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Abstract—One of the more challenging real-world problems
in computational intelligence is to learn from non-stationary
streaming data, also known as concept drift. Perhaps even a
more challenging version of this scenario is when – following
a small set of initial labeled data – the data stream consists of
unlabeled data only. Such a scenario is typically referred to as
learning in initially labeled nonstationary environment, or simply
as extreme verification latency (EVL). In our prior work, we
described a framework, called COMPOSE (COMPacted Object
Sample Extraction) that works well in this type of environment,
provided that the data distributions experience limited drift. The
central premise behind COMPOSE is core support extraction,
in which α-shapes or density estimation is used to extract the
most representative instances – the core supports that typically
lie in the center of the feature space for each class – to be used
as labeled data in future time-steps. This process, however, is
computationally very expensive especially for high dimensional
data. In this paper, we describe a modification to COMPOSE that
allows the algorithm to work without core support extraction. We
call the new algorithm FAST COMPOSE. Several datasets are
used to compare the performance of FAST COMPOSE with the
original COMPOSE, as well as with SCARGC (another algorithm
that can address EVL), both in accuracy and in execution time.
The results obtained show the promising potential of using FAST
COMPOSE.

I. INTRODUCTION

Most machine learning algorithms are based on the basic
assumption that data are drawn from a fixed but unknown
distribution. This assumption implies that test or field data
come from the same distribution as the training data. In reality,
this assumption simply does not hold in many real world prob-
lems that generate data whose underlying distributions change
over time. Such scenarios render most traditional learning
algorithms ineffective at best, misleading and inaccurate at
worst.

Network intrusion, web usage and user interest analysis,
natural language processing, speech and speaker identification,
spam detection, anomaly detection, analysis of financial, cli-
mate, medical, energy demand, and pricing data, as well as
the analysis of signals from autonomous robots and devices
are just a few examples of the applications of the concept
drift problem. The concept drift problem poses great difficulty
because streaming data are usually unlabeled and unstructured.
Much of the prior work addressing the concept drift problem
focuses on using supervised approaches, for example [1] [2].
However, an algorithm that is able to handle scenarios where

labeled information is very scarce (or even no longer available
after an initial step) would be more beneficial.

Several different types of approaches have recently been
proposed in the literature. One group of approaches that
are designed to handle the disparate training and test data
distributions is the so-called domain adaptation approaches [3]
[4], where the training data distributions (called the source
domain) and test data distributions (called the target domain)
are considered to be different but related. Typically, in do-
main adaptation approaches, the classification model is trained
with a modified version of the original training data that
is weighted, through an approach called instance weighting,
such that the source domain training data distribution behaves
more like the target domain test data distribution. However,
domain adaptation approaches typically assume that labeled
data are available in abundance in the source domain and that
both the source and target domains share the same support.
Furthermore, domain adaptation approaches only consider a
single time-step scenarios and are not equipped for, nor are
they designed to handle, streaming data. Therefore domain
adaptation approaches are not well suited for concept drift
problems where data are generated in a streaming or continu-
ous fashion whose distribution may change over time.

Ensemble based approaches such as Learn++.NSE [1],
Learn++.NIE [5], DWM [2], and SEA [6] represent a dif-
ferent family of approaches to tackle concept drift problems.
All of these approaches take into account the difference in
the probability distribution of the training (source) and test
(target) data distribution, i.e., ps (x, y) 6= pt (x, y) where
ps and pt are source and target distributions, respectively
for the features x and labels y, respectively. Unlike domain
adaptation approaches, these ensemble based approaches are
indeed capable of tracking data distributions over a streaming
setting. However, ensemble approaches also require a large
amount of labeled data, and the potential scarcity or the high
cost of obtaining labeled data is a major obstacle in using
these approaches. In an effort to reduce the amount of required
labeled data, semi supervised learning (SSL) approaches have
also been used in this scenario where a hypothesis is formed
using modest amount of labeled data and more abundant unla-
beled data. The primary application domain of SSL techniques
has been in stationary environments, but recently the focus
in this area has shifted towards non stationary distributions.
SSL approaches, of course, also require labeled data at each



time-step [7], albeit in smaller quantities. Active learning (AL)
is another technique used to combat the limited availability
of labeled data in general and in concept drift problems in
particular [8]. In active learning the learner actively chooses
which data instances – if labeled – would provide the most
benefit. The goal in AL algorithms is therefore to find the
minimum number of labeled examples that provide the max-
imum benefit. This is most commonly achieved by assuming
that there is an oracle or expert that can be queried for the
labels of any example on demand. Active learning approaches
cannot function, however, if the requested labels cannot be
provided on demand, a potentially restricting limitation.

