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Abstract—These days, most of the real-world problems have
become multi-criteria in nature and the demand for an effective
multi-objective optimization algorithm has been significantly
increased. This paper presents a new Multi-Objective Self-
Regulating Particle Swarm Optimization (MOSRPSO) algorithm
whereby the SRPSO algorithm originally developed for single
objective problems has been modified to tackle with Multi-
objective Optimization Problems (MOPs). The classical approach
of Pareto dominance has been applied in the SRPSO frame-
work together with the roulette wheel selection scheme for
leader identification. The proposed MOSRPSO algorithm has been
evaluated on all the hundred problems from Black-Box Multi-
Objective Optimization Benchmarking (BMOBench) platform
and the results are presented. The performance clearly indicate
that MOSRPSO is a potential candidate for solving MOPs.

Index Terms—MOQO: Multi-Objective Optimization, PSO: Par-
ticle Swarm Optimization, MOSRPSO: Multi-Objective Self Reg-
ulating Particle Swarm Optimization, BMOBench: Black-Box
Multi-Objective Optimization Benchmarking

I. INTRODUCTION

Over the past decades, the complexity of the global opti-
mization problems have significantly increased and has been
extended to the multi-criteria optimization problems. In multi-
criteria, the nature of optimization problems are extremely
complex whereby several conflicting objectives are required to
be handled simultaneously. Further, there is also a need of such
an algorithm that can effectively solve the (Multi-Objective
Optimization Problems (MOPs) with minimum computational
budget. This has outstretched the demand of real parameter
optimization schemes for solving real problems. Among the
numerous algorithms introduced, the population-based opti-
mization algorithms are effectively providing promising solu-
tions with lesser computational requirements. There are several
MOO algorithms developed in the literature starting from
initially developed Pareto Archived Evolutionary Strategy
(PAES) [1], Strength Pareto Evolutionary Algorithm (SPER)
[2], Non-dominated Sorting Genetic Algorithm (NSGA-IT)
[3], recently developed hybrid framework for MOPs [4],
dividing rectangles [5] and Gap Optimized Multi-objective
Optimization (GOMORS) [6].

One of the effective population based nature inspired
optimization algorithm is the Particle Swarm Optimization
(PSO) algorithm initially introduced in 1995 by Eberhart and
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Kennedy [7]. PSO is derived from the collective behavior
of swarms in search of food. Members of the swarm are
represented as particles in the algorithm and the food searched
by birds is presented as potential solution. The particles fly in
the search space updating the search patterns using their self
and social experiences. Information sharing mechanism has
been implemented in the algorithm to ensure proper movement
towards the global optimum solution. Lesser computational
efforts of PSO attracted researchers towards development of
efficient MOO algorithm. Multi-Objective PSO (MOPSO) was
introduced in [8], [9] whereby PSO was modified for solving
MOPs.

A recent area in the development of PSO algorithms is
derived from human thought processes and learning principles.
Human beings are known to be intelligent and have good
social cognizance [10]-[12]. Inspired from this, researchers
developed several variants of PSO by incorporating different
human learning principles. A Human cognition inspired PSO
was introduced in [13]. Further different areas from human
learning principles have been explored and incorporated in
PSO framework for better convergence [14]-[19]. All the
human learning principles inspired PSO variants have exhib-
ited significant performance improvement in the convergence
characteristics of the PSO algorithm. For a comprehensive
empirical analysis on the performance of PSO variants, one
can refer to [20]-[22].

In this paper, recently proposed variant of PSO, the Self
Regulating Particle Swarm Optimization (SRPSO) algorithm
has been modified to handle MOPs. The SRPSO algorithm
is inspired from human self-learning principles where self-
regulated inertia weight and self-perception based selection of
direction from global best position strategies were incorpo-
rated. Utilizing these strategies, SRPSO has exhibited much
better results and has provided faster convergence closer to
the optimum solution. It has been stated in [16], [17] that
SRPSO has exhibited competitive performances as compared
to other PSO variants and other meta-heuristics. Therefore, the
same algorithm has been modified for MOPs by incorporating
the classical Pareto dominance scheme in the algorithms’
framework. Further, a roulette wheel selection scheme has
been incorporated for selection of leader particle. With the help
of these schemes, the algorithm has become capable of solving
multi-objective problems. The algorithm is referred to as



Multi-Objective Self-Regulating Particle Swarm Optimization
(MOSRPSO). MOSRPSO has been evaluated on all the hun-
dred Black-Box Multi-Objective Optimization Benchmarking
(BMOBench) problems. The performance of MOSRPSO indi-
cate that the algorithm is capable of solving MOPs effectively.

The rest of the paper is organized as follows: Section II
briefly describes the SRPSO algorithms. Section III presents
the MOSRP SO algorithm. Section IV presents a detailed discus-
sion on the experimental setup and performance of MOSRP SO
in solving BMOBench problems. Section V summarizes the
conclusions of the paper.

