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Abstract—Self-Organizing Maps (SOMs) are unsupervised
neural networks that build data models. Neuron labeling attaches
descriptive textual labels to the neurons making up a SOM,
and is an important component of SOM-based exploratory data
analysis (EDA) and data mining (DM). Several neuron labeling
approaches tend to leave some neurons unlabeled. The interaction
between unlabeled neurons and SOM model accuracy affect
the choice of labeling algorithm for SOM-based EDA and DM,
but has not been previously investigated. This paper applies
the widely used example-centric neuron labeling algorithm to
several classification problems, and empirically investigates the
relationship between the percentage of neurons left unlabeled
and classification accuracy. Practical recommendations are also
presented, which address the treatment of unlabeled neurons and
the selection of an appropriate neuron labeling algorithm.

I. INTRODUCTION

The self-organizing map (SOM) is an unsupervised learning

neural network [1] upon which a large body of research work

has been conducted [2]–[4]. In particular, SOMs have been

widely used for data analysis in domains as varied as the

financial [5], industrial [6], and medical [7] sectors.

In the view of this research, data analysis of any kind falls

within one of the following two broad categories [8]:

• Exploratory data analysis (EDA), which entails the com-

putational assistance of a human data analyst, and often

relies on information visualization techniques [9]. Many

SOM visualization methods exist [10], resulting in SOMs

being predominantly used for EDA tasks.

• Data mining (DM), which automatically extracts knowl-

edge from a data set, usually in the form of a rule set.

Very few SOM-oriented DM methods exist, including

only the SIG* algorithm [11], a boundary-based rule

extractor [12], and the HybridSOM framework [13].

Neuron labeling attaches characterizations, which are usu-

ally textual and describe the map structure, to the neurons mak-

ing up a SOM. Labels are an integral part of all SOM-based

DM, and many SOM-based EDA applications. The selection

of an optimal neuron labeling method is thus important.

Several neuron labeling methods potentially leave neurons

uncharacterized. However, to the authors’ knowledge, the

impact of such neurons has not been investigated. This pa-

per empirically examines the relationship between unlabeled

neurons and the accuracy of a SOM-based classifier. Practical

insight is also offered on the handling of unlabeled neurons

and the selection of appropriate labeling algorithms.

The remainder of this paper is organized as follows: Sec-

tion II briefly discusses the SOM architecture and algorithm,

while Section III outlines the various approaches to SOM

neuron labeling. Section IV discusses the experimental work

conducted during this investigation, and presents results. Sec-

tion V provides practical recommendations for the use of

labeling algorithms with SOMs, which follow from the results

described in the previous section. Finally, Section VI presents

conclusions and potential avenues for future research.

II. SELF-ORGANIZING MAPS

The SOM was proposed in 1982 by Teuvo Kohonen [14].

The self-organizing behavior of associative memory and hu-

man cerebral cortices served as inspiration for the method. The

algorithm is unsupervised, meaning that SOMs can be trained

on unclassified data. Such data is very common in practice,

and any possible class-based bias is also eliminated.

Fig. 1 (a) shows the SOM architecture. A training set of data

examples, DT = {~z1, ~z2, . . . , ~zPT
}, is required. A training data

example is an I-dimensional vector, ~zs = (zs1, zs2, . . . , zsI),
where each zsv ∈ R is an attribute value. A map structure

contains neurons, and is usually a Y×X grid. The number of

grid rows and columns are Y and X , respectively. A neuron,

nyx, is at grid row x and column y, and has an I-dimensional

weight vector, ~wyx = (wyx1, wyx2, . . . , wyxI). Each weight,

wyxv ∈ R, corresponds to zsv over the training set.

The training operation of a SOM models the I-dimensional

data space using the weight vectors of a map space with fewer

dimensions. The mapping has two important properties:

• The mapping models the probability density function of

the data space. This means that each neuron represents a

group of similar data examples, and that neuron weights

drift towards dense areas in the data space.