More recent research, typically referenced as verification
latency, acknowledges an additional and important constraint
that must be addressed: labeled data may not be available at
every time-step, nor even in regular intervals, which signifi-
cantly complicates the learning process. Verification latency,
as denoted in [9], describes a scenario where true class labels
are not made available until sometime after the classifier has
made a prediction on the current state of the environment. The
duration of this lag may not be known a priori, and may vary
with time; yet, classifiers must propagate information forward
until the model can be verified. In the extreme verification
latency scenario, this lag becomes infinite, meaning that no
labeled data are ever received after initialization. We call
such an environment as an initially labeled non stationary
environment (ILNSE) or simply initially labeled streaming
environment (ILSE) [10]. In our prior work, we described
an algorithm called COMPOSE [10] (COMPacted Object
Sample Extraction) that can learn in an ILSE or extreme
verification latency setting. COMPOSE works remarkably well
and makes no assumption on the nature of the distribution
other than requiring limited drift (a common assumption of all
concept drift algorithms). However, the ability of COMPOSE
to track a nonstationary environment in an extreme verification
latency scenario comes at a steep cost: COMPOSE is computa-
tionally expensive, very expensive. Specifically, COMPOSE’s
computational complexity is exponential in dimensionality
(but only linear in cardinality). The primary motivation for the
work described in this paper is to explore how COMPOSE can
be made more efficient with little or no loss on its classification
performance.

II. RELATED WORK

The extreme verification latency setting requires an entirely
different framework and approach from the traditional su-
pervised learning because it requires class information to be
propagated forward through not just several time-steps, but
of indefinite duration of only unlabeled data. To the best of
our knowledge, we are aware of only four algorithms that
are designed to address the initially labeled non-stationary
environment or extreme verification latency. Arbitrary sub-
populations tracker (APT) [11], stream classification algo-
rithm guided by clustering (SCARGC) [12], micro-clusters for
classification (Mclassification) [13], and COMPacted Object

Sample Extraction (COMPOSE) [10]. In this section we
briefly describe the central premises of these algorithms.

APT is based on the principle that each class in the data
can be represented as a mixture of arbitrarily distributed sub-
populations. The APT algorithm, similar to all concept drift
approaches, makes the gradual drift assumption, i.e., that
the drift within the dataset is limited. However, the APT
algorithm also requires that i) the drift can be represented
as a piecewise linear function, ii) the covariance of each sub-
population remains constant where sub-population is defined
as a mode in the class conditional distribution, iii) each sub-
population to be tracked must be present at the initialization,
iv) the drift remains constant, and v) the drift only affects
the conditional feature distribution P (X|Z). The conditional
posterior distribution P (Y |Z) and prior distribution of com-
ponents P (Z) remains fixed, where P (X) represents the
feature distribution, P (Y ) represents the distribution of the
class labels and P (Z) represents the mixing proportions, i.e.,
component prior distributions. The algorithm also assumes that
the population parameters, bandwidth matrix and exemplar
offsets representing each subpopulation via non-parametric
density estimation, remain constant and attempts to solve for
the drift parameters, change in centroid between each time-
step and starting position.

The learning strategy of APT is twofold; first, the optimal
one-to-one assignment between labeled instances in time-step
t and unlabeled instances in time-step t+1 is determined using
the expectation maximization algorithm following the assump-
tion that P (Z) remains static. The expectation maximization
algorithm begins by predicting which instances are most likely
to correspond to a given sub-population in the expectation step.
During the maximization step, the algorithm determines which
drift parameters maximize the expectation. Then, the classifier
is updated to reflect the population parameters of the newly re-
ceived data and drift parameter relating the previous time-step
to the current one. When the assumptions are satisfied, APT
works very well. However, APT has two primary weaknesses:
1) the many assumptions made by APT often do not hold
true, causing a decrease in performance, and 2) the algorithm
is computationally very expensive, significantly more so than
even the original COMPOSE, as shown by the tests performed
in [10].

