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Abstract—The ordered weighted average (OWA) aggregation 
is an extension of the classical weighted average by using a 
reordering process of the arguments in a decreasing or 
increasing way. This article presents new averaging aggregation 
operators by using sums and order inducing variables. This 
approach produces the induced ordered weighted average sum 
(IOWAS). The IOWAS operator aggregates a set of sums using a 
complex reordering process based on order-inducing variables. 
This approach includes a different types of aggregation 
structures including the well-known OWA families. The work 
presents additional generalizations by using generalized and 
quasi-arithmetic means. The paper ends with a simple numerical 
example that shows how to aggregate with this new approach. 

Keywords—ordered weighted average; induced aggregation 
operators; sums; quasi-arithmetic means 

I. INTRODUCTION 

Averaging aggregation operators are very common in the 
literature [1-2]. They summarize the information of a set of 
data. A very well-known averaging aggregation operator is the 
ordered weighted average (OWA) operator [3-4]. It is an 
averaging aggregation operator that collects the data of a set 
providing a parameterized family of aggregation operators 
between the minimum and the maximum. The OWA operator 
orders the data in a decreasing or increasing way. However, in 
many problems it is necessary to consider more complex 
reordering processes of the information. An alternative 
operator to the OWA operator that is able to do so is the 
induced OWA operator [5]. It aggregates the information 
similarly to the OWA operator but with an initial reordering 
process that can take any form according to order-inducing 
variables. Recently, the IOWA operator has received a lot of 
attention by many authors. Some authors suggested geometric 
versions [6-7]. Merigó and Gil-Lafuente [8] used generalized 
and quasi-arithmetic means in the aggregation. Other authors 
extended this approach to uncertain environments where the 
information can be assessed with interval numbers [9], fuzzy 
numbers [10-11], intuitionistic fuzzy sets [12-13] and linguistic 
variables [14]. Some other studies have developed other 
extensions by using other types of aggregations including 

weighted averages [15], probabilities [16], Choquet integrals 
[17-18], moving averages [19] and distance measures [20]. 

Recently, Merigó and Yager [21] introduced the ordered 
weighted average sum (OWAS). It is an aggregation operator 
that aggregates a set of sums from the lowest sum to the 
highest one. By doing so, this approach can analyze a set of 
sums considering the attitudinal character of the decision 
maker. They also presented several generalizations by using 
generalized and quasi-arithmetic means and Choquet integrals. 
Note that the OWAS operator can be seen as a particular case 
of OWA norms (OWAN) [22]. 

The aim of this paper is to present a more general 
framework of the OWAS operator by using induced 
aggregation operators. The article introduces the induced 
ordered weighted average sum (IOWAS). This averaging 
aggregation operator deals with a set of sums summarizing the 
information through the use of order-inducing variables that 
represent complex attitudes in the analysis of the data. The 
work studies some key properties and some families of 
IOWAS operators including the average sum, the step-IOWAS 
and the olympic-IOWAS operator. 

The article also presents further generalizations of the 
IOWAS operator by using generalized and quasi-arithmetic 
means obtaining the induced generalized OWA sum 
(IGOWAS) and the induced Quasi-OWA sum (Quasi-
IOWAS). These operators include a wide range of particular 
cases including the geometric induced OWA sum (GIOWAS), 
the induced quadratic OWA sum (IQOWAS), and the induced 
harmonic OWA sum (IHOWAS). The study ends analyzing the 
applicability of the new approach in different fields and 
developing a simple numerical example of an aggregation 
process of sums in the analysis of variable and fixed costs in an 
enterprise. 

The rest of the paper is organized as follows. Section 2 
briefly reviews the preliminaries of the paper. Section 3 
introduces the IOWAS operator and some of its key properties. 
Section 4 presents the Quasi-IOWAS operator and some 
representative particular cases. Section 5 develops an 



illustrative example and Section 6 summarizes the main 
conclusions and findings of the article. 