• The mapping preserves the local topological structure of

the data space. This means that examples that are close to

one another in the data space, will also be represented by

neurons that are close to one another in the map space.

Fig. 1 (b) illustrates the effect of SOM training on the weight

vectors using a hypothetical map structure in which I = 2.

Gray circles denote the original positions of neuron weight
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Fig. 1. The basic structure and operation of a SOM: (a) shows the architecture of a SOM, (b) shows the local effect of training in a two-dimensional case.

vectors in a grid, with dashed lines linking the weight vectors

of adjacent neurons. Crosses represent the positions of training

data examples. Black circles indicate the positions of the

weight vectors after training, with solid lines linking the

weight vectors of neighboring neurons. The first property of

the mapping is illustrated by the post-training weight vectors’

locations near high concentrations of training data examples.

The fact that all the training examples are close to adjacent

weight vectors highlights the second mapping property.

Several SOM training algorithms exist, but the experimental

work reported here used the original and popular stochastic

training approach [14]. This technique iteratively selects train-

ing examples, and then updates all weight vectors across the

map in response to the chosen training example.

III. NEURON LABELING

Neuron labeling techniques apply textual descriptions to a

subset of map neurons. When using a SOM, neuron labeling

is often an important part of EDA, and is essential for DM.

Neuron labeling requires a labeling data set, which is either

the training set or separate data reserved for labeling.

Two broad categories of neuron labeling techniques ex-

ist [15], namely supervised neuron labeling and unsupervised

neuron labeling. These categories differ according to the use

of classifications associated with data examples in the label-

ing set. Each category is elaborated upon separately below,

where Sec. III-A focuses on supervised neuron labeling, and

Sec. III-B elaborates on the unsupervised methods.

A. Supervised Neuron Labeling

Supervised neuron labeling builds labels for neurons by

relying upon a set of labeling data examples, where each

labeling example has an associated class. Real-world data

often lacks such classes, which limits the applicability of the

supervised labeling methods. Supervised labeling is, however,

popular because the labels are easy to analyze empirically.

The authors have previously identified three SOM-based

supervised neuron labeling algorithms within the literature [8]:

• Example-centric neuron labeling [16] maps labeling ex-

amples to neurons. Each neuron is labeled with the most

common class amongst its mapped data examples.

• Example-centric cluster labeling [17] uses a clustering

method [18] on the weight vectors, and maps labeling

examples to neurons. The most common class in a clus-

ter’s mapped examples labels all neurons in the cluster.

• Weight-centric neuron labeling [16] labels each neuron

with the class of the labeling set data example that is

closest to the weight vector of the neuron.

Pseudocode algorithms for example-centric neuron labeling,

example-centric cluster labeling, and weight-centric neuron

labeling are respectively illustrated in Figs. 2, 3, and 4.

The chief disadvantage of example-centric neuron labeling

is that neurons remain unlabeled if no labeling examples map

to the weight vector of the neuron. Example-centric cluster

labeling tends to produce fewer unlabeled neurons, because

the aggregating effect of the weight vector clusters ensures that

larger groups of neurons are labeled. Weight-centric neuron

labeling ensures that every neuron receives a label, but the

label accuracy is questionable if the closest labeling example

is too dissimilar to the weight vector of the neuron.

B. Unsupervised Neuron Labeling

Unsupervised neuron labeling techniques [19] assign neuron

labels using labeling data sets that need not be classified.

Because unclassified data is common in practical data anal-

ysis, unsupervised labeling is more widely applicable. Ap-

proaches in this category include exploratory labeling [20],

unique cluster labeling [21], a method proposed by Serrano-



Create and train a SOM, map, with Y ×X neurons

forall neurons nyx in map do

Define an empty mapped example set, Myx

Associate Myx with nyx

end

forall labeling example vectors ~zs do

Find neuron, nyx, which has ~wyx closest to ~zs
Add labeling example ~zs to Myx

end

forall neurons nyx in map do

Find the most common class label, Acls , in Myx

Label nyx with Acls

end

Fig. 2. Pseudocode for the example-centric neuron labeling algorithm.

