v(k), w(k), φ(k), h(k) are the various plant’s input vectors
discussed earlier and ζs is a set of parameters required by
the adopted implementation of the sensing. For instance, the
sensing parameters may correspond to measurement accuracy

given by manufacturer or location of the device derived from
expert knowledge about the system operation, etc.

In summary, at a minimum, the feedback-control scheme is
composed of the modules specified above, forming a compos-
ite function fa ◦ fc ◦ fs. That is, the input to the system is a
function of the control decision which in turn is a function of
the system measurements.

B. Advanced Modules

In addition to the four basic ones, additional modules
may be required by certain feedback-control schemes. For
instance, the estimation signal of the system states, x̂(k), may
be computed by a separate module. In that case, a “State-
Estimation” module can be considered, given by x̂(k) =
fe(x̂(k−1), ĝp(k), y(k), u(k); ζe), where x̂(k) is the estimated
system states signal at the current time step, fe(·) is the
adopted implementation of the state-estimation, y(k) and u(k)
are the vectors of system’s measured output and known control
signal respectively, ζe is a set of other parameters required by
the adopted implementation, x̂(k−1) is the vector of estimated
previous system state, and ĝp(k) is the estimated value for
unknown plant dynamics (if required). For instance, the State-
Estimation module may correspond to a “Kalman filter” which
produces estimates based on some prior knowledge about the
states, a measurement vector and certain parameters of mea-
surement and state’s uncertainty; it can also be a “Luenberger
observer” which, based on a known model of system dynamics
and the available measurements, produces estimates of the
state.

Furthermore, in the case of having a system model with
unknown dynamics gp(·) (part of fp(·)), a “Learning Module”
can be utilized, to learn the unknown function using a suit-
able approximation structure (e.g., neural network, polynomial
function, radial-basis functions, wavelets, etc.), such that ĝp
approximates gp. This module can be described in general by
ĝp(k) = fθ(y(k), u(k); ζθ), where ĝp(k) is the estimated value
of the unknown function, fθ(·) is the adopted online learning
implementation and ζθ are any other parameters required
by the adopted implementation (e.g., the convergence rate,
knowledge about the structure of the function).

In some cases, the measured system output needs to be
processed by a separate module before being fed to the
controller. For instance, if a system state is measured by more
than one sensor, we may want to fuse the measurements and
use the computed signal in the controller; alternatively this
could correspond to data validation/reconstruction. This step
is undertaken by a “Pre-control Function”, defined as y(k) =
fy(ya(k); ζy), where y(k) is now the processed system output,
fy(·) is the adopted measurement processing implementation,
ya(k) is the actual sensor measurements and ζy are any other
parameters required by the adopted processing implementation
(e.g., knowledge about the proximity of devices to the state
location). Then, the controller implementation fc(·) receives
as input the signal produced by the function fy(·) instead of
the actual measurement ya(k).

Similarly, the output of the controller, u(k) may need
to be processed before fed to the actuators. For instance,
consider the case where a single control signal needs to drive
two actuators. This can be implemented by a “Post-control
Function”, given by ua(k) = fu(u(k); ζu), where ua(k) is
the processed control decision, fu(·) is the adopted control
signal processing implementation, u(k) is the actual control
signal and ζu are any other parameters required by the adopted
processing implementation (e.g., knowledge about the type of
actuation devices). Then, the actuators receive the signal ua(k)
instead of the control signal u(k).

C. Modules Database

All implementations of modules (functions) of the types
discussed above, can be considered as being elements of a
set F , thus forming a database of modules. The set F is a
super-set of the finite-cardinality type-sets of modules, as:
F = Fp ∪ Fa ∪ Fc ∪ Fs ∪ Fe ∪ Fθ ∪ Fy ∪ Fu
In addition, it can be seen from above analysis that all

modules are essentially functional mappings between certain
inputs to certain outputs. The sets of inputs and outputs of
a module are defined here as T (ω) and O(ω) respectively,
where ω is the module. For instance, the inputs set of a
specific sensor implementation f1s is given by T (f1

s), con-
taining all individual inputs and parameters from the vectors
x(k), v(k), w(k), φ(k), h(k); ζs. The outputs set is given by
O(f1

s) and contains the elements of the vector y(k). The
feedback control scheme considers a fixed choreography of
types of modules. That is, the plant’s output will always
be measured by sensing devices, the pre-control processing
functions will always use the sensors’ output as input and
they will give input to a controller, and so on.