II. PRELIMINARIES 

A. The Ordered Weighted Average 

The OWA operator [3] is an averaging aggregation 
operator that has received a lot of attention during the last years 
[4]. OWA aggregates the data giving a parameterized system 
of aggregation operators that move between the maximum and 
the minimum. The OWA operator is formulated as follows. 

Definition 1. An OWA operator of dimension n is a mapping 
OWA: Rn → R that has an associated weighting vector W of 
dimension n with   n

j jw1 1  and wj  [0, 1], such that:                                                             

 OWA (a1, a2, …, an) = 


n

j
jjbw

1
,                         (1) 

where bj is the jth largest of the ai.  

B. Induced Aggregation Operators 

The IOWA operator was introduced by Yager and Filev [5] 
and its main difference with the OWA operator is that the 
reordering step is not developed with the values of the 
arguments ai. In this case, the reordering step is developed with 
order-inducing variables. It can be defined as follows. 

Definition 2. An IOWA operator of dimension n is a mapping 
IOWA: Rn × Rn  R that has an associated weighting vector W 
of dimension n with   n

j jw1 1  and wj  [0, 1], such that: 

IOWA (u1, a1, u2, a2, …, un , an) =  


n

j
jjbw

1
,           (2) 

where bj is the ai value of the IOWA pair ui,ai having the jth 
largest ui, ui is the order-inducing variable and ai is the 
argument variable. 

The OWA operator is included as a particular case when 
the ordering provided by the order inducing variables is 
equivalent to a numerical decreasing order of the arguments. 
The IOWA operator can be generalized with generalized and 
quasi-arithmetic means. The result is the IGOWA and the 
Quasi-IOWA operator. The Quasi-IOWA operator can be 
defined as follows. 
Definition 3. A Quasi-IOWA operator is a mapping QIOWA: 
Rn × Rn → R with a weighting vector W of dimension n, 

 
n
j jw1 1  and wj  [0, 1], such that: 

QIOWA (u1,a1, …, un,an) =  











 n

j
jj bgwg

1

1 ,           (3) 

where (b1, …, bn) is simply (a1, …, an) reordered in decreasing 
order of the values of the ui, ui is the order-inducing variable, 
ai is the argument variable and g is a strictly continuous 
monotonic function.  

Note that the Quasi-IOWA operator includes a wide range 
of aggregation operators. For further reading on the IOWA, 
refer, e.g., to Merigó and Gil-Lafuente [8] and Yager et al. [4]. 

C. The Ordered Weighted Average Sum 

The ordered weighted average sum (OWAS) is an 
aggregation operator that aggregates a set of sums from the 
minimum sum to the maximum one. It is very useful for 
dealing with the aggregation of sums which is very common in 
business and economics when dealing with the sum of 
economic variables such as the costs, sales, benefits and assets. 
The OWAS operator can be defined as follows for two sets X = 
{x1, …, xn} and Y = {y1, …, yn}. 

Definition 4. An OWAS operator of dimension n is a mapping 
OWAS: Rn  Rn → R that has an associated weighting vector W 
of dimension n with   n

j jw1 1  and wj  [0, 1], such that:                                          

OWAS ([x1 + y1], …, [xn + yn]) = 


n

j
jjbw

1
,                    (4) 

where bj is the jth largest of the [xi + yi].  
The OWAS operator accomplishes other properties similar 

to the common OWA operators [3-4]. Moreover, it includes a 
wide range of particular cases including the average sum, the 
step-OWAS and the median sum [21,24]. 

The attitudinal character of the OWAS operator can also be 
measured through the degree of orness measure [3] as follows: 

(W) =  












n

j
j n

jn
w

1 1
.                                        (5) 

III. THE INDUCED ORDERED WEIGHTED AVERAGE SUM 

A. Theoretical Foundations 

The induced OWA sum (IOWAS) is an averaging 
aggregation operator that aggregates a set of sums from the 
minimum to the maximum and by using a complex reordering 
process that is carried out with order-inducing variables. The 
main advantage of this approach is that it represents a general 
framework for aggregating sums between the minimum and the 
maximum and adapting the results to the specific interests of 
the decision maker. The IOWAS operator is defined as follows. 

