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Abstract—We live in the era of big data with dataset sizes
growing steadily over the past decades. In addition, obtaining
expert labels for all the instances is time-consuming and in many
cases may not even be possible. This necessitates the development
of advanced semi-supervised models that can learn from both
labeled and unlabeled data points and also scale at worst linearly
with the number of examples. In the context of kernel based semi-
supervised models, constructing the training kernel matrix for the
large training dataset is expensive and memory inefficient. This
paper investigates the scalability of the recently proposed multi-
class semi-supervised kernel spectral clustering model (MSSKSC)
by means of random Fourier features. The proposed model maps
the input data into an explicit low-dimensional feature space.
Thanks to the explicit feature maps, one can then solve the
MSSKSC optimization formation in the primal, making the com-
plexity of the method linear in number of training data points.
The performance of the proposed model is compared with that
of recently introduced reduced kernel techniques and Nyström
based MSSKSC approaches. Experimental results demonstrate
the scalability, efficiency and faster training computation times of
the proposed model over conventional large scale semi-supervised
models on large scale real-life datasets.

I. INTRODUCTION

Learning methods are at the heart of many modern com-

puter applications. A major obstacle in the successful use

of completely supervised learning models is the need for

sufficient expert-labeled instances. However, in many real-life

applications, obtaining the labels of input data is cumbersome

and expensive. Therefore in many cases one often encounters

a large numbers of unlabeled data while the labeled data are

rare.

Moreover, with the availability of abundant data, images

and videos on the Internet, the size of the datasets has grown

at a rapid rate [1]. Kernel based models have shown to be

successful in many machine learning related tasks including

classification, regression, clustering and semi-supervised learn-

ing among others. However, unfortunately, they scale poorly

with the size of the training dataset due to the need for storing

and computing the kernel matrix which is usually dense.

The common solution is to approximate the kernel matrix

using limited memory storage and in particular most of the

kernel approximation methods such as Greedy basis selection

techniques [2], [3], incomplete Cholesky decomposition [4],

[3], [5], Nyström methods [6], [7], [8] aim at providing a

low-rank approximation of the kernel matrix.

Besides the large scale data, in practice one also needs to

address the issue of learning from a limited number of labeled

instances and a huge amount of unlabeled data instances.

Semi-Supervised Learning (SSL) is a framework in machine

learning that aims at learning from both labeled and unlabeled

data points [9]. Most of the developed semi-supervised ap-

proaches attempt to improve the performance by incorporating

the information from either the unlabeled or labeled part.

Graph based methods that assume that neighboring point pairs

with a large weight edge are most likely within the same

cluster. The Laplacian support vector machine (LapSVM) [10],

is one of the graph based methods which provide a natural

out-of-sample extension. Mehrkanoon et al. [11] proposed

a multi-class semi-supervised algorithm (MSSKSC) where

Kernel Spectral Clustering (KSC) is used as a core model. The

available side-information (labels) is incorporated to the core

model through a regularization term. In addition, the incremen-

tal MSSKSC for learning from a non-stationary environment is

introduced in [12] where an adaptive mechanism is applied in

order to update the learned model incrementally. Furthermore

the extension of MSSKSC for classification of multi-label

datasets with partially labeled instances are discussed in [13].

Many semi-supervised algorithms perform well on relatively

small problems (see [14] and references therein), but they do

not scale well when dealing with large scale data. Large scale

semi-supervised modeling has not been considered in great de-

tail in the literature. A family of semi-supervised linear support

vector classifiers for large data sets is introduced in [15]. The

authors in [16] introduced the prototype vector machine for

large scale SSL. A large graph construction for scalable semi-

supervised learning is proposed in [17]. Recently, the authors

in [18], introduced two large scale semi-supervised algorithms,

i.e. FS-MSSKSC and RD-MSSKSC, where the multi-class

semi-supervised kernel spectral clustering (MSSKSC) serves

as core model. FS-MSSKSC uses Nyström approximation

to approximate the feature map and solves the optimization

problem in the primal. Whereas RD-MSSKSC utilizes the

reduced kernel technique and solves the optimization problem

in the dual. In this paper we aim at yet making the recently

proposed MSSKSC model introduced in [11] scalable for

large scale problems using explicit random Fourier features.