SCARGC operates by repeatedly clustering unlabeled input
data, and then classifying the clusters using the labeled clusters
from the last time-step. A fixed number of unlabeled examples
are stored in a pool in the classification phase, and the
unlabeled instances are then clustered into k clusters. Current
and past cluster centroids are used to track the drifting classes
over time. In other words, the mapping between clusters is
performed by centroid similarity between current and previous
iterations using Euclidean distance. Given the current centroids
from the most recent unlabeled clusters and past centroids
from the previously labeled clusters, one-nearest-neighbor
algorithm or a support vector machine is used to label the
centroid from current unlabeled clusters. This algorithm is
also based on the assumptions that the drift is gradual or



incremental, the number of classes is known ahead of time and
is constant over time. SCARGC is computationally efficient,
but its performance is highly dependent on the clustering
phase. Additionally, the need for prior knowledge such as
the number of classes, and the number of modes for each
class in the data, limits the utility of this approach when such
information is not available.

Mclassification uses the idea of micro clusters (MC) [14]
to adapt to the changes in the data over time. Micro clusters
is a method of storing information about a set of data points
without requiring all examples to be retained. A set of labeled
MC are first built from the initial labeled data. At each time-
step, each example from the streaming input data receives its
label from the nearest MC. If the addition of an example in its
corresponding nearest MC causes its MC radius not to exceed
the maximum MC radius defined by the user, this example is
added to the nearest MC and its sufficient statistics, i.e., its
centroid and micro cluster radius are updated; otherwise a new
MC is created. MClassification does not require the number
of clusters to be known prior to execution as with APT or
SCARGC, however it is also computationally expensive.

We previously proposed COMPOSE, which originally used
a generalization of convex hull called α-shapes to deal with
incremental drifts and infinitely delayed labels. The α-shapes
are geometrical constructs obtained from data that are then
compacted (shrunk) to determine those current data points
that are most likely to represent the distribution at the next
time-step. These instances are called core supports and serve
as labeled instances during the semi-supervised learning at
the next time-step. The high computational cost of the α-
shape construction and the requirement of the tuning of its two
critical parameters, i.e., α and compaction proportion (CP) are
the main weaknesses of the original COMPOSE algorithm.
Recently, we have replaced the α-shape construction with a
Gaussian mixture model based density estimation approach
to determine the core supports, which significantly reduced
the computational burden of the algorithm [15], though the
algorithm still remained fairly computationally expensive. In
this contribution, we describe a simplification of COMPOSE,
which we refer to as FAST COMPOSE, which eliminates
the core support extraction entirely and dramatically improves
the computational efficiency of the algorithm with little or
no performance degradation, and in fact provide even some
performance improvement in certain cases.

III. APPROACH

The COMPacted Object Sample Extraction (COMPOSE)
framework was introduced in [10] to address the extreme veri-
fication latency problem in an ILSE setting, i.e., learn drifting
concepts from a streaming non stationary environment that
provides only unlabeled data after initialization. COMPOSE
originally consisted of three primary steps: 1) combine initial
labels with new unlabeled data to train a semi supervised
learning (SSL) classifier and label the current unlabeled data;
2) for each class, construct α shapes (a generalization of
convex hull) providing a tight envelope around the data that

represent the current class conditional distribution; and 3)
compact (i.e., shrink) the α shape and extract those instances,
called core supports, that fall into the compacted region, which
itself represents the geometric center (core support region)
of each class distribution. The process is repeated iteratively
as new unlabeled data arrive, where the core supports from
the previous iteration serve as the labeled instances for the
current iteration. COMPOSE is really a framework, rather
than just an algorithm, as it is very flexible, versatile and
modular: any number of core support extraction (CSE) routines
using any density estimation techniques such as Gaussian
mixture models (GMM) or k-nearest neighbor can be used
in place of α shapes, and any SSL algorithm can be used
that the user believes to match the characteristics of the
data to improve the performance of the algorithm [15]. The
pseudocode and implementation details of COMPOSE can be
seen in Algorithm 1.