D. Cognitive Agent

Depending on the system and the given specifications, an
expert engineer would have selected and designed a feedback-
control system using specific instances of the basic modules
and possibly utilizing additional modules from the advanced
ones, as well as specific domain knowledge expertise. In
other words, to make a decision, the expert engineer relies
on reasoning which considers the available knowledge about
the domain and the feedback-control engineering, including
the associated semantics of each module.

The challenge addressed in this work is to design an
architecture with the ability to utilize pre-modeled expert
knowledge and a set of feedback-control specifications for the
online design and configuration of a suitable feedback-control
scheme, for a large class of systems. The decision about the
configuration of the scheme, can be formulated as:

σ =fσ(G,S) (1)

where σ is a decision vector that models the selection of
specific modules from the subsets of F defined earlier, fσ(·)
is a function implementing the reasoning and the decision
about the scheme configuration, G is the available experts’

knowledge space modelled as a graph, S is the set of feedback-
control (semantic) specifications given to the function (e.g.,
the characteristics of the desired state). The elements of σ
are indexes of the sets of modules defined earlier, such that
σ = [σfp , σfa , σfc , σfs , σfe , σfθ , σfy , σfu]>.

Then the configuration of the feedback control scheme can
be defined as the operator:

f : Σ×F 7→ I (2)

where f is a generic mapping operator, Σ is the space of
configuration decisions, F is the space of all available modules
and I is the space of all configurations of the feedback-control
scheme.

The next sections provide details about the proposed ar-
chitecture for the implementation of the functions fσ and
f , emphasizing on the knowledge space and the reasoning
mechanism.

III. ARCHITECTURE DESIGN

The feedback-control architecture, which implements the
functions described in the previous section, is depicted in
Fig. 1. The top-part of the figure illustrates the Plant on
which the feedback-control service is provided. The plant has
a controlled input vector v(k), an internal state vector x(k) and
dynamics described by a function from the set Fp. The plant
may be also affected by uncontrolled inputs, i.e. disturbances
(vector w(k)), faults (vector φ(k)) and inter-dependencies with
other plants (vector h(k)).

The middle-part of the figure shows the composite Feedback
Control Scheme. The input to the feedback-control scheme
from the plant, is the vector of measurable properties of
the system; we assume these to be the plant’s states x(k).
The output is the signal v(k) produced by the actuators and
affecting the plant’s states. It is noted that the white boxes
(functions) refer to the sets of available modules of each type,
as described in Section II and not to specific instances. The
selection of specific implementations is performed through the
decision signal σ given by the Cognitive Agent (blue dashed
line).

The bottom layer illustrates the design of the Cognitive
Agent. As discussed in Section II, the Cognitive Agent function
fσ utilizes the stored knowledge in the Knowledge Graph
G (including the semantic annotation/characterization of the
described modules), as well as any given specifications S, and
produces a decision as to what instances of modules to adopt
for the feedback control. The decision signal σ is passed to
the function f(·) that invokes the selected instances found in
the database of modules F . An important added-value feature,
is that the databases can be also enriched online, via internet-
based remote services or directly by human experts, through
appropriate interfaces.