Comparison to the previously introduced large scale semi-

supervised models is made to illustrate the efficiency and fast

training computation times of the proposed model.

This paper is organized as follows. In Section II, a brief

review of kernel spectral clustering (KSC) is given. Section

III briefly reviews the multi-class semi-supervised kernel spec-

tral clustering (MSSKSC) model and its existing large scale

versions. Section IV, discusses the use of explicit random

Fourier features in the MSSKSC formulation for large scale

problems. Model selection aspects, simulation results as well

as comparison with other large scale SSL models are discussed

in Section V. The conclusion is given in Section VI.

II. KSC MODEL

The KSC method corresponds to a weighted kernel PCA

formulation providing a natural extension to out-of-sample

data i.e. the possibility to apply the trained clustering model

to out-of-sample points. Given training data D = {xi}ni=1,

xi ∈ Rd, the primal problem of kernel spectral clustering is

formulated as follows [19]:

min
wℓ,bℓ,eℓ

1

2

k−1∑

ℓ=1

w(ℓ)Tw(ℓ) − 1

2n

k−1∑

ℓ=1

γℓe
(ℓ)TV e(ℓ)

subject to e(ℓ) = Φw(ℓ) + b(ℓ)1n, ℓ = 1, . . . , k − 1

(1)

where k is the number of desired clusters, e(ℓ) = [eℓ1, . . . , e
ℓ
n]

T

are the projected variables and ℓ = 1, . . . , k − 1 indicates the

number of score variables required to encode the k clusters.

γℓ ∈ R+ are the regularization constants. Here

Φ = [ϕ(x1), . . . , ϕ(xn)]
T ∈ Rn×h

where ϕ(·) : Rd → Rh is the feature map and h is the dimen-

sion of the feature space which can be infinite dimensional.

A vector of all ones with size n is denoted by 1n. w(ℓ) is the

model parameters vector in the primal. V = diag(v1, ..., vn)
with vi ∈ R+ is a user defined weighting matrix.

Applying the Karush-Kuhn-Tucker (KKT) optimality condi-

tions one can show that the solution in the dual can be obtained

by solving an eigenvalue problem of the following form:

V PvΩα
(ℓ) = λα(ℓ), (2)

where λ = n/γℓ, α
(ℓ) are the Lagrange multipliers and Pv

is the weighted centering matrix: Pv = In − 1
1T
n
V 1n

1n1
T
nV ,

where In is the n×n identity matrix and Ω is the kernel matrix

with ij-th entry Ωij = K(xi, xj) = ϕ(xi)
Tϕ(xj). In the ideal

case of k well separated clusters, for a properly chosen kernel

parameter, the matrix V PvΩ has k − 1 piecewise constant

eigenvectors with eigenvalue 1.

The eigenvalue problem (2) is related to spectral clustering

with random walk Laplacian. In this case, the clustering

problem can be interpreted as finding a partition of the graph

in such a way that the random walker remains most of the

time in the same cluster with few jumps to other clusters,

minimizing the probability of transitions between clusters. It

is shown that if

V = D−1 = diag(
1

d1
, ...,

1

dn
),

where di =
∑n

j=1 K(xi, xj) is the degree of the i-th data

point, the dual problem is related to the random walk algorithm

for spectral clustering.

From the KKT optimality conditions one can show that the

score variables can be written as follows:

e(ℓ) = Φw(ℓ) + b(ℓ)1n = ΦΦTα(ℓ) + b(ℓ)1n

= Ωα(ℓ) + b(ℓ)1n, ℓ = 1, . . . , k − 1.