II. BRIEF OVERVIEW OF THE SRPSO ALGORITHMS

Self Regulating Particle Swarm Optimization (SRPSO) al-
gorithm introduced in [19] is a new variant of PSO inspired
from human self-learning principles where the best human
learning strategies have been incorporated for solving single
objective optimization problems. The two learning strategies
proposed in SRPSO are, (i) the self-regulated inertia weight
only for the best particle and (ii) self-perception for selection
of direction from the global best position for the rest of
the particles. Using these strategies, the particles search the
optimum solution with accelerated exploration and intelligent
exploitation. The self-regulated inertia weight strategy for the
best particle is defined as:

; A
w; = {wz(t) T Aw,

for best particle
ey

w;(t) — Aw, otherwise

where w;(t) is the current inertia weight and Aw is the change
in inertia weight. There are two different velocity update
equations, viz., one for the best particle and other for all the
remaining particles. The velocity update equations are:

VIR = W Vi (i = best) )
Vt+1 _ ‘Vt Pt _Xf, S0 Pt _Xt 3
i = wiVigtari(Pjq— Xjq) +corapq(Pgq — Xjq) (3)

where (j # i), Viq and X,y are the velocity and position
respectively, of i" particle in the d*" dimension. ¢ and ¢ 4 1
represents the current and next iteration respectively; P}, is
the personal best for particle 4 in the d** dimension and Pgtd
is the global best in d*™ dimension. ¢; and ¢y represents the
acceleration coefficients and r; and 5 are the random numbers
distributed uniformly within the range [0, 1] and

1, ifa>05
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where a ~ U([0,1]) for all the directions of the global best
position. The self-regulating inertia weight provided better ex-
ploration and self-perception based selection of global search
direction intelligently exploits the search space. The strategies
have provided faster convergence closer to the global optimum
solution.

III. THE MULTI-OBJECTIVE SRPSO ALGORITHM

This section presents the modified MOSRPSO algorithm.
First, the Pareto dominance scheme is described and then the
MOSRP SO algorithm is presented.

A. Basic concepts of Pareto Dominance

In multi-objective search space, the concept of dominance
is incorporated for finding the appropriate solution from the
search space. During the search process, a Multi-Objective
algorithm produces a set of solutions instead of a single
solution as there there is a presence of conflicting objective
functions. Based on this concept, if solution x; is better than
solution x; then solution x; is said to be the dominating one.
Once the dominant solution is found, the Pareto optimality
is applied to get a non-dominant set of solution. These non-
dominated solutions are stored as particles’ best positions.

B. The MOSRPSO Algorithm

As discussed in the previous section, the Pareto dominance
scheme has been utilized in the SRPSO framework to de-
termine the best position. The best position is determined
as the leader particle. As proposed in the classical MOPSO
algorithm [9], a similar strategy has been incorporated in the
MOSRP SO algorithm. The non-dominated solutions identified
by the swarm are first stored in an archive (repository) for
future references. Further, the entire search space is divided
into several hypercubes whereby each hypercube contains a
set of particles. In each hypercube, there is a fitness value
assigned as the objective value of the space. The particles in
each hypercube, search the entire cubic space for the optimal
objective value. Finally, a roulette wheel selection scheme has
been utilized to determine the potential hypercube and leader
from the same hypercube.

In the SRPSO framework, the best particle utilizes different
learning strategy compared to that of all the other particles.
Similarly, in MOSRP SO the leader (dominant particle) is ob-
served with the same learning strategy. The leader will follow
the self-regulating inertia weight strategy whereas all the other
particles in each hypercube will perform search utilizing self-
perception based selection strategy. Therefore, the velocity
update equation for the leader is:

VI = w VY (i = best) 5)

(3

and the velocity update equation for all the remaining particles
is:

VI = w Vit e (Ply— Xjg) + corapig (RS, — X5g) (6)

where P} is the personal best position and R, is the selected
leader from the repository.

The pseudo-code for MOSRP SO algorithm, incorporating the
proposed schemes is summarized in Algorithm 1.

IV. PERFORMANCE EVALUATION, RESULTS AND
DISCUSSION

The MOSRPSO has been empirically assessed on the
BMOBench platform according to [23], where each algorithm
is run on 100 multi-objective problems categorized over seven
groups: low-dimensional, high-dimensional, uni-modal, multi-
modal, and mixed categories [23]. To validate the efficacy
of the proposed—stochastic—algorithm, its performance is
compared with that of recent stochastic multi-objective solvers,



Algorithm 1: The MOSRPSO Algorithm

Initialization:

for each particle i do
Randomly initialize position of each particle X; in

the search range (X in, Xmaz)
Randomly initialize velocity of each particle V;
Initialize the external archive

Set the quality as leader
end

while (success= 0 and t < max_iterations) do

for each particle do
select a leader from the external archive

Calculate the fitness values for each particle;
if (fitness value of the objective is better than the

best fitness value of the objective (pbest), then
Current fitness value of the objective function

is set as the new pbest

end

for the best particle do
Calculate the inertia weight w using equation (1);
Update the velocity using equation (5);
end
for the remaining particles do
for j = 1: Dimension do
Generate the uniform random number a;
if (a > 0.5), then
Select the directions from global best
else
Reject the directions
end
end
Update the velocity using equation (6);
end
Update the position of each particle;

Update leader in the external archive;
end

namely MO-HOO [24] and the stochastic variant of DMS [25],
referred to here as sDMS.