Create and train a SOM, map, with Y ×X neurons

Find clusters, L = {S1, S2, . . . , Sk}, of all ~wyx in map

forall clusters Si ∈ L do

Define an empty mapped example set, Ni

Associate Ni with Si

end

forall labeling example vectors ~zs do

Find neuron, nyx, which has ~wyx closest to ~zs
Find cluster Si, such that nyx is in Si

Add labeling example ~zs to Ni

end

forall clusters Si ∈ L do

Find the most common class label, Acls , in Ni

Label all nyx ∈ Si with Acls

end

Fig. 3. Pseudocode for the example-centric cluster labeling algorithm.

Create and train a SOM, map, with Y ×X neurons

forall neurons nyx in map do

Find labeling example, ~ze, which is closest to ~wyx

Find the class label Acls associated with ~ze
Label nyx with Acls

end

Fig. 4. Pseudocode for the weight-centric neuron labeling algorithm.

Cinca [22], unsupervised weight-based cluster labeling [19],

LabelSOM [23], and a labeling approach developed by Azcar-

raga et al [15]. Unsupervised labels are subjective and difficult

to verify empirically, and are thus not focused on in this paper.

It is worth noting, however, that LabelSOM is also susceptible

to unlabeled neurons, which warrants future investigation.

IV. EXPERIMENTAL WORK

This section describes the experimental work, which inves-

tigated the effect of unlabeled neurons. Sec. IV-A outlines

the experimental procedure, while Sec. IV-B describes the

measures that were used to assess algorithm performance, and

Sec. IV-C presents and analyzes the results of the experiments.

A. Experimental Procedure

To assess the effect of unlabeled neurons on the accuracy

of the SOM model, a simple classification problem was con-

structed. To perform a classification, a SOM was trained and

labeled using the example-centric neuron labeling approach.

This labeling algorithm was focused on due to the high chance

the algorithm has to leave neurons unlabeled, in contrast to

example-centric cluster labeling. A data example was classi-

fied by first matching it to the nearest weight vector, which was

in turn associated with the neuron that best represented the data

example. The data example then received the classification

denoted by the label of the matched neuron.

Table I summarizes the SOM algorithm parameters, where

the decay constants are based on the work of Samaras-

inghe [17], and ensure algorithm convergence. One parameter

setting is likely to produce a roughly equivalent percentage of

unlabeled neurons on every run. Consequently, a population of

different parameter setting combinations were used to produce

varying levels of label coverage on the maps.

A set of candidate parameter settings were chosen in such

a way as to adequately sample the ranges of valid parameter

values shown in Table I. The sampling method was inspired by

the work of Franken [24], and relied on Sobol’ sequences [25].

Sobol’ sequences consist of quasi-random points with charac-

teristics that are similar to randomly sampled points, while

filling a unit hypercube as uniformly as is possible. For these

experiments, 512 five-dimensional Sobol’ points were gener-

ated. Each dimension value corresponded to one of the SOM

parameters, and the dimensions were scaled to the appropriate

parameter ranges. For the map dimension parameter, the scaled

dimension values were rounded to the nearest integer.

For each parameter configuration, a 30-fold cross-validation

was performed to estimate algorithm performance. For each

cross-validation fold, a test set of unique examples was unused

during training, while the remaining data examples were used

to train and label a SOM. The test set for the cross-validation

fold was then classified using the trained SOM.

B. Performance Measures

The first measure recorded for each of the 30 simulations

was the percentage of unlabeled neurons generated by the

example-centric neuron labeling algorithm. The mean of this

measure, which is denoted EU , was calculated over the 30

simulations performed in each cross-validation.

The overall percentage of erroneous classifications over

each test set was also used as a performance measure.