The out-of-sample extensions to test points {xi}ntest

i=1 is

done by an Error-Correcting Output Coding (ECOC) decoding

scheme. First the cluster indicators are obtained by binarizing

the score variables for test data points as follows:

qℓtest = sign(eℓtest) = sign(Φtestw
(ℓ) + b(ℓ)1ntest

)

= sign(Ωtestα
(ℓ) + b(ℓ)1ntest

),

where Φtest = [ϕ(x1), . . . , ϕ(xntest
)]T and Ωtest = ΦtestΦ

T . The

decoding scheme consists of comparing the cluster indicators

obtained in the test stage with the codebook (which is obtained

in the training stage) and selecting the nearest codeword in

terms of Hamming distance.

III. MSSKSC AND ITS LARGE SCALE VERSIONS

A multi-class semi-supervised kernel spectral clustering

(MSSKSC) is introduced in [11] where the information of

the labeled instances are integrated to core KSC model via

a regularization term. The MSSKSC model can operate in

both semi-supervised classification and clustering modes by

realizing a low dimensional embedding. An extension of

the MSSKSC model to cope with large scale datasets are

discussed recently in [18] where two methodologies one based

on Nyström approximation of the feature map and the other

one based on reduced kernel technique are introduced. Here

we give a brief overview of the MSSKSC model and its large

scale versions.

A. MSSKSC model

Consider training data points

D = {x1, ..., xn
UL

︸ ︷︷ ︸

Unlabeled
(DU )

, xn
UL

+1, .., xn
︸ ︷︷ ︸

Labeled
(DL)

}, (3)

where {xi}ni=1 ∈ Rd. The first n
UL

data points do not have

labels whereas the last nL = n−n
UL

points have been labeled.

Assume that there are Q classes, then the label indicator matrix

Y ∈ RnL×Q is defined as follows:

Yij =

{
+1 if the ith point belongs to the jth class,
−1 otherwise.

(4)

The formulation of multi-class semi-supervised KSC, in the

primal, is given as follows [11]:

min
w(ℓ),b(ℓ),e(ℓ)

1

2

Q
∑

ℓ=1

w(ℓ)Tw(ℓ) − γ1
2

Q
∑

ℓ=1

e(ℓ)
T
V e(ℓ)+

γ2
2

Q
∑

ℓ=1

(e(ℓ) − c(ℓ))TA(e(ℓ) − c(ℓ))

subject to e(ℓ) = Φw(ℓ) + b(ℓ)1n, ℓ = 1, . . . , Q,

(5)



where cℓ is the ℓ-th column of the matrix C defined as

C = [c(1), . . . , c(Q)]n×Q =

[
0n

UL
×Q

Y

]

n×Q

. (6)

Here, 0n
UL

×Q is a zero matrix of size n
UL

× Q and Y is

defined as previously. The matrix Ã is defined as follows:

A =

[
0n

UL
×n

UL
0n

UL
×nL

0nL×n
UL

InL×nL

]

,

where InL×nL
is the identity matrix of size nL×nL. V is the

inverse of the degree matrix defined as previously.

In optimization problem (5) the information of the labeled

data is incorporated to the core KSC by means of a regular-

ization term. The aim of this term is to minimize the squared

distance between the projections of the labeled data and their

corresponding labels. As illustrated in [11], given Q labels the

approach is not restricted to finding just Q classes and instead

is able to discover up to 2Q hidden clusters. In addition, it

uses low embedding dimension to reveal the existing number

of clusters which is important when one deals with large

number of clusters. Eliminating the primal variables w(ℓ), e(ℓ)

and making use of Mercer’s Theorem result in the following

linear system of equations in the dual [11]:

γ2

(

In−
R1n1

T
n

1TnR1n

)

c(ℓ) = α(ℓ)−R

(

In−
1n1

T
nR

1TnR1n

)

Ωα(ℓ), (7)

where R = γ1V − γ2A.