In its current form, COMPOSE takes the following inputs:
an SSL algorithm such as cluster and label, label propagation
[16], or semi-supervised support vector machines [17] with
relevant free parameters; a CSE algorithm such as α shape,
Gaussian mixture model (GMM) or k-nearest neighbor (kNN);
and a compaction percentage, CP , that represents the percent-
age of current labeled instances to use as core supports. The
algorithm begins by receiving M initially labeled instances,
L0, and corresponding labels, Y 0, of C classes in step 1. For
each time-step, a new set of N unlabeled instances, U t, is
received. The SSL algorithm is then executed given the current
unlabeled and labeled instances and returns a hypothesis ht

that classifies all unlabeled instances of the current time-step
in step 4. The hypothesis is then used to generate a combined
set of data, Dt, in step 5, and the combined data for each
class is used as the input for the CSE routine in step 8. The
resulting core supports CSc, for each class c, are appended to
be used as current labeled data in the next time-step in step 9.

A number of issues have been identified with the current
implementation of COMPOSE. Originally, it was thought that
the core support extraction routine would extract a region
that has a high probability of overlap with drifted unlabeled
data at the next time-step. However, because the core support
extraction routine is executed using the labeled data at time-
step t (which themselves are the core supports extracted at
time-step t − 1), and the hypothesis at time-step t, the most
dense region will lie in the overlap between the labeled and
unlabeled data from time-step t. Therefore, the core supports
at time-step t will be further away from the unlabeled data
at time-step t+ 1, and in turn the CSE routine will extract a
region that has a lower probability of overlap with the drifted
data. Figure 1 illustrates the above described scenario, where
the blue circle represents the labeled data at time-step t (i.e.,
the core supports extracted from time-step t − 1) denoted as
CSt−1/Lt; the left gray circle represents the unlabeled data
or hypothesis at time-step t denoted as U t/ht, the right gray
circle represents the unlabeled data at time-step t+1 denoted
as U t+1/ht+1, and the pink circle represents the core supports
extracted in time-step t to be used as labeled information for



Algorithm 1 COMPOSE
Inputs: SSL algorithm - SSL with relevant free parameters;

CSE algorithm - CSE; Compaction percentage - CP
1: Receive labeled data
L0 = {xtl ∈ X} ,
Y 0 = {ytl ∈ Y = {1, . . . , C} , l = 1, . . . ,M}

2: for t = 0, 1, .... do
3: Receive unlabeled data U t = {xtu ∈ X , u = 1, ..., N}
4: Call SSL with Lt , Y t, and U t

to obtain hypothesis, ht : X → Y
5: Let Dt = {(xtl , ytl ) : x ∈ Lt∀l}∪

{(xtu, ht(xtu)) : x ∈ U t∀u}
6: Set Lt+1 = ∅, Y t+1 = ∅
7: for each class c = 1, 2, ...., C do
8: Call CSE with CP and Dt

c

to extract core supports, CSc

9: Add core supports to labeled data
Lt+1 = Lt+1 ∪ CSc

Y t+1 = Y t+1 ∪ {yu : u ∈ [|CSc|], y = c}
10: end for
11: end for
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Fig. 1. Example depicting core support extraction procedure in COMPOSE

time-step t + 1. We see that the unlabeled data at time-step
t+1 is far from the labeled data using this implementation of
core support extraction.

In [18], we provided a formal definition of ”limited drift,”
and how that differs from ”gradual drift.” Then, we also
showed that COMPOSE can work equally well for scenarios
when there is no significant overlap as long as the distance
between the unlabeled data with core supports of the same
class is less than the distance from the nearest core supports
from any other class. We refer to this condition as limited drift
and distinguish it from gradual drift that requires an overlap of
distributions in subsequent time-steps. As a result, we showed
that the condition of significant overlap (or ”gradual drift”) can
be completely eliminated, and replaced with the more relaxed
condition of limited drift. In cases where there is no significant
overlap, the core support extraction procedure has very little
impact on accuracy as it does not significantly impact the
centroid of each class. When there is no significant overlap,
the SSL algorithms, in particular cluster and label, classify
the unlabeled data using the nearest centroid, and therefore
removing CSE is expected to have little impact on accuracy.

Additionally, the density estimation procedure is impractical

for high dimensional data due to its computational complex-
ity. In this paper, the core support extraction procedure of
COMPOSE is removed, and all instances labeled by the semi-
supervised algorithm are then used as core supports, i.e., the
most representative instances for the future time-steps. We call
this modified version of the algorithm FAST COMPOSE.