The mean, EG, and standard deviation, SG, over the cross-

validation were once again recorded for analysis.

To provide further detail on classification performance, the

overall test set misclassifications were further differentiated

into the percentage of errors due to unclassified test set

examples (those examples that mapped to unlabeled neurons,

and thus received no classification), and the percentage of



TABLE I
PARAMETER CHARACTERISTICS AND RANGES USED FOR EXPERIMENTAL ALGORITHMIC SETTINGS

Parameter Symbol Data type Data set Range

Map dimensions Y and X Ordinal

Iris plants [2, 12]

Ionosphere [2, 18]

Monk’s problems [2, 20]

Pima Indians diabetes [2, 27]

Initial learning rate η(0) Continuous All [0.0, 10.0]

Learning rate decay constant τ1 Continuous All (0.0, 1 500.0]

Kernel width σ(0) Continuous All (0.000, Y ]

Kernel width decay constant τ2 Continuous All (0.0, 100.0]

errors due to misclassified test set examples (the examples that

mapped to a labeled neuron, where the neuron label and actual

example classification did not match). These two measures

were also taken over the 30 cross-validation folds, to produce

the mean and standard deviation of the error due to unclassified

test set examples (respectively denoted EGU and SGU ), and

the mean and standard deviation of the test set error due to

misclassified examples (EGM and SGM , respectively).

The objective of the analysis was to determine whether the

percentage of unlabeled neurons had an effect on any of the

measures that indicated classification performance accuracy.

To this end, testing ascertained whether correlations existed

between EU and any of the other performance measures. The

non-parametric Spearman’s rank correlation coefficient [26]

was used to assess the presence of correlations. The test

statistic, ρ, indicates the degree of correlation, and has a value

in the range [−1, 1]. A negative ρ value indicates a negative

correlation, and a positive value denotes a positive correlation.

Values of ρ closer to 1 or −1 indicate stronger correlation,

while a value of 0 is indicative of uncorrelated data.

A p-value was also computed for the statistic, which was

used to perform hypothesis testing on the reported results. A

confidence level of 95% was used throughout the reported

experiments. Additionally, to account for the family-wise error

rate, a Bonferroni correction [27] was applied for each set of

comparisons between EU and one of the other measures.

The experimental data sets used during this investigation all

originated from the UCI Machine Learning Repository [28].

Specifically, this research used the Iris plants, Ionosphere,

monk’s problems 1 to 3, and Pima Indians diabetes data sets.

C. Experimental Results

Tables II to IV show the statistical results for the compar-

isons between EU and the means of the three test set mis-

classification error measures. The results of the comparisons

between EU and the standard deviations of the test set error

measures are presented within Tables V to VII. Each table

lists Spearman’s rank correlation coefficients and p-values for

all data sets. The strength of each correlation was also judged

and is presented alongside the correlation coefficient. Asterisks

marked p-values that denoted significant correlations.

