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Abstract—Detecting changes in a landscape is a critical issue
for several evolutionary dynamic optimization techniques. This
is because most of these techniques have steps to be taken as a
response to the environmental changes. It may not be feasible
for most of the real world problems to know a priori when a
change occurs; therefore, explicit schemes should be proposed to
detect the points in time when a change occurs. Although there
are both sensor-based and population-based detection schemes
presented in the literature for single objective dynamic optimiza-
tion problems, there are no such efforts for the dynamic multi-
objective optimization problems (DMOPs). This paper proposes
a set of novel sensor-based change detection schemes for DMOPs.
An empirical study is presented for validating the performance
of the proposed detection schemes by using eight test problems
which have different types and characteristics. Additionally, the
proposed change detection schemes are incorporated into a
dynamic multi-objective evolutionary algorithm to validate the
effectiveness of the proposed change detection schemes.

I. INTRODUCTION

The main difference between a dynamic multi-objective
optimization problem (DMOP) and a stationary multi-objective
optimization problem is the existence of dynamism. The dy-
namism is usually in the form of changes in one or more objec-
tive functions, changes in constraints or changes in parameters
of the problem over time [1]. While the main goal of stationary
optimization problems is to find the optimal or near-optimal
solution, tracking the global optima as close as possible is the
main motivation of a dynamic optimization problem. On the
other hand, for a DMOP the optimization goal is to evolve a
diverse Pareto front and to track changes in the Pareto front
over time [2].

Since there are many real world problems which are
dynamic in nature, dynamic multi-objective optimization prob-
lems (DMOP) are rapidly attracting the interest of the re-
searchers [1]. Routing optimization problems in mobile and
ad-hoc networks [3], scheduling problems [4], control prob-
lems [5], resource management problems [6] and hydro-
thermal power problems [7] are selected examples of DMOPs.

Evolutionary algorithms and its dialects are among the
most widely used techniques to solve dynamic optimization
problems (DOPs) [8]. In literature, evolutionary computing
for DOPs is called evolutionary dynamic optimization (EDO).
Detecting the changes in a landscape is a critical issue for
several EDO techniques, since most of them target to take an
explicit action to respond to a change in the environment [8].
The EDO techniques do not perform any extra work when the
changes in the environment are known; which is common in

many problems that are presented in the literature. However,
it may not be feasible for most of the real world problems
to know a priori when a change occurs. In case of detecting
the change, an EDO technique utilizes either a population-
based detection strategy or a sensor-based detection strategy,
where the former one considers performance degradation in
the population as the indicator of a change; and the latter one
utilizes reevaluation of a fixed number of sensors from the
landscape during the search process [9].

In this paper, we present a set of novel sensor-based change
detection schemes for dynamic multi-objective optimization
problems (DMOPs). An empirical study is presented to eval-
uate the performance of proposed schemes by considering
all types of DMOPs. Additionally, we integrate the change
detection schemes with dynamic multi-objective evolutionary
algorithms. In order to validate incorporation with the detection
schemes, we consider the DNSGA-II-A algorithm [7], the
algorithm that has diversity maintenance based extension on
the well-known NSGA-II [10] algorithm. The results show
that the integration of the proposed change detection schemes
significantly outperforms the DNSGA-II-A algorithm.

The remainder of the paper is organized as follows. Section
2 presents a short review on DMOPs and techniques for
solving DMOPs. We present our proposed change detection
schemes for DMOPs in Section 3. Section 4 shows the results
of the empirical study for assessing the performance of the
change detection schemes and evaluates impact of the detection
schemes on the performance of the DNSGA-II-A algorithm.
Finally, we conclude the paper and discuss future research
directions in Section 5.

II. DYNAMIC MULTI-OBJECTIVE OPTIMIZATION

A dynamic multi-objective optimization problem (DMOP)
is an optimization problem with two or more conflicting
objectives, where the objective(s), constraints or parameters
of the problem change in time. Formally, a DMOP is defined
as:

minf(x,t) = {fi(x,t), falz,t), ... far(x,t) } €))
g(z,t) < 0,h(x,t) =0 )

where x is the vector of decision variables and f is the set
of objectives to be minimized with respect to time t. The two
functions g(x,t) and h(x,t) define the constrains of the problem
that may also change with respect to time. In case of a change



in a DMOP, at least the Pareto optimal set (POS) or the Pareto
optimal front (POF) may change. The dynamic POF is the set
of nondominated solutions with respect to the objective space
at a given time. The set of nondominated solutions with respect
to the decision space determines the dynamic POS. Since a
change in the landscape may affect the existing solutions of the
DMOP, an optimization algorithm should continuously track
the dynamic POF. Specifically, it targets to quickly find and
converge to the new POF before the next change occurs.