Definition 5. An IOWAS operator of dimension n is a 
mapping IOWAS: Rn  Rn  Rn → R that has an associated 
weighting vector W of dimension n with   n

j jw1 1  and wj  

[0, 1], such that:                                                             

IOWAS (u1, x1, y1, …, un , xn, yn) = 


n

j
jjbw

1
,            (6) 

where bj is the [xi + yi] value of the IOWA triplet ui, xi, yi 
having the jth largest ui, ui is the order-inducing variable and 
[xi + yi] is the argument variable represented in the form of a 
sum. 



Observe that the IOWAS operator is symmetric. Therefore, 
although Definition 5 reorders the order-inducing variables in 
a decreasing way, it is also possible to consider an ascending 
IOWAS (AIOWAS) operator by using wj = w*nj+1, where wj 
is the jth weight of the descending IOWAS operator and 
w*nj+1 the jth weight of the AIOWAS operator. 

When W = 
n
j jw1 1 , then, the IOWAS operator can be 

formulated in a more general way as: 

IOWAS (u1, x1, y1, …, un , xn, yn) = 


n

j
jjbw

W 1

1
.         (7) 

The IOWAS operator is commutative, monotonic, 
idempotent and bounded. This can be proved with the 
following theorems. 

Theorem 1 (Commutativity of IOWA aggregation). Suppose f 
is the IOWAS operator, then 

 
f (u1, x1, y1, …, un, xn, yn) = f (u1, c1, d1, …, un, cn, dn),                        

(8) 
where (u1, x1, y1, …, un, xn, yn) is any permutation of the 
arguments (u1, c1, d1, …, un, cn, dn). 

 
Proof. Let 

f (u1, x1, y1, …, un, xn, yn) = 


n

j
jjbw

1
,                     (9) 

f (u1, c1, d1, …, un, cn, dn) = 


n

j
jjew

1
.                   (10) 

Because (u1, x1, y1, …, un, xn, yn) is a permutation of (u1, 
c1, d1, …, un, cn, dn), and we have  |xi + yi| = |ci + di|, for all 
i, and then 

f (u1, x1, y1, …, un, xn, yn) = f (u1, c1, d1, …, un, cn, dn).  ■ 

Note that the commutativity of the IOWAS can also be 
studied from the context of a distance measure, which can be 
proved with the following theorem. 
 
Theorem 2 (Commutativity – sum). Suppose f is the IOWAS 
operator, then 

f (u1, x1, y1, …, un, xn, yn) = f (u1, y1, x1, …, un, yn, xn).                        
(11) 

Proof. Let 

f (u1, x1, y1, …, un, xn, yn) = 


n

j
jjbw

1
,                     (12) 

f (u1, y1, x1, …, un, yn, xn) = 


n

j
jjew

1
.                     (13) 

Because |xi + yi| = |yi + xi|, for all i, then 
 

f (u1, x1, y1, …, un, xn, yn) = f (u1, y1, x1, …, un, yn, xn).  ■ 
 
Theorem 3 (Monotonicity). Suppose f is the IOWAS operator; 
if |xi + yi| ≥ |ci + di|, for all ii, then 

f (u1, x1, y1, …, un, xn, yn) ≥ f (u1, c1, d1, …, un, cn, dn).  
(14) 

Proof. Let 

f (u1, x1, y1, …, un, xn, yn) = 


n

j
jjbw

1
,                       (15) 

f(u1, c1, d1, …, un, cn, dn) = 


n

j
jjew

1
.                       (16) 

Because |xi + yi| ≥ |ci + di|, for all i, then 
 

f (u1, x1, y1, …, un, xn, yn) ≥ f (u1, c1, d1, …, un, cn, dn).  ■ 
 

Theorem 4 (Boundary condition). Suppose f be the IOWAS 
operator, then 

min{|xi + yi|} ≤ f (u1, x1, y1, …, un, xn, yn) ≤ max{|xi + yi|}.                     
(17) 

Proof. Let max{|xi + yi|} = c and min{|xi + yi|} = d; then 

f (u1, x1, y1, …, un, xn, yn) = 


n

j
jjbw

1
  



n

j
jcw

1
 = 



n

j
jwc

1
,                    

(18) 

f (u1, x1, y1, …, un, xn, yn) = 


n

j
jjbw

1
  dw

n

j
j

1
 = 



n

j
jwd

1
.                     