A. Knowledge Space and Cognitive Reasoning

Give the analysis performed earlier, the task of the Cognitive
Agent is to utilize pre-defined knowledge about the individual

Fig. 1. Block diagram of the architecture. Top: the plant on which feedback
control service is provided. Middle: the Feedback Control Scheme. Bottom:
the Cognitive Agent

modules and their operation environment and check the match-
ings between their outputs and inputs in a pipeline fashion.
The matching is performed at a semantic level and is therefore
called “semantic matching”. In order to check for a semantic
matching of an output to an input, the Cognitive Agent first
explores the mappings of the output and input variables to
an “(expert) knowledge space”. These are called “semantic
annotations” and are defined as: λ : T (ω) 7→ Λ ⊂ G, for
inputs and correspondingly for outputs, where Λ is the set of
all possible semantic annotations of modules in the knowledge
space.

The semantic matching is defined as another function,
ρ : Λ× Λ 7→ {True, False}. That is, the semantic matching
function takes as input a pair of semantic annotations (of an
output and an input) and returns “True” if the matching is
confirmed and “False” otherwise.

What remains to be defined is the (semantic) knowledge
space G and the actual meaning of the semantic annotation
and semantic matching functions. An early version of the
knowledge space has been defined, adopting the theory of
bipartite graphs, in recent publications by the same authors
[16], [17], with case-studies from the “Water Distribution
Network” and “Smart Grid” domains. In this paper we extend
the work adopting a fundamentally similar but formulation-

wise different approach. We model the expert knowledge
with linguistic variables that take values from discrete sets of
linguistic terms. For the purposes of this work, the semantic
annotation of input and output variables is performed using
three properties to which they refer to: “location”, “physical
quality” and “measurement unit”. These correspond to three
linguistic variables: l ∈ L, where L is the space of possible
locations, q ∈ Q, where Q is the space of possible physical
qualities, and d ∈ D, where D is the space of possible
measurement units. The combination of these three spaces,
defines a 3-dimensional knowledge (discrete) space (G), the
elements of which are the semantic annotations of inputs and
outputs.

The above is clarified in the sequel through an illustrative
example. Consider a plant representing a one-room office
with its temperature state. A feedback control scheme is
deployed in the office, comprising an electric heater intro-
ducing heat energy in the office, a sensor measuring the
temperature in degrees Celsius and a simple proportional
controller that receives the measurement, compares it to a
pre-defined desired value and decides the level on which to
operate the heater. In this example we have three modules:
a sensor f1s , an actuator f1a and a controller f1c . Also, the
plant dynamics are represented by f1p . The sensor has an
inputs-set T (f1

s) and an outputs-set O(f1
s). The respective

sets for the other modules are defined in the same way. In
addition, expert knowledge is assumed defining these linguistic
spaces: L = {l1 : ‘office’, l2 : ‘ambient’, l3 : ‘ceiling’},
Q = {q1 : ‘temperature’, q2 : ‘heat-energy’, q3 : ‘on-off’} and
D = {d1 : ‘Celsius’, d2 : ‘Fahrenheit’, d3 : ‘kW’, d4 : [1,0]}.
Relations (mappings) between the linguistic terms are also
defined. These are formulated with matrix operators, the
elements of which take the value 1 if the two terms are
semantically related and the value 0 otherwise. For instance,
we define the following operators:

M1 : L 7→ L =

l1 l2 l3[]
l1 1 0 1
l2 0 1 0
l3 1 0 1

,

M2 : L 7→ L =

l1 l2 l3[]
l1 1 1 0
l2 1 1 0
l3 0 0 1

,

M3 : D 7→ Q =

d1 d2 d3 d4[]
q1 1 1 0 0
q2 0 0 1 0
q3 0 0 0 1

,

where M1 models the relation “is-part-of” or “contains”
between two locations, M2 models the relation “is-adjacent-
to” between two locations and M3 models the relation “is-
measurement-unit-of” or “is-measured-in-unit” between mea-
surement units and physical qualities.

office

ambient

ceiling

temperature

heat−energy

on−off

Celsius

Fahrenheit

kW

[1,0]