Based on the most common categorization of DMOPs
proposed in [11], they are classified into four types depending
on where the change happens, in decision space, fitness space
or in both of them:

e Type 1. The Pareto optimal set (POS) changes over
time while the Pareto Optimal front (POF) remains
stationary.

e  Type 2. Both the POF and POS change over time.

e Type 3. The POF changes over time while the POS
remains stationary.

e  Type 4. Both the POF and POS remain stationary.

There are a number of dynamic multi-objective evolution-
ary (DMOE) algorithms for solving DMOPs in the literature,
which can be broadly classified into five categories [8]. Di-
versity introduction is the first category where all solutions in
the population or a number of them are reinitialized randomly
whenever a change is detected [7]. Updating the mutation rate
based on the problem changes and diversity of the population
is another example of the first category [12]. Reinitializing a
portion of the population in each generation without consider-
ing the changes explicitly is an example strategy for the second
category called diversity maintenance [13]. The algorithms of
the third approach, called multi-population strategy, use more
than one population (named as subpopulations) concurrently to
solve DMOPs, where each one of the subpopulations works in
separated area in the search space and may have a separate
task. Two well-known examples of this category are the
DVEPSO algorithm [14] and the dCOEA algorithm [2]. Ac-
cording to the recent research [15] multi-population algorithms
outperform other types of algorithms on a various set of DMO
test instances. Memory-based strategy is the fourth category,
which uses implicit or explicit memory to store the best
detected solutions and reuse them in next stages when change
happens again [16]. A recent research strategy is to integrate
the memory concept with other DMOE algorithms [17]. The
last category is the prediction-based strategy where algorithms
solve DMOPs by exploiting the history of the past population
information in order to estimate the POF of the dynamic
problem by utilizing forecasting methods [18], [19].

III. CHANGE DETECTION SCHEMES FOR DMOPs

Although changes in the environment are known by the
EDO algorithm for several synthetic or test problems presented
in the literature, it may not be feasible for real-world problems.
On the other hand, detecting the points in time when a change
occurs in the landscape is a critical issue for a number of EDO
techniques. Therefore, many EDO algorithms utilize either a
population-based detection strategy or a sensor-based detection
strategy [8], [9] to detect the changes. In a population-based

approach, population behavior is considered to detect a change
in the environment. Specifically, non-parametric statistical tests
such as Wilcoxon-Mann-Whitney and Jensen-Shann meth-
ods are used to determine performance degradation in the
population, which is considered as a change indicator [9].
For a sensor-based detection strategy, a fixed number of
sensors (which are candidate solutions) are spread around
the landscape and re-evaluated throughout the search process
in order to detect changes. Determining a sensor-placement
scheme and number of sensors needed are the main issues of
a sensor-based strategy, where there are alternative schemes in
the literature [20]. Although a sensor-based detection strategy
requires additional fitness function evaluations, they are more
favorable for the case of difficult detection scenarios [9].

Algorithm 1 Selection from different densities of POF
(PPOFD)

begin

repeat
g < g + 1 /*generation number*/
if ¢ % change frequency = 0 then
counter <— 0
r < 1 /*density rank*/
F1 <+ Determine the POF solutions
Fs <« Sort F1 solutions according to densities
while counter < Sensors Number do
S + Select individual of Rank r from F's
B + Fitness functions of S
A + Re-evaluate(S)
if B # A then
HandleChange() /*Change detected*/
break
end if

counter <— counter + 1

size of F's
TeT+ Sensors Nu'mberJ
end while

end if

until Termination condition is satisfied
end

Both population-based and sensor-based change detection
strategies that presented in literature are applied on single
objective dynamic optimization problems; and to the best of
our knowledge, there is no work of applying and testing var-
ious change detection strategies for DMOPs. The researchers
assume that the change periods are known a priori or they
utilize a simple strategy such as selecting randomly a fixed
percent of the population as sensors [7], [21]. In this section,
we present seven sensor-based change detection schemes for
DMOP, where some of them are adapted from the detections
schemes designed for single objective DOPs and some of them
are new schemes designed for DMOPs. The new schemes are
proposed in order to locate the sensors in a DMOP such as
selecting them from the POF or distribute them according to
the non-domination ranks of the solutions.