(19) 
 

Because  
n
j jw1 1 , we get 

f (u1, x1, y1, …, un, xn, yn)  c,                           (20) 
f (u1, x1, y1, …, un, xn, yn)  d.                           (21) 

Therefore, 

min{|xi + yi|} ≤ f (u1, x1, y1, …, un, xn, yn) ≤ max{|xi + yi|}.■     

Theorem 5 (Idempotency). Let f be the IOWAS operator; if |xi 
+ yi| = a, for all i, then 

f (u1, x1, y1, …, un, xn, yn) = a.                           (22) 

Proof. Because |xi + yi| = a, for all i, we have 

f (u1, x1, y1, …, un, xn, yn) = 


n

j
jjbw

1
 = 



n

j
j aw

1
 = 

 = 


n

j
jwa

1
.     (23) 

Because  
n
j jw1 1 , we get 

f (u1, x1, y1, …, un, xn, yn) = a.                                ■ 

The weighting vector of the IOWAS operator can be 
characterized by using a wide range of measures [3,8]. The 
degree of orness, also known as the degree of optimism, is 
similar to the degree of orness of the OWA operator although 
it has some important differences [3]. It is formulated as 
follows: 

(W) =  












n

j
j n

jn
w

1 1
.                              (24) 



Observe that here the orness assumes that the ordering 
given by the order-inducing variables gives first the maximum 
and so on. Sometimes it is possible to assume this when the 
numerical information is not linearly ordered in a decreasing 
way. An example of this could be the temperature of the 
human body. However, in order to analyse the orness in a 
similar way to the OWA operator [3], we should reorder the 
weights according to the numerical values of the arguments in 
a decreasing way. 

The entropy of dispersion of the IOWAS weighting vector 
uses the same formulation as in the OWA operator [3] and has 
strong similarities with the Shannon entropy [23]. It is defined 
as: 

H(W) = 


n

j
jj ww

1
)ln( .                            (25) 

Note that the maximum entropy appears with the 
arithmetic mean while the lowest one occurs when all the 
weight is given to one weight as in the step-OWA operator 
[24].  

The balance operator of the IOWAS operator uses the 
same structure as in the OWA operator and its generalizations 
[8,25]: 

BAL (W) =  












n

j
jw

n

jn

1 1

21
.                     (26) 

Note that the assumption is that Eq. (26) measures the 
balance of the weights. However, from a numerical 
perspective, the balance to the maximum and the minimum 
should be measured considering that the first weight should 
aggregate the maximum, the second weight the second largest 
and so on. 

Finally, it is worth noting that all the analysis presented for 
the IOWAS operator has been developed for two sets. 
However, it is possible to extend this approach to m sets. In 
this case, we could extend Eq. (6) in the following way. 
 
Definition 6. An IOWAS operator of dimension n is a 
mapping IOWAS: Rn  Rn  …  Rn → R that has an associated 
weighting vector W of dimension n with   n

j jw1 1  and wj  

[0, 1], such that:                                                             




n

j
jj

m
nnn

m bwxxuxxuf
1

1
1

1
11 }),...,,},...{,...,,({ ,            (27) 

where bj is the ]...[ 1 m
ii xx   value of the IOWA set ui, xi

1, 

…, xi
m having the jth largest ui, ui is the order-inducing 

variable and ]...[ 1 m
ii xx  is the argument variable given in 

the form of a sum. 

B. Families of IOWAS Operators 

The IOWAS operator includes many different types of 
aggregation operators by using different expressions in the 
weighting vector. Among others, let us look into the following 
ones: 

The maximum sum is found if wp = 1 and wj = 0, for all j  
p, and up = Maxai). 