Location

Semantic Knowledge Space

Physical Property

M
e
a
su

r
e
m

e
n

t
U

n
it

Fig. 2. The current knowledge space, showing the semantic mapping of inputs
and outputs of the sensor f1

s . Input: filled circle mark; Output: Cross ‘+’ mark;
Semantic mappings: dashed lines; Specifications: ‘x’ mark

Given the above described knowledge space, Fig. 2 illus-
trates the semantic annotation of the input and output of sensor
f1s , as example. The sensor has one input, ts, with semantic an-
notation λ(ts) = {l3 : ‘ceiling’, q1 : ‘temperature’}, modelling
the fact that the sensor is installed on the ceiling of the room
and senses the physical quality “temperature”. This is shown
on the figure with a green-filled circle mark at the specific
point in space. The output of the sensor, os, has a semantic
annotation λ(os) = {l3 : ‘ceiling’, q1 : ‘temperature’, d1 :
‘Celsius’}, modelling the fact that the sensing signal is fur-
ther given in degrees Celsius. The output annotation in the
knowledge space is shown by a green cross ‘+’ mark. For
completeness, the defined semantic mappings modelled by the
operators M1,M2,M3 above, are shown by yellow dashed
lines. If two points are connected, it means that if the expert
knows something modelled by the first point, the knowledge
modelled by the second point can be inferred automatically.
Finally, we assume that the desired office temperature has
been set to 73oF , which transforms to the following set of
(semantic) specifications for the feedback control scheme:
S = {l1 : ‘office’, q1 : ‘temperature’, d2 : ‘Fahrenheit’}. The
specifications are shown on the figure with a green ‘x’ mark.

B. Semantic Reasoning Algorithm

Having defined the above, the reasoning is implemented by
the algorithm outlined below:

• Start with a set of “Actuator” modules that do not violate
the specifications.

• Find a “Controller” module with outputs that match
semantically with the “Actuators” inputs. If there are re-
maining inputs and/or required parameters, check whether
matching can be achieved by the intervention of “Post-
control Function” module(s).

• For the selected controller, find all “Sensor” modules that
produce outputs that match with the controller’s input.
Check also “Pre-control Function” modules.

• In all cases, check if specifications are met by the
selections, otherwise re-iterate within modules.

• If all successful, create the decision signal σ such as to
enforce the selection of the matching modules.

This work neither focuses on the selection of modules
based on their performance nor does it consider any sensitivity
analysis of the selections. The Cognitive Agent will implement
the feedback control scheme using the first set of modules that
will be found matching. In case of inability to close the loop
with matching modules, the algorithm terminates and informs
inability to configure a feedback control scheme with currently
available modules. Moreover, it is noted that the method is
currently applied for the configuration of control schemes in
plants with slow dynamics, where the time required for the
re-configuration of the scheme does not affect the stability
characteristics. The execution of the algorithm will be clarified
through a use-case in the next section.

IV. USE-CASE

We consider a use-case where the Cognitive Agent’s Se-
mantic Knowledge Space is provided as in Table I. Then, the

TABLE I
CURRENT STATUS OF SEMANTIC KNOWLEDGE SPACE

Specifications S = {l1 : ‘office’, q1 : ‘temperature’, d2 :
‘Fahrenheit’}

Plant f1
p Inputs: T (f1

p) = {{l1 : ‘office’, q2 : ‘heat-energy’}}
Outputs: O(f1

p) = {{l1 : ‘office’, q1 : ‘temperature’}}
Sensor f1

s Inputs: T (f1
s) = {{l3 : ‘ceiling’, q1 : ‘temperature’}}

Outputs: O(f1
s) = {{l3 : ‘ceiling’, q1 :

‘temperature’, d1 : ‘Celsius’}}
Controller f1

c Inputs: T (f1
c) = {{l1 : ‘office’, q1 :