The DMOPs sensor-based detection schemes proposed in
this study can be classified into two main groups: from-
population and non-population methods. The former group
includes schemes that select the sensors from the population
with respect to different selection schemes; and the latter group
looks for the other parts of the landscape that are outside of
the population. Sensors are visited and evaluated one by one
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the population, and points with the circles are the selected sensors

Algorithm 2 Non-population distributed solutions (NP3)
begin

repeat
g < g + 1 /*generation number*/
c+1
while ¢ < Sensors Number do
Se + Initialize an individual uniformly
B « Fitness functions of Sc
c+—c+1
end while
if g % change frequency = 0 then
c+1
while ¢ <= Sensors Number do
Ac < Re-evaluate(S.)
if B. # A, then
HandleChange() /*Change detected*/
break
end if
c+—c+1
end while
end if

until Termination condition is satisfied
end

for all sensor-placement schemes proposed in this section. In
case of a differentiation from its previous fitness values (a
change in any objective function) for a sensor evaluation, it is
an indicator of change and evaluations of remaining sensors
are skipped; otherwise, the next sensor is evaluated. In this
section, the proposed change detection schemes are presented,
which include pseudocodes of only two schemes due to space
limitations.

A. From-Population Methods

e  Random set from the population (PR). In this method
a predefined number of solutions from the population
are randomly selected and re-evaluated. If there is a
change at least in one sensor, then an environment
change is considered. Due to multi-objective nature,
all objective function values must be compared for
each sensor. In Figure 1C, three sensors (i.e., the
points which have a circle) are selected based on this
scheme for a two-objective optimization problem. It is
a simple mechanism but sometimes it may not cover
all the search regions.
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Sensor based change detection schemes for a two-objective optimization problem. Each scheme uses three sensors where points are the members of

e Random set from POF (PPOF). The POF is the most
important solution set in the population. This method
selects a fixed number of solutions randomly from
the POF set and reevaluates them to test a change
occurrence (see Figure 1B). Selecting solutions from
the POF provides better distribution in the search
space, since the DMOE algorithms target to distribute
the solutions to cover all POF regions during the
evolving process.

e  Selection from different domination ranks (PRank).
This method targets to distribute the tested sensors
based on the rank of that sensor (solution) in its popu-
lation. It may generate various combinations based on
the number of ranks and the number of sensors. The
simplest case is to select one sensor from each rank,
since the number of sensors is limited (see Figure 1A).

o Selection from different densities of POF (PPOFD).
The sensors are also selected from the POF set not
randomly but based on a distribution to cover the
entire POF region. We consider crowding distance in
order to perform a distribution mechanism without
additional running time to the dynamic multi-objective
evolutionary algorithm. The crowding distance for
each solution is already computed by many MOEAs
such as NSGA-II; and Algorithm 1 describes the
steps of this method. As shown in the algorithm, first
the POF is determined and then it is sorted using
the crowding distance of the solutions. Then, simple
selecting mechanism is applied to pick sensors from
different density levels.

B. Non-Population Methods

e  One time random initialization (NPI). This method
randomly initializes fixed number of sensors to detect
the environment change. The sensors are initialized
once only before the algorithm starts running; then,
those sensors are re-evaluated to test the change oc-
currence. In Figure 1D, three sensors (marked as black
squares) are chosen randomly, which are outside of
the population. The selected sensors can be from any
part of the landscape including the regions that do not
contain any candidate solutions.

e  Random initialization for each test (NP2). This



TABLE 1. SELECTED DMO TEST PROBLEMS BASED ON THEIR TYPES

Problem Type | Selected Problems
Type 1 FDA4 [11], SJY1 [15]
Type 2 FDAS [11], dMOP2 [2]
Type 3 SJY4 [15], dMOPI [2]
Type 4 SJYS [15], T1 [22]

method is the same as the previous one except that
the sensors are re-initialized randomly in every gener-
ation. This method adds more randomness to sensors
selection process since the sensors are re-initialized
periodically to scan different areas in the search space.