FAST COMPOSE works as shown in Algorithm 2. The only
input for FAST COMPOSE is a choice of an SSL algorithm
with its relevant free parameters. As with COMPOSE, the
algorithm begins by receiving M initially labeled instances,
L0, and corresponding labels Y 0, of C classes in step 1. For
each time-step, a new set of N unlabeled instances U t is
received. The SSL algorithm is then executed given the current
unlabeled and labeled instances to receive the hypothesis ht

of the current time-step in step 4. The hypothesis is then used
to label the data for the next time-step in steps 5 - 8.

Algorithm 2 FAST COMPOSE
Input: SSL algorithm - SSL with relevant free parameters

1: Receive labeled data
L0 = {xtl ∈ X} ,
Y 0 = {ytl ∈ Y = {1, . . . , C} , l = 1, . . . ,M}

2: for t = 0, 1, .... do
3: Receive unlabeled data U t = {xtu ∈ X , u = 1, ..., N}
4: Call SSL with Lt , Y t, and U t

to obtain hypothesis, ht : X → Y
5: Let Dt = {(xtu, ht(xtu)) : x ∈ U t∀u}
6: Set Lt+1 = ∅, Y t+1 = ∅
7: for each class c = 1, 2, ...., C do
8: CSc = {x : x ∈ Dt

c} , and add to labeled data for
next time-step
Lt+1 = Lt+1 ∪ CSc

Y t+1 = Y t+1 ∪ {yu : u ∈ [|CSc|], y = c}
9: end for

10: end for

Figure 2 summarizes the difference in the working flow of
both algorithms where w/ CSE indicates ”with core support
extraction,” i.e., the original COMPOSE, and w/o CSE indi-
cates COMPOSE run without core support extraction, which
is FAST COMPOSE.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

Sixteen synthetic datasets and one real dataset are used to
evaluate FAST COMPOSE; some of which were originally
provided by us in our prior works of [5] and [10], and others
provided by the authors of SCARGC in [12]. We compare the
accuracy and execution time of FAST COMPOSE with COM-
POSE using α shapes and Gaussian mixture models (GMM) as
core supports extraction procedures, and also with SCARGC
with one nearest neighbor (1-NN) and support vector machines
(SVM) as classifiers on the benchmark datasets. APT and
MClassification are not included in this analysis due to their
prohibitively high computational cost, given that our primary
goal in this effort is reducing the computational complexity.
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Fig. 2. Difference in working flow of COMPOSE and FAST COMPOSE

All algorithms are evaluated 500 times on each dataset on
a server with 2 x Intel Xeon E5-2670v3 processors and 64
GB DDR4 memory, the results of which are then averaged.
As the purpose of this analysis is primarily to find the fastest
algorithm, executions that take over 500 seconds are aborted
and given a rank of last place.

The datasets tested in these experiments contain concept
drift either synthetically (i.e., the dataset is deliberately de-
signed to have a concept drift, by drawing from a drifting
distribution) or due to the process used to generate the dataset.
The one real dataset, keystroke, attempts to classify between
four users based on typing patterns. The data is generated
by having each user type a phrase repeatedly. It is expected
that the users will become faster at typing the phrase over
time and therefore induce concept drift. Table I summarizes
the properties of all the datasets, which includes number of
classes, number of features (dimensionality), the number of
instances (cardinality), and drift interval. The drift interval is
used as the batch size, and the number of time-steps for each
example is simply the cardinality divided by the drift interval.

The datasets marked with an asterisk were originally devel-
oped and provided by us, whereas others are developed and
provided by authors of SCARGC as described in [12]. All
datasets are graciously provided by authors of SCARGC at
one convenient web page for the use of the machine learning
community, and can be found in [19]. This web page also
provides additional information about each of the datasets,
including videos that illustrate the drift in each synthetic
dataset as well as the explanations of the convention used for
naming the datasets.