TABLE II
CORRELATION STATISTICS FOR EU AND EG

Data set Correlation p-value

Iris 0.717 Strong ∗ 4.486 × 10−82

Ionosphere 0.431 Moderate ∗ 1.266 × 10−24

Monk 1 −0.170 Very weak ∗ 1.097 × 10−4

Monk 2 −0.419 Moderate ∗ 3.955 × 10−23

Monk 3 −0.019 Very weak 0.671

Diabetes 0.708 Strong ∗ 4.433 × 10−79

TABLE III
CORRELATION STATISTICS FOR EU AND EGU

Data set Correlation p-value

Iris 0.642 Strong ∗ 6.960× 10−61

Ionosphere 0.923 Very strong ∗ 1.310× 10−213

Monk 1 0.028 Very weak 0.530

Monk 2 0.015 Very weak 0.735

Monk 3 0.021 Very weak 0.635

Diabetes 0.854 Very strong ∗ 9.945× 10−147

TABLE IV
CORRELATION STATISTICS FOR EU AND EGM

Data set Correlation p-value

Iris −0.315 Weak ∗ 3.114× 10−13

Ionosphere −0.821 Very strong ∗ 1.883× 10−126

Monk 1 −0.220 Weak ∗ 4.874× 10−07

Monk 2 −0.394 Moderate ∗ 1.930× 10−20

Monk 3 −0.096 Very weak 0.030

Diabetes −0.589 Moderate ∗ 4.255× 10−49

The results in Table II indicate that all of the data sets except

for the third monk’s problem showed significant correlations

between EU and EG. The Iris and diabetes data sets showed

strong positive correlations, while a moderate positive cor-

relation was observed for the ionosphere set. The remaining

two data sets showed negative correlations, where monk’s

problem 3 exhibited a moderate correlation, while monk’s



problem 1 showed a very weak correlation. The results indicate

that the correlations observed amongst the investigated data

sets exhibited relatively mixed results, although the positive

correlations were stronger than the negative ones.

Half the data sets showed no correlations between EU and

EGU , as illustrated in Table VI. However, the Iris, ionosphere,

and Pima Indians diabetes data sets showed positive correla-

tions. A strong correlation was seen in the Iris data set results,

while the ionosphere and diabetes data sets both exhibited very

strong correlations. A positive correlation was expected in this

case, because an increased percentage of unlabeled neurons

should result in more unclassified test set examples.

The final comparison to a mean test error measure was

between EU and EGM , and is shown in Table IV. Only the

third monk’s problem showed no correlation, while a negative

correlation was visible in all other cases. The correlations were

weak in the cases of the Iris and monk’s problem 1 data sets,

moderate for the second monk’s problem and diabetes data

sets, and very strong in the instance of the ionosphere set.

These correlations are surprising, because lower percentages of

unlabeled neurons are associated with a higher number of in-

correctly classified test set examples. This paper hypothesizes

that the correlation is due to a high number of labeled neurons

resulting in poor quality labels. A higher number of labeled

neurons requires a sparser mapping of labeling examples over

the map. Labels are thus based on less representative samples

of labeling data, reducing label accuracy.

The focus of the investigation then shifted to the correlation

between the percentage of unlabeled neurons and the standard

deviation of the three test set error measures. Correlations of

this type were interesting because they are indicative of the

effect on the variability of observed errors.

Table V depicts the correlations between EU and SG. Every

data set produced a statistically significant correlation between

the measures. As for the EU and EG comparison, a mix of

positive and negative correlations were present. Positive corre-

lations between EU and EG coincided with positive correlations

between EU and SG. The same is true for negative correla-

tions. The third monk’s problem, which saw no statistically

significant correlation between EU and EG, produced a negative

correlation when comparing EU and SG. In comparison to the

correlations between EU and SG, the Iris data set produced

a similar correlation, while the first two monk’s problems

generated stronger correlations, and the remaining three data

sets all exhibited weaker correlations.

The correlations between EU and SGU are shown in Ta-

ble VI. Once again, as was observed in Table III, statistically

significant positive correlations were observed for the Iris,

ionosphere, and diabetes sets. The remaining data sets again

showed no statistically significant correlation. These results

illustrate that an increased percentage of unlabeled neurons

was not only associated with a higher number of unclassified

data examples in the test set, but also higher variability in the

number of unclassified test set data examples.