e Distributed solutions (NP3). Instead of initializing the
sensors randomly as in the previous two methods, this
method targets to spread the sensors over the decision
space in order to cover all regions. Depending on
the selected number of sensors, the decision space
is divided into equal size fractions; and sensors are
placed into those fractions. As in the NP1 method,
the sensors are initialized once only before the start
of execution. Algorithm 2 presents the pseudocode of
this method.

IV. EXPERIMENTAL STUDY

In this section, we present the test problems for the
empirical study of our change detection schemes, which is
followed by the metrics used for the performance evaluation.
Then, the results of empirical study is given in two consecutive
subsections.

A. Test Problems

In order to compare performance of the proposed sensor-
based change detectors, eight dynamic multi-objective test
problems are selected by considering two test problems from
each DMOP type given in Section 2. The names of the test
problems are given in Table I.

The test problems given in Table 1 are selected from
four different test suites. The first test suite is the FDA test
problems [11], where the authors created it by adapting the
static DTLZ [23] problems. The FDA test problems are the
most widely used problems for testing the performance of
DMOE algorithms. In our experimental study, we consider
two test problems (FDA4 and FDAS) from this test suite.
They are both non-convex and scalable, i.e. we can easily
generate test problems with any number of objective functions.
In our experiments, we also consider test problems from the
SJY framework [15], which construct scalable dynamic test
problems of all four types; and the dynamism can easily be
added and controlled. In this paper, three test problems (SJY1,
SJY4 and SJY5) are selected from SJY framework. The SJY1
test problem has a linear POF; and the POF shape of the SJY4
problem changes gradually during the execution from concave
to convex. The POF of the SJY5 test problem has also a non-
convex shape. Additionally, we use T1 test problem proposed
in [22], where the dimension of the decision variables can
change over time. The last two test problems are the dMOP1
and the dMOP2 that proposed by Goh and Tan [2], which
were designed based on the FDA problems. The formulation
of each problem can be accessed in the related reference given
in Table 1.

The time ¢ for each test problem is defined as,

1 T
t=— % —
ng fr
where n; represents the severity of change, 7 is the iteration
count and fr is the frequency of change.
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B. Comparison Metrics

In order to compare the quality of solutions of the change
detectors, we consider two metrics.

o  The true positive rate (TP). This metric measures the
percentage of the changes that are correctly detected
in the environment. A high TP rate that is close to 1
indicates that almost all of the changes are caught by
the change detection scheme.

TPrate — correctly identified changes @)
total number of changes

e The average number of invoked sensors (sAvg). This
metric measures the average number of sensors used
to detect a change in the environment. Normally,
the value of sAvg is between 1 and number of
detectors considered. Since, each sensor needs one
further function evaluation to detect the change in
the dynamic environment, a high sAvg value indicates
high overhead of the detections scheme, which means
that the need of more sensors will cost more function
evaluations. Therefore a small value of this metric is
desired.

As part of the experimental study, the proposed change
detection schemes are incorporated with the DNSGA-II-A
algorithm. In order to evaluate the significance of the schemes
on the DNSGA-II-A algorithm, we use the following three
metrics:

o The mean inverted generational distance (mIGD) [24].
It is derived from IGD [25] and computes the total
average generational distance for all generations of the
resulted solutions which can be calculated as:

1 In
mIGD = P ZIGDt 5)
=1

where g,, is the number of generations.

o The mean inverted generational distance just before
the change (mIGDB). This metric is developed to
compute the performance of the DMOE algorithms
just before the next change [17]. While m/GD com-
putes the total average generational distance for all
generations, this metric computes the last generational
distance value just before the change. The mIGDB
metric can be calculated from this equation:

c
1 n
IGDB = — % E IGD 6
m c, 2 t (6)
where C, is the number of changes and IGD; is
calculated just before the next change.



e  Scotts spacing (SS). This metric [26] is developed
to measure the distribution of the discovered Pareto
front. It measures how evenly the members in POF
are distributed, and it is computed from this equation:

n

1
SS =\ —7 > (Di-

1

D,)? @)

where D; is the Euclidean distance between the ith
member in POF and its nearest member in POF and
D,, is the average value of D;.