‘temperature’, d1 : ‘Fahrenheit’}}
Outputs: O(f1

c) = {{l1 : ‘office’, q3 : ‘on-off’, d4 :
[1,0]}}

Actuator f1
a Inputs: T (f1

a) = {{l3 : ‘ceiling’, q3 : ‘on-off’, d4 :
[1,0]}}
Outputs: O(f1

a) = {{l3 : ‘ceiling’, q2 :
‘heat-energy’, d3 : ‘kW’}}

Cognitive Agent starts the execution of its semantic reasoning
algorithm to configure the feedback control scheme. The
algorithm’s steps are illustrated in Fig. 3a. All outputs of
modules are marked with the cross sign and all their inputs
are marked with circles. Moreover, each module is shown with
different colour and their inputs and outputs are connected by
same colour lines, modelling their internal transfer functions.
Finally, the modules are numbered in the order they are
explored by the algorithm, which helps following the checks
for output-input semantic matchings. It can be seen that the
semantic annotation of the actuator’s output (cross 2) matches
the semantic annotation of the plant’s input (circle 1) if
projected on the “Locations-Physical Property” plane and then
move along the semantic relation, which models that the
“ceiling” “is-part-of” the “office” (defined by M1 operator).
Then, the semantic annotation of the controller’s output (cross
3) matches the semantic annotation of the actuator’s input
(circle 2) by considering the relation “contains” defined by
the M1 operator. Continuing, the semantic annotation of the
sensor’s output (cross 4) cannot match with the semantic
annotation of the controller’s input (circle 3), since there is

no semantic path to connect them. At this stage, although the
rest of the matchings are confirmed, the algorithm terminates
stating inability to configure a feedback control scheme with
the available modules.

However, we consider that the database of modules is en-
riched online with a pre-control processing function f1y which
converts temperature degrees Celsius to degrees Fahrenheit, as
shown in the Table II.

TABLE II
EXTENDING THE KNOWLEDGE SPACE WITH ADDITIONAL KNOWLEDGE

Pre-control
proc. f1

y

Inputs: T (f1
y) = {{d1 : ‘Celsius’}}

Outputs: O(f1
y) = {{d2 : ‘Fahrenheit’}}

Fig. 3b shows the semantic annotations of the inputs and
outputs of the additional module. It can be seen that the input
of the controller (circle 3) can be now connected with the
output of the function f1y (cross 4) since the latter transforms
the signal in relation to the measurement unit. In the same
way, the output of the sensor (cross 5) can be connected to
the input of the function (circle 4), exploring the semantic
relation “is-part-of” between the ceiling and the office. We
can also see that the specifications (marked with ‘x’) coincide
with an output-input semantic matching, which means that
the conformance to them is taken into consideration by the
system. The algorithm is therefore able to initially configure
(I = 0) the feedback control scheme using the set of modules
{f1p , f1a , f1c , f1y , f1s }.

At some future time k+N of the control system operation,
the plant becomes equipped with a sensor f2s that measures
the opening of a window on the office wall in “percent-
age”. In addition, a new controller (f2c) is uploaded in the
modules’ database, which implements fuzzy logic decision
based on temperature estimation and window opening inputs.
For instance, the controller may define appropriate linguistic
variables for the temperature, e.g., “high”/“low” and the win-
dow opening, e.g., “little”/“much”, so as to make decision
for operating the heating device at “low”/“high” level. A
Luenberger observer [18] f1e is also uploaded in the database,
able to implement state-estimation for the plant and already
considering internally the transformation of the temperature
measurement units. The pre-control function that transforms
Celsius to Fahrenheit is removed from the database to facilitate
clarity of the presentation. The details of the implementations
of the modules are not the focus of this work. Finally, a new
specification is introduced, requiring to “consider the opening
of the window”. New semantic annotations are introduced in
the knowledge space, as indicated in III.