One can notice that as in (5), in primal the feature map ϕ is

not explicitly known, one uses the kernel trick to construct the

full kernel matrix Ω. In addition, in the dual one has to solve

a linear system of the same size as the number of training data

points, i.e. n, (see Eq. (7)). Therefore for large scale data (n
is large), it is not efficient to construct the full kernel matrix

and solve a linear system of equations of size n. In order to

overcome these practical issues, two possible approaches are

proposed to in [18]. The first approach, Fixed-Size MSSKSC

(FS-MSSKSC), is based on the Nyström approximation and

the primal-dual formulation of the MSSKSC which is inspired

on the fixed-size implementation of LSSVM formulation [20].

This is done by using a sparse approximation of the nonlinear

mapping induced by the kernel matrix and solving the problem

in the primal. The second approach, Reduced MSSKSC (RD-

MSSKSC), is by means of the reduced kernel technique that

solves the problem in the dual by reducing the dimensionality

of the kernel matrix to a rectangular kernel. In what follows

we give a brief overview of these two approaches.

B. Fixed-Size MSSKSC model (FS-MSSKSC)

The approach is based on the fact that one can obtain an

explicit expression finite dimension for the feature map ϕ(·)
by means of an eigenvalue decomposition of the kernel matrix

Ω. As discussed in [18], in order to compute the approximated

feature map, one applies the Nyström method to numerically

solve the Fredholm integral equation of the first kind. This

will lead to the following eigenvalue problem [8]:

1

n

n∑

k=1

K(xk, xj)uik = λ
(s)
i uij (8)

where the eigenvalues and eigenfunctions of the continuous

Fredholm integral equation is approximated by the sample

eigenvalues λ
(s)
i and eigenvectors ui. Therefore, the i-th

component of the n-dimensional feature map ϕ̂ : Rd → Rn,

for any point x ∈ Rd, can be obtained as follows:

ϕ̂i(x) =
1

√

λ
(s)
i

n∑

k=1

uki K(xk, x) (9)

where λ
(s)
i and ui are eigenvalues and eigenvectors of the

kernel matrix Ωn×n. Furthermore, the k-th element of the

i-th eigenvector is denoted by uki. In practice, when n is

large, we work with a subsample (prototype vectors) of size

m ≪ n. There are several ways for which one can take to

select the prototype vectors such as randomly, entropy based

criterion [21], incomplete Cholesky factorization [5] and K-

means clustering among others. The authors in [20], [18] used

quadratic Rényi entropy for subset selection. In this case, the

m-dimensional feature map ϕ̂ : Rd → Rm is approximated

using ϕ̂(x) = [ϕ̂1(x), . . . , ϕ̂m(x)]T , where

ϕ̂i(x) =
1

√

λ
(s)
i

m∑

k=1

uki K(xk, x), i = 1, . . . ,m (10)

where λ
(s)
i and ui are now eigenvalues and eigenvectors of the

constructed kernel matrix Ωm×m using the selected prototype

vectors. Given the m-dimensional approximation to the feature

map, i.e. Φ̂ = [ϕ̂(x1), . . . , ϕ̂(xn)]
T ∈ Rn×m, the optimization

problem (5) can be rewritten as an unconstrained optimization

problem. Therefore, one can seek the solution by solving the

optimization problem in the primal [20]. This leads to solving

the following linear system of equations [18]:

[
w(ℓ)

b(ℓ)

]

=

(

ΦT
e RΦe + I(m+1)

)−1

γ2Φ
T
e c

(ℓ), ℓ = 1, . . . , Q,

(11)

where R = γ2A − γ1V is a diagonal matrix, ΦT
e =

[

Φ̂T

1Tn

]

(m+1)×n

and I(m+1) is the identity matrix of size

(m+ 1)× (m+ 1). One should note that the solution vector

w(ℓ) obtained by FS-MSSKSC has the same dimension as the

number of prototype vectors. The score variables evaluated at

the test set Dtest = {xi}ntest

i=1 become [18]:

e
(ℓ)
test = Φ̂testw

(ℓ) + b(ℓ)1ntest
ℓ = 1, . . . , Q, (12)

where Φ̂test = [ϕ̂(x1), . . . , ϕ̂(xntest
)]T ∈ Rntest×m. The decod-

ing scheme consists of comparing the binarized score variables

for test data points with a codebook obtained using the training

labeled data and selecting the nearest codeword in terms of

Hamming distance.