C. Performance Evaluation of the Change Detection Schemes

In this section, we present results of an empirical study
for performance evaluation of seven proposed sensor-based
change detection schemes. In our experimental study, the terms
NP1, NP2 and NP3 indicate the one time random initialization,
random initialization for each test and distributed solutions
based change detection schemes, respectively. Additionally, the
terms PR, PPOF, PRANK and PPOFD refer to random selec-
tion from population, random selection from POF, selection
from different domination ranks and selection from different
densities of POF based detection schemes, respectively.

In our experiments, the number of sensors is set to 4,
unless otherwise stated. The severity of change is set to 100
and the term t for each dynamic test problem is computed
using equation 3. Frequency of change is equal to 10;; and
there are three objectives for each test problem. For each run,
the stopping criterion is 1000 generations; and 50 independent
runs are performed for each detection scheme on each test.
A one-way ANOVA test on the TP rates is performed to
demonstrate whether the performance variations among the
detection schemes are statistically significant or not.

Figure 2 is the notched boxplot of the TP rates of the
seven detection schemes for eight dynamic multi-objective test
problems considered. Each boxplot in a figure correspond to a
detection scheme with lines at the lower quartile, median and
upper quartile data values, where the whiskers are the lines
extending from each end of the box to show the extent of the
rest of the data.

The results given in Figure 2 clearly show that the non-
population sensor based change detection methods outperform
the from-population sensor based methods in most of the test
problems. Specifically, both the NP1 and the NP3 cases are
better than the other methods in 7 out of 8§ test problems.
Among the from-population methods, the PPOFD scheme is
the best one but it is still not as good as the NP1 and the NP3
schemes. Sensors that selected with from-population schemes
may be confined in a smaller region of the fitness space.
Conversely, the non-population sensor based methods select
random values without restrictions which may make it capable
of covering landscape of all objective functions. Additionally,
the changes in “’type 2” test problems can be detected by 100%
due to the changes in both POF and POS in such problems.

In another experiment, average number of sensors needed
to detect changes (sAvg) is measured for each change detection
scheme proposed in this study. Table 2 shows sAvg values of
100 indepedent runs of each case for eight test problems. Based
on the table, the non-population sensor based methods are

TABLE II. AVERAGE NUMBER OF SENSORS INVOKED FOR PROPOSED
CHANGE DETECTION SCHEMES (MAXIMUM OF 4 SENSORS).

Test Problem NP1 NP2 NP3 PR PPOF PRank PPOFD
SJY1 1.00 1.00 1.00 1.16 1.15 1.27 1.19
FDA4 1.00 1.00 1.00 1.27 1.27 1.20 1.31

dMOP2 1.00 1.00 1.00 1.18 1.10 1.01 1.10
FDAS 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SJy4 1.01 1.00 1.00 1.50 1.49 1.20 1.37

dMOPI 1.00 1.00 1.00 1.46 1.43 1.45 1.54
SJY5 1.02 1.00 1.00 | 2.46 2.46 3.16 2.90

T1 1.00 1.00 1.00 1.00 1.00 1.00 1.00

better than the from-population based methods, since they need
only one sensor evaluation for most of the cases. This situation
is different from the case of single objective DOPs [20]; since,
for each sensor re-evaluation on a DMOP, there is m function
re-evaluation, where m is the number of objective functions.
The existence of more than one objective function enhances
the detection performance of the sensors and reduces the need
of more sensor re-evaluation processes.

The effect of increasing the number of sensors on perfor-
mance is examined in the next experiment. Figure 3 shows the
average TP rates of the detection schemes for four dynamic
multi-objective test problems (one test problem from each
type) by varying the number of sensors. The results show that
firing two sensors is enough to detect the changes with the
NP1, the NP2 and the NP3 schemes for the FDA4 and the
FDAS test problems. Although, increasing number of sensors
may improve performance (i.e. an increase in TP rates) when
sensors are selected from-population, the rate of improvement
is not high. The best improvement is achieved for the SJY5 test
problem, where the TP rate for the PPOFD scheme increases
from 11% to 36% when number of sensors is increased from
2 to 4.