The procedure for assessing the solution quality of an
algorithm is based on recording its runtime: the number of
function evaluations required by the algorithm for its solution
to reach a specific (target) quality value. The recorded runtimes
are then expressed in terms of data profiles, which capture
various aspects of the algorithms’ convergence behavior. For
more details on the problems, their characteristics and the
evaluation procedure, one can refer to [23].

A. Experimental Setup

The parameter settings for MOSRPSO are: w = 1.05 to 0.5,
c1 = co = 1.49445, swarm size (n) = 200, archive size = 100,
Vmax = 0.1xsearch range. The experiments are conducted
using MATLAB R2013a on a PC with: 64-bit Windows 7,
Intel Xeon ES CPU @ 3.20GHz, 16GB of memory.
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Fig. 2. A semi-log plot visualizing the runtime per one function evaluation
(in seconds) of the compared algorithms. All the algorithms were run
on a selected set of problems over a set of evaluation budgets, namely
BK1, DPAMI, L3ZDTI1, DTLZ3, and FES3; with an evaluation budget
€ {10,100, 1000, 10000} per problem on a PC with: 64-bit Windows 7,
Intel Xeon ES CPU @ 3.20GHz, 16GB of memory.

B. Results and Discussion

Figures 3 and 4 show the data profiles of the compared
algorithms as a function of the number of function eval-
uations used over different categories of the test problems
according to [23] in terms of four commonly-used quality
indicators, namely the hypervolume, the additive epsilon and
the generational distance, the inverted generational distance,
respectively. On the other hand, Figure 1 aggregates the data
profiles of Figures 3 and 4 into a single plot, showing the
overall performance of the compared algorithms.

From Figures 3 and 4, one can easily see that the perfor-
mance of MOSRP SO is significantly better than others on the
set of BMOBench platform problems. In fact, the performance
of MOSRP SO is better in all categories of problems except the
non-separable problems. It is indicated in the single objective
SRPSO [19] and also in [17] that SRPSO is a rotationally
variant algorithm which cannot perform efficient search on
non-separable problems and the same is indicated in the data
profiles presented in the figure. On all the other problems, the
MOSRP SO algorithm has shown better performance compared



to sDMS and MO-HOO in terms of the hypervolume, additive
epsilon, and inverted generational distance indicators. On the
other hand, data profiles computed using the generational
distance (GD) indicator favors sDMS. One can attribute this
to the fact the GD indicator is sensitive to the size of the
algorithm’s approximation set—the bigger the set, the better
the GD indicator value. A look into the size of sDMS and
MOSRPSO’s approximation sets confirms this observation:
e.g., the size of the online archive for the Jin2 problem is
1197 and 51 for sDMS and MOSRPSO, respectively. Finally,
from Figure 1 the overall performance of MOSRPSO can be
observed as comparably better than other algorithms. This
clearly indicates the MOSRPSO is a robust algorithm and
a potential candidate for solving multi-objective problems
efficiently and effectively.

C. Empirical Runtime Evaluation

In order to evaluate the complexity of the algorithms (mea-
sured in runtime), the algorithms are run on a representative
set of the problems. The empirical complexity of an algorithm
is then computed as the running time (in seconds) of the
algorithm summed over all the problems given divided by the
total number of function evaluations used. The results for four
different evaluation budgets are shown in Figure 2. MO-HOO’s
computational complexity grows almost quadratically in the
number of function evaluations due to the back-propagation
applied on the nodes of the algorithm’s tree and the identi-
fication of non-dominated fronts, which is dependent on the
number of function evaluations.

V. CONCLUSIONS

This paper presents a new multi-objective self regulating
particle swarm optimization algorithm. The SRPSO algorithm
is modified utilizing the concept of Pareto dominance and
roulette wheel selection scheme to cast the multi-objective
problem solving scheme in the SRPSO framework. With the
help of incorporated schemes, the MOSRPSO algorithm has
successfully solved the multi-objective optimization problems.
The performance has been evaluated on the BMOBench
platform problems and the results indicate that MOSRP SO is
capable of solving MOPs effectively. Therefore, MOSRPSO is
a potential candidate for solving multi-objective optimization
problems.
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Fig. 4. Data profiles aggregated over problem categories for each of the quality indicators—the generational distance and the inverted generational distance.
The symbol X indicates the maximum number of function evaluations. The y-axis represents the fraction of targets (a set of the considered indicator values)
hit across the considered problems.