C. Reduced MSSKSC model (RD-MSSKSC)

The practical difficulty of solving the MSSKSC formulation

(7) in the dual results into the huge kernel matrix which cannot

be stored into memory. A reduced kernel technique is used in

[18] to solve the optimization problem (5) in the dual with a

rectangular kernel matrix. In reduced MSSKSC model (RD-

MSSKSC), proposed in [18], as opposed to FS-MSSKSC, one

does not need to apply the eigen-decomposition of the kernel

matrix associated with the prototype vectors to obtain the

explicit feature map. The approach overcomes the difficulty

of storing the large scale kernel matrix by reducing the n×n
dimensionality of the kernel matrix Ω to a much smaller

dimensionality of a rectangular kernel matrix Ω̄ ∈ Rn×n̄ with

Ω̄ij = K(xi, xj) and xi ∈ X and xj ∈ X̄ . Here X̄ is a (n̄×d)

random submatrix of the matrix of training data points X . In

[18] the subset is selected by means of a Rényi entropy based

criterion [22]) and by using the Sherman-Morrison-Woodbury

formula [4], the solution in the dual is obtained as follows

[18]:

β
(ℓ) =

[

In −RḠ

(

In̄+1 + Ḡ
T
RḠ

)
−1

Ḡ
T

]

γ2c
(ℓ)

, ℓ = 1, . . . , Q,

(13)

where R is defined as previously, Ḡ = [Ω̄, 1n] ∈ Rn×(n̄+1)

and In is the identity matrix. The expression (13) involves the

inversion of a small matrix of order (n̄+1)×(n̄+1). One may

notice that the solution vector β(ℓ) obtained by RD-MSSKSC

has the same dimension as the number of training points. The

bias term b(ℓ) for ℓ = 1, . . . , Q can be computed based on the

one of the KKT optimality conditions as follows [18]:

b(ℓ) = 1Tnβ
(ℓ), ℓ = 1, . . . , Q.

After obtaining the β(ℓ) and b(ℓ), one can compute the score

variables of the test set X test = {xi}ntest

i=1 as follows [18]:

e
(ℓ)
test = Ω̄test α(ℓ) + b(ℓ)1ntest

=

[

Ω̄test Ω̄T

]

β(ℓ) + b(ℓ)1ntest
, ℓ = 1, . . . , Q, (14)

where Ω̄test
ij = K(xi, xj) with xi ∈ X test and xj ∈ X̄ . The

decoding scheme consists of comparing the binarized score

variables for test data points with a codebook obtained using

the training labeled data and selecting the nearest codeword

in terms of Hamming distance.

IV. MSSKSC WITH RANDOM FOURIER FEATURES

The fundamental building block of the theory of kernel

based approaches is the kernel function, which computes

the similarity of multidimensional data points. Usually these

approaches use an implicit feature mapping in the primal level,

and a kernel trick in the dual to compute the full kernel matrix.

However, for large scale problems it is not computationally

efficient to build the entire kernel matrix and therefore many

efforts have been done to deliver large-scale versions of kernel

machines which some of them are discussed in section III.

This section explores an alternative pathway, i.e. random-

ization. An alternative to reduced rank approximations has

been recently introduced in the field of kernel methods by

exploiting the classical Bochner’s theorem in harmonic analy-

sis [23]. The Bochner’s theorem states that a continuous kernel

K(x, y) = K(x − y) on Rd is positive definite if and only

if K is the Fourier transform of a non-negative measure. If a

shift-invariant kernel k is properly scaled, its Fourier transform

p(ξ) is a proper probability distribution. This property is used

to approximate kernel functions with linear projections on D
random features as follows [23]:

K(x− y) =

∫

Rd

p(ξ)ejξ
T (x−y)dξ = Eξ[zξ(x)zξ(y)

∗], (15)

where zξ(x) = ejξ
T x. Here zξ(x)zξ(y)