Performance of the change detection schemes are evaluated
by varying the number of objectives considered in the test
problems. We consider one test problem of each type (the
FDAA4 for type 1, the FDAS for type 2, the SIY4 for type 3,
and the SJY5 for type 4) in this experiment; and the number
of objectives is varied by using the values from the set {2, 3,
5, 8}. As in the previous tests, the number of sensors is set
to 4 and the parameter n; for the severity of change is set to
100.

TABLE IIL THE AVERAGE TP RATES OF DETECTION SCHEMES BY
VARYING THE NUMBER OF OBJECTIVE FUNCTIONS CONSIDERED IN EACH
TEST PROBLEM.

Test 1 #0f 1 \py | NP2 | NP3 | PR | PPOF | PRank | PPOFD
Prob. Ob;j.
7 [ 1000 | 1000 | 100.0 | 797 | 810 | 8056 304
pas |3 1000 | T00.0 | 100.0 | 842 | 843 | 843 85.1
5 990 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
8 | 986 | 990 | 99.0 | 100.0 | 1000 | 100.0 | 100.0
2 | 999 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
FDAS |3 | 999 | 1000 | 1000 | 1000 | 100.0 | 1000 | 100.0
5994 [ 1000 | 999 | 100.0 | 100.0 | 100.0 | 100.0
§ [ 990 [ 100.0 | 99.0 | 100.0 | 1000 | 100.0 | 100.0
3967 | 927 | 970 | 740 | 741 | 742 723
siya |3 962 [ 915 | 960 | 754 | 752 | 750 TE3
51960 | 890 | 960 | 577 | 577 | 557 382
8 [ 950 | 830 | 950 | 606 | 606 | 393 853
2 | 888 | 518 | 880 | 43 %) i3 1038
Gys |3 %90 [ 537 | 880 | 79 79 76 0.7
5900 | 540 | 880 | 77 77 77 )
8§ [ 899 | 402 | 9L0 | 138 | 138 | 128 37.0

The average TP rates of all methods by varying the number
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Fig. 2. One-way ANOVA test results as a notched boxplot of the proposed change detection schemes for DMOPs with a 95% confidence interval.
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Fig. 3. Average TP rates of the change detection schemes for different number of sensors. (A) FDA4 test problem, (B) FDAS test problem, (C) SJY4 test

problem, (D) SJYS5 test problem.

of objectives are given in Table 3. Sensor detection schemes
based on the from-population strategy give good results and
slightly outperform the non-population schemes, when higher
number of objectives are considered for type 1 and type 2
test problems. On the other hand, the non-population schemes
significantly outperform the from-population schemes for type
3 and type 4 test problems. This result is probably because of
the nature of the type 3 and type 4 problems which do not
contain a significant change in their POF and POS (in type
4 there is no change, where in type 3 the change is small).
According to that, the from-population schemes concentrate on
the POF region of the fitness space during the algorithm run
and consequently they may not be able to identify most of the
environmental changes. Additionally, the performance of from-
population schemes improves with the increase of objectives
for the SJYS5 test problem.

D. Incorporate the Change Detection Strategies with a Dy-
namic Multi-Objective Evolutionary Algorithm

It is observed that selecting sensor based on non-
population schemes outperform selecting sensors based on
from-population schemes, with respect to both average TP
rates and average number of invoked sensors to detect the
changes. In this section, we propose extensions on a dy-
namic multi-objective evolutionary algorithm by utilizing the
change detection schemes proposed in this study. We consider
DNSGA-II-A algorithm, which is an algorithm that introduces
diversity in a population when there is a change [7], [15].
Specifically, it replaces fixed portion of the population (20%
in our experimental study) with randomly generated new
solutions whenever there is a change in the environment. As
in the previous experiments, population size is set to 100;
a crossover probability of 0.7 and a mutation probability of



TABLE IV.

PERFORMANCE COMPARISON OF THE DNSGA-II-A ALGORITHM INCORPORATED WITH THE CHANGE DETECTION SCHEMES.