B. Results

Table II shows the average accuracy and Table III shows the
average execution time (in seconds) of all algorithms evaluated
on all datasets. In order to determine whether there is statisti-
cally significant difference among the algorithms in terms of

TABLE I
DATASETS DESCRIPTION

Datasets
Number
of
classes

Number
of
features

Cardinality Drift
interval

1CDT 2 2 16000 400
1CHT 2 2 16000 400
1CSurr 2 2 55283 600
2CDT 2 2 16000 400
2CHT 2 2 16000 400
4CE1CF 5 2 173250 750
4CR 4 2 144400 400
4CRE-V1 4 2 125000 1000
4CRE-V2 4 2 183000 1000
5CVT 5 2 40000 1000
FG 2C 2D* 2 2 200000 2000
GEARS 2C 2D 2 2 200000 2000
MG 2C 2D* 2 2 200000 2000
UG 2C 2D* 2 2 100000 1000
UG 2C 3D* 2 3 200000 2000
UG 2C 5D* 2 5 200000 2000
keystroke 4 10 1600 200

accuracy and execution times as evaluated over all datasets, we
used the Friedman test and its corresponding Nemenyi post-
hoc test. The post-hoc test results comparing the statistical
significance (p ≤ 0.05) for accuracy and execution time are
found in Tables IV and V, respectively. Empty cells at the
intersection of any two algorithms indicate that the difference
in accuracy or execution time between those two algorithms
was not statistically significant. A left arrow (←) or an up
arrow (↑) at the intersection of any two algorithms represents
a statistically significant difference, with the direction of the
arrow indicating the classifier that performed significantly
better.

It is important to note that both the accuracy and execution
times of SCARGC differ – albeit slightly – from those reported
in [12] for the same datasets. These experiments were run
on different computer hardware which may be optimized for
a different workload. Additionally, when batching drifting
time series data for analysis, there is a trade-off between the
cardinality of the dataset at each time-step and the amount of
drift within the batch that must be considered. A smaller batch
size allows for faster adaptation to concept drift, however can
also result in lack of (sufficient) data for a particular class [12].
COMPOSE avoids this dilemma by working only with already
batched time series data. SCARGC treats the batch size as a
free parameter called the pool size. In these experiments, both
the batch size for COMPOSE and the pool size for SCARGC
were set at the drift interval from Table I.

We expected FAST COMPOSE to perform better than all
other other algorithms in terms of execution time, and this was
in indeed the case. We did not know what to expect about the
accuracy performance of FAST COMPOSE, and were rather
pleasantly surprised that on most datasets it actually performed
better, providing the lowest rank (lower rank is better in terms
of performance, rank 1 is the best algorithm and rank 5 is the
worst algorithm) when averaged across all datasets.

While FAST COMPOSE’s accuracy was better than that



of other algorithms when averaged across all datasets, the
differences were not statistically significant when compared to
COMPOSE using either GMMs or α shapes as seen in Table
IV. On the other hand, both FAST COMPOSE and COMPOSE
with GMM showed a statistically significant improvement over
both SCARGC 1-NN and SCARGC SVM. In the datasets
tested, the simplifications made to COMPOSE have had no
negative impact on accuracy.

With respect to execution time, as expected, FAST COM-
POSE showed a statistically significant improvement over
COMPOSE using α shapes, SCARGC 1-NN, and SCARGC
SVM. The last one is noteworthy, since SCARGC SVM was
previously known as the fastest algorithm in literature per
claims made in [12]. SCARGC SVM and 1-NN were slightly
faster than FAST COMPOSE in execution time only for the
keystroke dataset, which can be attributed to the specific char-
acteristics of this dataset. Specifically, the keystroke dataset
contains far fewer time-steps as compared to all synthetic
datasets. In the first time-step, the cluster and label imple-
mentations of SSL has an additional overhead, as it performs
a number of replications in order to improve the reliability.
For a large number of time-steps, the impact of the longer
first time-step calculations become negligible, whereas the
impact is more significant on datasets with fewer time-steps.
These results provide evidence that FAST COMPOSE is a very
effective approach both in terms of classification accuracy and
execution time.

C. Detailed Comparison of FAST COMPOSE and COMPOSE

While COMPOSE and FAST COMPOSE provide similar
classification performance (in terms of statistical significance),
looking at a particular dataset where the difference was signif-
icant may provide some additional insight. Table II listing the
average accuracy of these two algorithms shows that FAST
COMPOSE and COMPOSE perform similarly for all bench-
mark datasets except 5CVT. 5CVT is a dataset in which five
classes (5C) are translating vertically (VT) in one direction.
FAST COMPOSE performs dramatically better compared to
COMPOSE (as well as all other algorithms) showing that for
this dataset extracting the core supports of the most dense
region by using α-shape construction or any density estimation
procedures (as performed by COMPOSE) fails to provide
the most representative instances, while using all instances
as labeled information helps significantly in improving the
performance.