Figure 4 illustrates the execution of the algorithm given
the newly introduced changes in the modules. It can be seen
that nothing changes with the matching of the actuator’s
output to the plant’s input. Then, the algorithm infers that
both controllers’ outputs are candidates to connect to the
input of the actuator (see cross 3,3b). Moreover, the inputs of
both controllers (red circles 3,3b) are matched with outputs

office

ambient

ceiling

temperature

heat−energy

on−off

Celsius

Fahrenheit

kW

[1,0]

(4)

(4)

Location

(2)

(2)

Semantic matching algorithm. Execution 1

(1)

(3)

(1)

(3)

Physical Property

M
e
a

su
r
e
m

e
n

t
U

n
it

(a)

office

ambient

ceiling

temperature

heat−energy

on−off

Celsius

Fahrenheit

kW

[1,0]

(5)

(5)

Location

(2)

(2)

Semantic matching algorithm. Execution 2

(1)

(3)

(4)

(4)

(1)

(3)

Physical Property

M
e
a

su
r
e
m

e
n

t
U

n
it

(b)

Fig. 3. Illustration of semantic annotations and matchings

TABLE III
SECOND KNOWLEDGE SPACE EXTENSION

Sensor f2
y Inputs: T (f2

y) = {{l4 : ‘window’, q4 : ‘opening’}}
Outputs: O(f2

y) = {{l4 : ‘window’, q4 :
‘opening’, d5 : ‘percentage’}}

Controller f2
c Inputs: T (f2

c) = {{l1 : ‘office’, q1 :
‘temperature’, d2 : ‘Fahrenheit’}, {l4 :
‘window’, q4 : ‘opening’, d5 : ‘percentage’}}
Outputs: O(f2

c) = {{l1 : ‘office’, q3 : ‘on-off’, d4 :
[1,0]}}

State-estimator
f1
e

Inputs: T (f1
e) = {{l1 : ‘office’, q1 :

‘temperature’, d1 : ‘Celsius’}}
Outputs: O(f1

e) = {{l1 : ‘office’, q1 :
‘temperature’, d2 : ‘Fahrenheit’}}

Specification S {l4 : ‘window’, q4 : ‘opening’}

from available sensors (see light blue cross 5b and brown
cross 5 through the state estimation module 4b). However,
the only option that satisfies also the specification at point

{l4 : ‘window’, q4 : ‘opening’} is the selection of controller f2c
which uses the measurement of the window opening as well.
Therefore, the Cognitive Agent terminates the execution with
the successful configuration of the feedback control scheme
(I = 1) using the set of modules {f1p , f1a , f2c , f1e , f1s , f2s }.

In the same way, the Cognitive Agent is able to use more
complex knowledge spaces and semantic operations in order
to explore the semantic knowledge space and the respective
modules’ semantic annotations and subsequently configure the
feedback control schemes.

V. CONCLUDING REMARKS AND FUTURE PLANS

The work presented in this paper, introduced an effort to
automate the design process of a feedback control scheme. The
expert engineering and domain knowledge have been modelled
using well established knowledge representation techniques
and an agent has been designed with the ability to reproducing
part of the cognitive process and reasoning performed by the
engineer when designing the feedback control scheme. The

office
ambient

ceiling
window

temperature

heat−energy

on−off

opening

Celsius

Fahrenheit

kW

[1,0]

percentage

(5)

(5)

Location

(2)

,(3b)

(5b)

(5b)

(2)

Semantic matching algorithm. Execution 3

,(3b)

(1)

(3)

(4b)

(4b)

(1)

(3)(3b),

Physical Property

M
e
a

su
r
e
m

e
n

t
U

n
it

Fig. 4. Illustration of the third semantic matching

primary impact of these results is the fact that it defines
clear semantic interfaces between parts of the feedback control
process and enables industrial set-ups and/or academic proto-
types to allow online plugging-in of new implementations of
modules. Immediate future plans foresee the enrichment of the
knowledge space to facilitate more complex reasoning tasks,
the development of techniques to infer knowledge from data
and encode it in the knowledge space and the development
of a web platform prototype offering the described services
of the Cognitive Agent. Furthermore, depending on the mod-
elled expert knowledge, the Cognitive Agent will support the
configuration of feedback control schemes in heterogeneous
domains (e.g., water distribution networks, electric power grid,
smart buildings). We aim at exploring how knowledge from
one domain and/or configuration decisions in one domain can
affect the configuration of control systems in another domain.