Metric Pr:;f;m NP1 NP2 NP3 PR PPOF PRank PPOFD DNSGA-II
FDA4 | 0.11497 (O.1E-07)+ | 0.11512 (78E-07)+ | 0.11525 (3.9E-07)+ | O.11511 (64E-07)+ | 0.11502 (6AE-07)+ | 0.11d82 (5.7E-07) | 0.11483 (7.2E-07) | 0.11511 (64E-07)+
wiGD | FDAS | 014162 (41E-05) | 0.14038 (42E-05) | 0.14262 38E-05)+ | 0.14262 38E-05)+ | 0.14262 38E-05)+ | 0.14262 (38E-05)+ | 0.14262 (38E-05)+ | 0.14262 (3.8E-05)+
SIY4 | 010180 (8.2E-05) | 0.10219 (7.8E-05) | 0.09958 (3.7E-05)+ | 0.09986 (3E-05)+ | 0.10081 (4.1E-05)+ | 0.09903 (3.7E-05) | 0.09950 (4.9E-05) | 0.09986 (3.0E-05)
SIYS | 0.06364 28E-06}+ | 0.06375 (2.1E-06)+ | 0.06315 (23E-06) | 0.06339 (2.7E-06)+ | 0.06275 (1.9E-06) | 0.06294 (3.1E-06) | 0.06321 (2.5E-06) | 0.08783 (6.5E-05)+
FDA4 | 0.11552 (7.6E-07) | 0.11567 (6.8E-07)+ | 0.11581 (3.1E-07)+ | 0.11566 (4.8E-07) | 0.11564 (5.1E-07) | 0.11551 (49E-07) | 0.11549 (4.5E-07) | 0.11566 (4.8E-07)
miGDB | FDAS | 0.13963 (L4E-05) | 014048 (19E-05) | 014158 (LSE-05)+ | 014158 (LSE-05) | 014158 (LSE-05)+ | 014158 (LSE-05)+ | 014158 (LSE-05)+ | 014158 (1.5E-05)+
SIY4 | 0.09094 (44E-051+ | 0.09128 (4.4E-05)+ | 0.08923 (2.6E-05) | 0.08947 (1.8E-05)+ | 0.08963 (2.5E-05) | 0.08878 (2.3E-05) | 0.08888 (2.2E-05) | 0.08947 (1.8E-05)+
SIYS | 0.06248 (24E-06)0+ | 0.06239 (1.SE-06)+ | 0.06167 (22E-06) | 0.06217 (2.3E-06)+ | 0.06163 (1.8E-06) | 0.06176 (3E-06) 0.06192 (2.6E-06) | 0.08279 (5.6E-05)+
FDA4 | 003768 (1.9E-07)+ | 0.03756 (3.1E-07) | 0.03761 (1.2E-07)+ | 0.03756 (3.1E-07) | 0.03752 (L.5E-07) | 0.03756 (19E-07) | 0.03759 (1.2E-07)+ | 0.03766 (3.1E-07)+
s FDAS | 0.05358 (1.6E-05) | 0.05270 (9.5E-06) | 0.05445 (1.7E-05) | 0.05445 (1.7E-05) | 0.05445 (1.7E-05) | 0.05445 (1.7E-05) | 0.05445 (1.7E-05) | 0.05445 (1.7E-05)+
SIY4 | 0.05255 (1.8E-05)+ | 0.05088 (15E-05) | 0.05213 (2.2E-05) | 0.05139 (2.1E-05) | 0.05127 (1.6E-05) | 0.05141 (1.5E-05) | 0.05091 (L4E-05) | 0.05139(2.1E-05)
SIYS | 0.03189 (6.5E-07) | 0.03206 (5.6E-07) | 0.03188 (1.2E-06) | 0.03187 (7.IE-07) | 0.03187 (74E-07) | 0.03179 (3.5E-07) | 0.03185 (S8E-07) 003325 (2.6E-06)+

A +” sign in the right side of the values indicates that the best algorithm performs significantly better than the corresponding algorithm.

1/n (where n is the number of variables) are used in the
algorithm. The number of variables is equal 10; and real-
valued representation is considered.