The reason COMPOSE underperforms on this dataset is
because applying core support extraction introduces a bias in
the decision boundary away from the unlabeled data at the next
time-step as shown in Figure 1. Ultimately, this bias makes
it difficult for the semi-supervised learning (SSL) algorithm
to cluster the data properly. When using all instances from
the previous time-step as the labeled information, the labeled
information is closer to the unlabeled data and this biasing
does not occur.

Figure 3 shows the core supports extracted from 5CVT
using core support extraction. In subfigure (a), the core sup-

(a) (b)

Fig. 3. 5CVT core supports extracted using Gaussian mixture models at: (a)
timestep 2 where yellow are core supports and blue are unlabeled data, the
core supports are biased toward the lower half of each cluster, the motion of
the cluster is indicated by the arrows; (b) time-step 3, due to the bias from
the last timestep, one cluster was misclassified.

ports extracted are biased slightly toward the lower half of the
clusters due to the density estimation procedure. This bias, in
turn, causes the misclassification of an entire class in subfigure
(b). By removing core support extraction and treating all data
as core supports, some portion of the labeled data will always
be either as close or closer to the cluster of unlabeled data.

V. CONCLUSION & FUTURE WORK

In this paper, we introduced a modification to COMPOSE
that significantly increased the execution speed of the algo-
rithm. The modified version of COMPOSE, named FAST
COMPOSE, is the original COMPOSE whose core support
extraction step is replaced by using all of the instances labeled
by the SSL in the previous time-step as the new labeled data to
be used for the next time-step’s SSL step. This simplification
of the algorithm produce improved results in both classification
accuracy and execution time.

Further work is needed to generate or acquire more chal-
lenging datasets as most algorithms perform similarly on the
current synthetic benchmark datasets. Currently, there is a
lack of datasets that contain abruptly changing distributions,
datasets with recurring concepts or class imbalances, datasets
that have substantial feature or class noise, datasets with
significant amount of outliers, datasets with very little or
almost no shared support, and high dimensional datasets to
name a few. Often, it is a challenging dataset, or a collection
of datasets that provide the motivation for the development of
specialized algorithms within a specific disciple. Additionally,
future work includes comparing the strengths and weaknesses
of different algorithms in the literature that operate under
extreme verification latency to provide a fair comparison of
the existing techniques.
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TABLE II
AVERAGE ACCURACY

DATASETS COMPOSE(α shape) COMPOSE (GMM) FAST COMPOSE SCARGC(1-NN) SCARGC(SVM)
1CDT 99.9615 (2.5) 99.9615 (2.5) 99.9679 (1) 99.7949 (4) 99.6097 (5)
1CHT 99.6026 (2) 99.6154 (1) 99.5705 (3) 99.3974 (4) 99.2641 (5)
1CSurr 90.9524 (4) 84.6515 (5) 95.641 (1) 94.5717 (3) 94.998 (2)
2CDT 96.5769 (2) 96.609 (1) 95.1731 (3) 88.0513 (4) 87.8301 (5)
2CHT 90.391 (2) 90.4423 (1) 89.4103 (3) 85.9551 (4) 85.859 (5)

4CE1CF 93.9204 (3) 93.9012 (4) 93.9528 (2) 94.0261 (1) 92.7944 (5)
4CR 99.9924 (2) 99.9924 (2) 99.9924 (2) 99.9604 (4) 98.943 (5)

4CRE-V1 80.7883 (3) 98.5887 (1) 97.7484 (2) 74.9371 (5) 74.9578 (4)
4CRE-V2 92.5907 (1) 92.5857 (2) 92.4632 (3) 91.3998 (5) 91.4808 (4)

5CVT 57.9676 (2) 49.9304 (3) 81.3348 (1) 46.2087 (4) 45.9475 (5)
FG 2C 2D 87.897 (4) 95.5454 (3) 95.5813 (2) timeout (5) 95.585 (1)