ACKNOWLEDGMENT

This work is partially funded by the European Research
Council (ERC) under the project ERC-AdG-291508 “Fault-
Adaptive Monitoring and Control of Complex Distributed
Dynamical Systems” (FAULT-ADAPTIVE).

REFERENCES

[1] P. J. Antsaklis, B. Goodwine, V. Gupta, M. McCourt, Y. Po Wu, M. Xia,
H. Yu, and Z. Feng, “Control of cyberphysical systems using passivity
and dissipativity based methods,” Eur. J. Control, vol. 19, no. 5, pp.
379–388, 2013.

[2] W. A. H. Thissen and P. M. Herder, “System of Systems Perspectives
on Infrastructures,” in System of Systems Engineering, M. Jamshidi, Ed.
John Wiley & Sons, Inc., Hoboken, NJ, USA, 2008, ch. 11.

[3] P. A. Ioannou and J. Sun, Robust Adaptive Control. Englewood Cliffs,
NJ: Prentice-Hall, 1996.

[4] J. Farrell and M. Polycarpou, Adaptive Approximation Based Control:
Unifying Neural, Fuzzy and Traditional Adaptive Approximation Ap-
proaches, N. J. W. Hoboken, Ed. J. Wiley, 2006.

[5] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki, Diagnosis and
fault-tolerant control. Springer Verlag, 2003.

[6] T. Knudsen, “Awareness and its use in Plug and Play Process Control,”
Convergence, pp. 4078–4083, 2009.

[7] J. Stoustrup, “Plug & Play Control: Control Technology Towards
New Challenges,” European Journal of Control, vol. 15, no. 3-4, pp.
311–330, Aug. 2009. [Online]. Available: http://ejc.revuesonline.com/
article.jsp?articleId=13584

[8] E. Rodin, “Semantic control theory,” Appl. Math. Leu., vol. 1, no. 1,
1988.

[9] C. Joslyn, “Semantic control systems,” World Futures: Journal of
General Evolution, vol. 45, no. 1-4, pp. 87–123, 1995.

[10] E-Lite, “DogOnt,” 2012. [Online]. Available: http://elite.polito.it/dogont
[11] M. Boasson, “Control systems software,” Automatic Control, IEEE

Transactions on, vol. 38, no. 7, pp. 1094–1106, 1993.
[12] G. Acampora and V. Loia, “Fuzzy control interoperability and scalability

for adaptive domotic framework,” IEEE Transactions on Industrial
Informatics, vol. 1, no. 2, pp. 97–111, May 2005.

[13] 1855-2016 — IEEE Standard for Fuzzy Markup Language, IEEE Std.,
2016.

[14] G. C. B. D. M. Z. Mrissa, M., Context and Semantic Composition of Web
Services. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp.
266–275. [Online]. Available: http://dx.doi.org/10.1007/11827405 26

[15] G. Milis, D. Eliades, C. Panayiotou, and M. Polycarpou, “A cognitive
fault-detection design architecture,” in IJCNN, World Congress in Com-
putational Intelligence, 2016.

[16] G. M. Milis, D. G. Eliades, C. G. Panayiotou, and M. M. Polycarpou,
“Semantic mediation in smart water networks,” in Computational Intel-
ligence, 2015 IEEE Symposium Series on, Dec 2015, pp. 617–624.

[17] G. M. Milis, M. Asprou, E. Kyriakides, C. G. Panayiotou, and M. M.
Polycarpou, “Semantically-enhanced configurability in state estimation
structures of power systems,” in Computational Intelligence, 2015 IEEE
Symposium Series on, Dec 2015, pp. 679–686.

[18] D. Luenberger, “Observers for multivariable systems,” IEEE Transac-
tions on Automatic Control, vol. 11, no. 2, pp. 190–197, Apr 1966.