In this experiment, we consider one problem from each
type as in the previous experiments. Table IV compares the
performance of the seven proposed change detection algo-
rithms that are incorporated with the DNSGA-II-A algorithm
and the performance of the DNSGA-II-A algorithm without
using any change detecting mechanism. The mean inverted
generational distance (mGID), mean inverted generational dis-
tance before the change (mGIDB) and Scotts spacing metrics
are used to measure the performance of the eight cases. The
value of each metric on each problem is given as mean and
standard deviation values. Additionally, the change detection
scheme that outperforms other alternatives is given in bold at
each row; therefore, there is one bold case for each problem
and metric pair. On the other hand, a ”+” sign in a cell under
the column of a detection scheme indicates that the results of
the best algorithm in the corresponding row statistically outper-
forms the scheme presented in the corresponding column. As
an example, for the mIGD metric on FDA4 test problem (i.e.,
the first row of the table), the PRank scheme is the best strategy
and it statistically outperforms 6 other alternatives (since there
are 6 "+ signs in the cells of the same row) and it outperforms
the PPOFD scheme.

Table V presents pairwise comparison of the DNSGA-II-
A algorithm and change detection schemes incorporated with
the DNSGA-II-A algorithm, based on the results given in
Table IV. Each cell in the table has three numbers for pairwise
comparison between the scheme given in the corresponding
row and the scheme given in the corresponding column, where
the numbers are for the comparisons of the mGID, the mGIDB,
the Scotts spacing values, respectively. Here, each number can
be a value from O to 4, where 4 is the number of test problems
considered in Table IV. As an example, in the first cell of the
seventh row (i.e. the cell of the PPOFD row and the NP1
column), we have (2,1,1) values, which indicate that PPOFD
scheme statistically outperforms the NP1 scheme in 2 problems
for the mGID metric, in 1 problem for the mGIDB metric
and also in 1 problem for the Scotts spacing metric. The last
column in the table sums up the results of each row, where
the scheme of the highest sum is the best one. The PRank and
PPOFD schemes are the best two schemes, since they have the
highest values in the last column.

When the experiments in previous section are consid-
ered, the non-population based schemes (NP1, NP2 and NP3
schemes) significantly outperformed from-population schemes
with respect to the TP rates and the sAvg values. On the

other hand, the results given in Table IV show that the in-
tegrations of the from-population schemes (i.e., PPOF, PRank
and PPOFD) with the DNSGA-II algorithm outperform the
integrations of non-population schemes in most of the cases
presented. The non-population schemes give better results only
for the Type 2 problem, the FDAS test. In addition, the
results show that the proposed change detection algorithms
enhance the performance of the DNSGA-II algorithm since
the DNSGA-II algorithm (without any change detection mech-
anism) has the lowest value in Table V. Actually, when the
change detection algorithm detects every change even if it is
very small (as in the non-population schemes), it fires the pro-
cess of re-initializing 20% of population in the DNSGA-II al-
gorithm, which may degrade the performance of the algorithm.
Therefore, in spite of the good true positive results that the non-
population sensor schemes gained, the overall performance of
the evolutionary algorithm that use these methods is not as
good as the performance of the evolutionary algorithm that use
the from-population change detection scheme. Conforming to
our results, it is recommended to use from-population based
change detection schemes (i.e. the PPOF, the PRank and
the PPOFD schemes), since those schemes can enhance the
performance of the DMOE algorithm by detecting only the
important changes and not every environmental change (even
it is very small) as in the non-population schemes.

V. CONCLUSION

In this paper, we investigated the performance of seven
different sensor-based detection schemes (NP1, NP2, NP3,
PR, PPOF, PRank and PPOFD schemes) on eight dynamic
multi-objective test problems. The proposed schemes can be
categorized into two groups: from-population schemes which
select the sensors from the population with respect to different
selection schemes and non-population schemes which select
sensors from other parts of the landscape that are outside of
the population. Results of our empirical study show that non-
population schemes outperforms the from-population schemes
with respect to TP rate values and number of invoked sensors.

Additionally, we proposed a hybridization technique by
incorporating proposed sensors-detection schemes with the
DNSGA-II-A algorithm, which is a dynamic multi-objective
evolutionary algorithm that introduces diversity when there is
a change in the environment. Based on the results of the exper-
imental study, the performance of the from-population sensor
based schemes such as the PPOF, the PRank and the PPOFD
schemes are better than the non-population schemes in most of
the cases considered. Furthermore, the results of experiments
validate that the proposed change detection schemes enhance
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