∗ is an unbiased

estimate of K(x, y) when ξ is drawn from p(ξ) (see [23]). To

obtain a real-valued random feature for K, one can replace

the zξ(x) by the mapping zξ(x) = [cos(ξTx), sin(ξTx)]
which also satisfies the condition Eξ[zξ(x)zξ(y)

∗]. The ran-

dom Fourier feature z(x), for the sample x, is then defined

as z(x) = 1√
D
[zξ1(x), . . . , zξD (x)]

T ∈ R2D (see [23]). Here
1√
D

is used as normalization factor to reduce the variance of

the estimate and ξ1, . . . , ξD ∈ Rd are sampled from p(ξ). For

a Gaussian kernel, they are drawn from a Normal distribution

N (0, Id/σ
2). One can now construct the explicit feature map

for the entire training dataset using the finite dimensional

random Fourier features as follows:

Φ
RFF

= [z(x1), . . . , z(xn)]
T ∈ Rn×2D. (16)

Given Φ
RFF

, one can rewrite the optimization problem (5) as

an unconstrained optimization problem and solve it in primal:

min
w(ℓ),b(ℓ)

J (w(ℓ)
, b

(ℓ)) =
1

2

Q∑

ℓ=1

w
(ℓ)T

w
(ℓ)

−

γ1

2

Q∑

ℓ=1

(Φ
RFF

w
(ℓ) + b

(ℓ)1n)
T
V (Φ

RFF
w

(ℓ) + b
(ℓ)1n)+

γ2

2

Q∑

ℓ=1

(c(ℓ) − Φ
RFF

w
(ℓ)

− b
(ℓ)1n)

T
A(c(ℓ) − Φ

RFF
w

(ℓ)
− b

(ℓ)1n)

(17)

where the matrix C is defined as previously in (6). Taking the

partial derivatives of the cost function J with respect to the

primal variables w(ℓ) and b(ℓ) yields:






∂J
∂w(ℓ) = 0 → (I +ΦT

RFF
RΦ

RFF
)w(ℓ) +ΦT

RFF
R1nb

(ℓ) =

γ2Φ
T
RFF
c(ℓ), ℓ = 1, . . . , Q,

∂J
∂b(ℓ)

= 0 → 1TnRΦ
RFF
w(ℓ) + (1TnR1n)b

(ℓ) =

γ21
T
n c

(ℓ), ℓ = 1, . . . , Q,
(18)

which then by using some algebraic manipulations can be

rewritten as a linear system of equations in terms of the primal

variables as follows:
[

w(ℓ)

b(ℓ)

]

=

(

Φ̃T
RFF
RΦ̃

RFF
+ I((2D)+1)

)−1

γ2Φ̃
T
RFF
c(ℓ), (19)



for ℓ = 1, . . . , Q. Here R = γ2A− γ1V is a diagonal matrix,

Φ̃T
RFF

=
[
Φ

RFF
, 1n

]T ∈ R(2D+1)×n and I(2D+1) is the

identity matrix of size (2D + 1)× (2D + 1).
The codebook CB used for out-of-sample extension is

defined based on the encoding vectors for the training points.

If Y is the encoding matrix for the training points, the

CB = {cq}Qq=1, where cq ∈ {−1, 1}Q, is defined by the unique

rows of Y (i.e. from identical rows of Y one selects one row).

The score variables evaluated at the test set Dtest = {xi}ntest

i=1

become:

e
(ℓ)
test = Φ

RFF,test
w(ℓ) + b(ℓ)1ntest

ℓ = 1, . . . , Q, (20)

where Φ
RFF,test

= [z(x1), . . . , z(xntest
)]T ∈ Rntest×2D. The

decoding scheme consists of comparing the binarized score

variables for test data points with the codebook CB and

selecting the nearest codeword in terms of Hamming distance.

The procedure for the RFF-MSSKSC approach is summarized

in Algorithm 1.