The minimum sum appears if wp = 1 and wj = 0, for all j  
p, and  up = Minai. 

More generally, if wk = 1 and wj = 0 for all j  k, we get the 
step-IOWAS operator.  

If wj = 1/n for all i, the IOWAS operator is converted into 
the simple average sum (AS) as follows: 

AS (u1, x1, y1, …, un , xn, yn) =  


n

i
ii yx

n 1
)(

1
,            (28) 

Although it is not strictly a particular case of the OWAS 
operator, it is also interesting to mention the weighted average 
sum which is defined as follows: 

WAS (u1, x1, y1, …, un , xn, yn) =  


n

i
iii yxw

1
)( ,         (29) 

The OWAS operator (Eq.(4)) appears if the ordered 
position of the order-inducing variables ui of the IOWAS 
operator have the same ordering as the decreasing order 
generated by the numerical values of |xi + yi|, for all i. 

The olympic-IOWAS operator is formed when w1 = wn = 
0, and for all others, wj* = 1/(n  2). That is: 

f(u1, x1, y1,…, un , xn, yn) = 






1

22

1 n

j
jb

n
,                 (30) 

Note that Eq. (20) could be generalized with wj = 0 for j = 
1, 2, …, k, n, n  1, …, n  k + 1; and for all others, wj* = 1/(n 
 2k), where k < n/2.  This formulation would represent a 
generalized olympic-IOWAS operator. 

Note that a wide range of other expressions in the 
weighting vector of the IOWAS operator could be studied 
following the OWA and IOWA literature [8,24,26-27]. 

IV. GENERALIZED MEANS IN THE IOWAS OPERATOR 

The IOWAS operator is an arithmetic averaging 
aggregation operator. However, it is possible to extend it by 
utilizing generalized and quasi-arithmetic means [8,28-29]. By 
using generalized means, we obtain the induced generalized 
OWAS (IGOWAS) operator. It is defined as follows for two 
sets X = {x1, …, xn} and Y = {y1, …, yn}: 

Definition 7. An IGOWAS operator of dimension n is a 
mapping IGOWAS: Rn  Rn  Rn → R with a weighting vector 
W of dimension n where   n

j jw1 1  and wj  [0, 1], such 

that:                                                             

IGOWAS (u1, x1, y1, …, un , xn, yn) =



/1

1













n

j
jjbw ,   (31) 

where bj is the [xi + yi] value of the IOWA triplet ui, xi, yi 
having the jth largest ui, ui is the order-inducing variable, [xi + 



yi] is the argument variable and λ is a parameter such that λ  
{∞, ∞} – {0}. 

Note that the IGOWAS operator can be further generalized 
obtaining the induced quasi-arithmetic OWAS (Quasi-
IOWAS) operator. It is formulated as follows: 

QIOWAS(u1, x1, y1,…,un , xn, yn) = 












 n

j
jj bgwg

1

1 )( , (32) 

where g is a strictly continuous monotonic function. 
The main advantage of the IGOWAS and the Quasi-

IOWAS operator is that they provide a more general 
formulation that includes a wide range of particular 
aggregation operators including quadratic, cubic, harmonic 
and geometric aggregations. 

The IGOWAS operator can also consider more than two 
sets as it is shown in Eq. (27) for the IOWAS operator. In this 
case, the formula would be as follows: 




/1

1

1
1

1
11 }),...,,},...{,...,,({ 













n

j
jj

m
nnn

m bwxxuxxuf .   (33) 

The IGOWAS operator includes a wide range of particular 
types of aggregation by using a different expression in the 
parameter λ. For example, for m sets: 

 If λ = 1, the IGOWAS is converted into the usual IOWAS 
operator. 

 If λ = 2, we obtain the quadratic IOWAS (IOWQAS) 
operator. 

}),...,,},...{,...,,({ 1
1

1
11

m
nnn

m xxuxxuf  












n

j
jjbw

1

2 .    (34) 

 If λ = 3, we obtain the cubic IOWAS (IOWCAS) operator. 