GEARS 2C 2D 90.9792 (2) 82.2135 (3) 91.2637 (1) timeout (5) 74.915 (4)
MG 2C 2D 93.1162 (1) 92.0298 (4) 93.0167 (2) timeout (5) 92.9229 (3)
UG 2C 2D 95.6347 (2) 95.6378 (1) 95.6112 (3) 95.4439 (4) 95.4368 (5)
UG 2C 3D timeout (4.5) 95.198 (1) 95.1202 (2) timeout (4.5) 94.8785 (3)
UG 2C 5D timeout (4.5) 82.9258 (3) 91.9889 (1) timeout (4.5) 91.1504 (2)
keystroke timeout (5) 87.4921 (1) 85.9204 (3) 85.6637 (4) 86.3411 (2)

Average Rank (lower is better) 2.7353 2.2647 2.0588 4.1176 3.8235

TABLE III
AVERAGE EXECUTION TIME (IN SECONDS)

DATASETS COMPOSE(α shape) COMPOSE (GMM) FAST COMPOSE SCARGC(1-NN) SCARGC(SVM)
1CDT 17.6604 (4) 0.609422 (2) 0.338512 (1) 18.3254 (5) 3.91082 (3)
1CHT 17.3164 (4) 0.614563 (2) 0.345122 (1) 18.2382 (5) 3.77782 (3)
1CSurr 59.3483 (4) 34.4966 (3) 1.69453 (1) 88.998 (5) 24.171 (2)
2CDT 17.7708 (5) 0.647412 (2) 0.382842 (1) 15.2904 (4) 4.65729 (3)
2CHT 18.6185 (5) 0.69017 (2) 0.407806 (1) 11.6092 (4) 3.15182 (3)

4CE1CF 190.361 (3) 6.50829 (2) 2.74359 (1) 309.128 (5) 207.594 (4)
4CR 153.289 (5) 7.98227 (2) 3.18295 (1) 140.142 (4) 83.2557 (3)

4CRE-V1 141.024 (4) 6.27852 (2) 1.61991 (1) 286.963 (5) 21.9151 (3)
4CRE-V2 195.801 (4) 5.2888 (2) 2.60481 (1) 421.596 (5) 56.5427 (3)

5CVT 26.5559 (4) 0.905739 (2) 0.572302 (1) 52.978 (5) 7.96208 (3)
FG 2C 2D 213.067 (4) 25.1987 (2) 1.83148 (1) timeout (5) 73.7001 (3)

GEARS 2C 2D 211.246 (4) 85.2689 (3) 3.1497 (1) timeout (5) 65.011 (2)
MG 2C 2D 214.771 (4) 11.4362 (2) 2.28884 (1) timeout (5) 71.8093 (3)
UG 2C 2D 106.335 (4) 1.06045 (2) 0.745 (1) 447.573 (5) 41.0892 (3)
UG 2C 3D timeout (4.5) 2.23306 (2) 1.68046 (1) timeout (4.5) 84.5405 (3)
UG 2C 5D timeout (4.5) 2.22986 (2) 1.71864 (1) timeout (4.5) 384.999 (3)
keystroke timeout (5) 2.9876 (4) 1.44763 (3) 0.982431 (2) 0.632132 (1)

Average Rank (lower is better) 4.2353 2.2353 1.1176 4.5882 2.8235

TABLE IV
STATISTICAL SIGNIFICANCE AT p ≤ 0.05 FOR CLASSIFIER ACCURACY

COMPOSE(α shape) COMPOSE (GMM) FAST COMPOSE SCARGC(1-NN) SCARGC(SVM)
COMPOSE(α shape) n/a
COMPOSE (GMM) n/a ← ←
FAST COMPOSE n/a ← ←
SCARGC(1-NN) ↑ ↑ n/a
SCARGC(SVM) ↑ ↑ n/a

TABLE V
STATISTICAL SIGNIFICANCE AT p ≤ 0.05 FOR CLASSIFIER EXECUTION TIME

COMPOSE(α shape) COMPOSE (GMM) FAST COMPOSE SCARGC(1-NN) SCARGC(SVM)
COMPOSE(α shape) n/a ↑ ↑
COMPOSE (GMM) ← n/a ←
FAST COMPOSE ← n/a ← ←
SCARGC(1-NN) ↑ ↑ n/a ↑
SCARGC(SVM) ↑ ← n/a
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