Algorithm 1: RFF-MSSKSC model for large scale data

Input: Training data set D, labels Y , tuning parameters

γ1 and γ2, kernel parameter (if any), test set

Dtest = {xi}ntest

i=1 and codebook CB = {cq}Qq=1

Output: Class membership of test data points Dtest

1 Obtain 2D-dimensional random Fourier feature map

using (16).

2 Compute {w(ℓ)}Qℓ=1 and the bias term {b(ℓ)}Qℓ=1 using

(19).

3 Estimate the test data projections {e(ℓ)test}Qℓ=1 using (20).

4 Binarize the test projections and form the encoding

matrix [sign(e
(1)
test), . . . , sign(e

(Q)
test )]ntest×Q for the test

points (Here e
(ℓ)
test = [e

(ℓ)
test,1, . . . , e

(ℓ)
test,ntest

]T ).

5 ∀i (i = 1, . . . , ntest), assign xi to class q∗, where

q∗ = argmin
q

dH(eℓtest,i, cq) and dH(·, ·) is the Hamming

distance.

A Matlab demo of the algorithm can be downloaded at:

https://sites.google.com/site/smkmhr/code-data

Remark 4.1: It should be noted that, in order to have a

fair comparison, in our experiments, the three models FS-

MSSKSC, RD-MSSKSC and RFF-MSSKSC use explicit fea-

ture maps of the same dimension, i.e. n̄ = m = 2D in (11),

(13) and (19).

V. NUMERICAL EXPERIMENTS

In this section experimental results on synthetic and real-

life datasets taken from UCI machine learning repository1 [24]

and LIBSVM datasets 2 [25] are given. The experiments are

performed on a laptop computer with Intel Core i7 CPU and

16 GB RAM under Matlab 2014a.

1Available at: http://archive.ics.uci.edu/ml/datasets.html
2Available at: http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

The performance of the proposed methods depends on the

choice of the tuning parameters. In this paper for all the

experiments the Gaussian RBF kernel is used. The optimal

values of the regularization constants γ1, γ2 and the ker-

nel bandwidth parameter σ are obtained by evaluating the

performance of the model (classification accuracy) on the

validation set. A two step procedure which consists of Coupled

Simulated Annealing (CSA) [26] initialized with 5 random

sets of parameters for the first step and the simplex method

[27] for the second step. CSA is used for determining good

initial starting values and then the simplex procedure refines

our selection, resulting in more optimal tuning parameters.

The performance of the proposed RFF-MSSKSC algorithm

on two-moons and two-spirals datasets with 20000 data points

are shown in Figure 1. The training set used for the experi-

ments on these two datasets consists of 100 labeled and 10000

unlabeled data points. The size of the real-life data, on which

the experiments were conducted, ranges from medium to large

and covering both binary and multi-class classification. The

classification of these datasets is performed using different

number of training labeled and unlabeled data instances. In

our experiments, for all the datasets, 20% of the whole data

points (at random) is used as test set, and the training set is

constructed from the reaming 80% of the data points. In oder

to have a realistic setting, the number of unlabeled training

points are considered to be p times more than that of labeled

training points, where, in our experimeents, depending on

the size of the dataset under study, p ranges from 3 to 5.

Descriptions of the used datasets can be found in Table I.

TABLE I
DATASET STATISTICS

Dataset # of data points # of attributes # of classes

Magic 19,020 10 2
Adult 48,842 14 2
Shuttle 57,999 9 2
IJCNN 141,691 22 3
Skin 245,057 3 2
Cod-rna 331,152 8 2
Covertype 581,012 54 3
SUSY 5,000,000 18 2

In both FS-MSSKSC and RD-MSSKSC approaches, the

prototype vectors are selected via maximization of the Rényi

entropy. As in the semi-supervised setting, one often encoun-

ters a small numbers of labeled and a large numbers of

unlabeled data points, the total number of prototype vectors

consists of prototype vectors selected from labeled and un-

labeled data points. In particular, the following experimental

protocols for the number prototype vectors (PV) are used:

PVL =

{
nL if nL < 200
⌈q1

√
nL ⌉ otherwise,

(21)

where q1 ∈ Q+\{0}. The number of unlabeled prototype

vectors as follows:

PVu =

{
n

UL
if n

UL
< 500

q2
√
n

UL
otherwise,

(22)



where q2 ∈ Q+\{0}. For all the experiments in this paper,

q1 and q2 are set to one. However one may note that q1, q2
and p are the user defined parameters and can be designed

in accordance with the available memory of the computer

and the size of the dataset under study. The obtained results

of the proposed RFF-MSSKSC model together with the FS-

MSSKSC and RD-MSSKSC approaches [20] are tabulated in

Table II. The results reported in Table II, are obtained by

averaging over 10 simulation runs.
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Fig. 1. The performance of the RFF-MSSKSC method on two-moons and
two-spirals datasets. In total there are 20000 data points. The dimension of
explicit random feature map is set to 300.

Table II shows that for these data one can improve the

generalization performance by increasing both labeled and

unlabeled data points. In addition, the test accuracy of RFF-

MSSKSC and FS-MSSKSC are comparable and also better

than that of RD-MSSKSC in most cases. However, thanks to

the randomization step involved for constructing the explicit

feature map, the proposed RFF-MSSKSC shows significant

improvement over the other two approaches in terms of train-

ing as well as test computation time without compromising

its accuracy on the test set. The fact that for these datasets,

the proposed RFF-MSSKSC requires much less training time

to produce comparable results, compare to its counterparts,

makes it more appealing over the other two approaches for

large scale data.

In Fig 2, we examine the performance of the three models

(RFF,FS,RD)-MSSKSC on four datasets IJCNN, Cod-rna,

Covertype and SUSY with different training set sizes. From

Fig 2(a,d,g,j), one cane observe that the test accuracy of the

three models improves by increasing the size of the training set

(i.e. number of both labeled and unlabeled training data points)

for all the datasets. Moreover, the accuracy of RFF-MSSKSC

and FS-MSSKSC show a better performance compared to RD-

MSSKSC. The required computation time (composed of both

training and test stages) of the three models versus the number

of training points are shown in Fig 2(b,e,h,k). One can also

observe that the RFF-MSSKSC model needs the least amount

of training/test time among the other two models. Finally,

the test accuracy of the three models versus the required

computation time for the above-mentioned four datasets are

shown in Fig 2(c,f,i,l), where the proposed RFF-MSSKSC

shows a considerably reduced computation times to produce

the same or almost comparable level of accuracy with respect

to other two approaches. It should also be mentioned that as

RD-MSSKSC model does not involve eigen-decomposition

step, its training computation times is less than that of FS-

MSSKSC.

VI. CONCLUSIONS

In this paper, an approach that uses random Fourier features

is proposed to make the semi-supervised KSC based algorithm

scalable. The proposed model, i.e. RFF-MSSKSC, uses the ex-

plicit feature map and solves the semi-supervised optimization

problem in the primal. The efficiency and applicability of the

proposed method is shown on synthetic and real benchmark

datasets. The proposed RFF-MSSKSC model outperforms the

Fixed-Size MSSKSC (FS-MSSKSC) and Reduced MSSKSC

(RD-MSSKSC) [18] in all cases in terms of training compu-

tation times, while the test accuracy of the RFF-MSSKSC is

comparable to that of FS-MSSKSC and RD-MSSKSC.
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Fig. 2. The performance of the three models (RFF,FS,RD)-MSSKSC on four datasets IJCNN, Cod-rna, Covertype and SUSY. (a,d,g,j) Obtained test accuracy
over 10 simulation runs using RF-MSSKSC, FS-MSSKSC and RD-MSSKSC models for the four datasets when different training set sizes are used. (b,e,h,k)
Required computation times (composed of training and test stages) versus the number of training data points using RF-MSSKSC, FS-MSSKSC and RD-
MSSKSC models for the four datasets. (c,f,i,l) Obtained test accuracy versus elapsed computation times using RF-MSSKSC, FS-MSSKSC and RD-MSSKSC
models for the four datasets.
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