}),...,,},...{,...,,({ 1
1

1
11

m
nnn

m xxuxxuf

3/1

1

3













n

j
jjbw .    (35) 

 If λ = –1, we get the harmonic IOWAS (IOWHAS) 
operator. 

}),...,,},...{,...,,({ 1
1

1
11

m
nnn

m xxuxxuf




n

j j

j

b

w

1

1
.           (36) 

 If λ → 0, we get the geometric IOWAS (IOWGAS) 
operator.  

}),...,,},...{,...,,({ 1
1

1
11

m
nnn

m xxuxxuf 


n

j

w
j

jb
1

.           (37) 

Note that a lot of other particular cases could be studied 
following the OWA literature [8]. 

V. NUMERICAL EXAMPLE 

In this Section, let us briefly analyze the calculation process 
of the IOWAS operator. Assume we have two sets of 5 
arguments as follows: X = (20, 50, 60, 30, 80) and Y = (70, 50, 
30, 90, 60). In this case, consider the following order-inducing 
variables: U = (6, 8, 3, 9, 4). The weighting vector used in the 
aggregation is as follows: W = (0.3, 0.2, 0.2, 0.2, 0.1).  

With this information, we can aggregate the IOWAS 
operator in the following way. 

First, we calculate the individual sums between the sets X 
and Y. 

 (x1 + y1) = (20 + 70) = 90. 
 (x2 + y2) = (50 + 50) = 100. 
 (x3 + y3) = (60 + 30) = 90. 
 (x4 + y4) = (30 + 90) = 120. 
 (x5 + y5) = (80 + 60) = 140. 

Next, we reorder the data according to the order-inducing 
variables in a decreasing way. 

 u4 > u2 > u1 > u5 > u3. 

Therefore, the aggregation of the IOWAS operator 
proceeds as follows. 

IOWAS = 0.3 × 120 + 0.2 × 100 + 0.2 × 90 + 0.2 × 140 + 
0.1 × 90 = 111. 

As we can see, the IOWAS operator follows a very similar 
methodology to the IOWA operator [5] but with an additional 
first step that calculates the individual sums between the 
arguments of the two sets X and Y. 

Note that this methodology is very useful in a wide range of 
situations because it is very common in the real world to make 
aggregations of sums. For example, in business and economics 
it is very useful to calculate the average values of different 
economic variables such as the costs and the quantity of 
product. Usually the total costs depend on several costs that are 
summed, especially the fixed cost plus the variable cost. If we 
consider different sections, companies, cities or countries, we 
may calculate the average cost in each region. Therefore, we 
are aggregating a set of sums. And obviously, in these 
situations the IOWAS operator may be very useful to under or 
overestimate the information according to a complex attitudinal 
character. 

VI. CONCLUSIONS 

This paper has studied averaging sums with induced 
aggregation operators. By doing so, the aggregation process of 
sums can be assessed with complex attitudinal characters that 
depend on order-inducing variables. First, the study has 
introduced the IOWAS operator. The main advantage of this 
approach is its flexibility to adapt to different environments 
when dealing with averaging sums. Further extensions have 
been developed forming the IGOWAs and the Quasi-IOWAS 
operator, respectively. These generalizations include the 
geometric IOWAS and the quadratic IOWAS operator. 



The work has analyzed the applicability of the new 
approach and it is very broad because all the studies that use 
averaging sums can be revised with this new approach. Note 
that averaging sums are very common when dealing with 
several sets of elements. For example, in economics and 
business it can represent the average sum of the sales of a set of 
products, the costs, and the demand. The work has briefly 
showed a simple numerical example in order to understand the 
new approach. 

In future research, additional improvements are possible by 
using other issues in the aggregation including distances [30-
31], Choquet integrals [32], interval numbers [33-34], fuzzy 
numbers [35-36] and moving averages [19]. Moreover, it is 
relevant to consider different types of ordering process of the 
arguments since the paper focuses on ordering after the sum 
although it is also possible to order before the individual sums. 
A deeper focus on the applicability will be developed by 
considering more research topics. Attention will be given to 
economic problems that deal with average sums.   
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