Finally, Table VII summarizes the correlations observed

between EU and SGM . The correlations observed here were

TABLE V
CORRELATION STATISTICS FOR EU AND SG

Data set Correlation p-value

Iris 0.714 Strong ∗ 5.325 × 10−81

Ionosphere 0.145 Very weak ∗ 9.861 × 10−4

Monk 1 −0.281 Weak ∗ 1.008 × 10−10

Monk 2 −0.123 Very weak ∗ 5.323 × 10−3

Monk 3 −0.203 Weak ∗ 3.548 × 10−6

Diabetes 0.404 Moderate ∗ 1.418 × 10−21

TABLE VI
CORRELATION STATISTICS FOR EU AND SGU

Data set Correlation p-value

Iris 0.621 Strong ∗ 5.095× 10−56

Ionosphere 0.906 Very strong ∗ 3.876× 10−192

Monk 1 0.037 Very weak 0.400

Monk 2 0.023 Very weak 0.608

Monk 3 0.031 Very weak 0.485

Diabetes 0.846 Very strong ∗ 4.087× 10−141

TABLE VII
CORRELATION STATISTICS FOR EU AND SGM

Data set Correlation p-value

Iris −0.290 Weak ∗ 2.129 × 10−11

Ionosphere −0.660 Strong ∗ 2.754 × 10−65

Monk 1 −0.326 Weak ∗ 4.169 × 10−14

Monk 2 −0.143 Very weak ∗ 1.223 × 10−3

Monk 3 −0.197 Weak ∗ 7.045 × 10−6

Diabetes 0.020 Very weak 0.656

negative in most cases, in much the same way as Table IV

illustrated for EU and EGM . The only exception was for the

diabetes data set, which showed no significant correlation. The

Iris and monk’s problem 1 data sets showed the same level

of correlation strength as in Table IV. In only one case, for

the final monk’s problem, did the strength of the correlation

increase, while the correlation was weaker in the case of iono-

sphere and the second monk’s problem. These observations

indicate that lower percentages of unlabeled neurons were

associated with a higher degree of uncertainty in the test set

error due to misclassification, and vice versa.

In order to graphically illustrate the correlations between EU
and the three test set classification error measures, two scatter

plots are presented for each data set. In each case, the first

scatter plot illustrates the correlation between EU versus EGU,

while EU versus EGM are compared in the second. The Iris,

ionosphere, monk’s problem, and Pima Indians diabetes data

sets are respectively illustrated in Figs. 5 to 10.

These scatter plots are shown to illustrate the ranges over

which the error measures fluctuated. It is apparent that the

error due to data example misclassifications tends to be
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Fig. 5. Performance measure comparisons for the Iris plants data set: (a) EU versus EGU comparison, (b) EU versus EGM comparison.
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Fig. 6. Performance measure comparisons for the Ionosphere data set: (a) EU versus EGU comparison, (b) EU versus EGM comparison.
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Fig. 7. Performance measure comparisons for the Monk’s problem 1 data set: (a) EU versus EGU comparison, (b) EU versus EGM comparison.
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Fig. 8. Performance measure comparisons for the Monk’s problem 2 data set: (a) EU versus EGU comparison, (b) EU versus EGM comparison.
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Fig. 9. Performance measure comparisons for the Monk’s problem 3 data set: (a) EU versus EGU comparison, (b) EU versus EGM comparison.
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Fig. 10. Performance measure comparisons for the Pima Indians diabetes data set: (a) EU versus EGU comparison, (b) EU versus EGM comparison.



concentrated around fairly high levels, in comparison to the

error due to unclassified data. This suggests that the error due

to misclassification is a much more important consideration

when a neuron labeling algorithm has to be selected for a

SOM-based data analysis task, be it EDA or DM focused.

V. PRACTICAL RECOMMENDATIONS

This paper bases the practical suggestions outlined in this

section on the different focuses of EDA and DM tasks. EDA

and DM each have different focuses, due to the differing

involvement of a human analyst in each domain.

In the case of EDA, the fine-grained accuracy of the SOM

model is often less important than the ability of the map to

provide a broad and interpretable overview of the analyzed

data set. In such a situation, the number of unlabeled neurons

is a more important factor, because uncharacterized neurons

create a fragmented model that is difficult to interpret. This

means that a potential increase in classification errors is less

significant if it means a more completely labeled map.

On the other hand, if SOMs are to be used in a DM context,

the accuracy of the model is of paramount importance because

the map is not analyzed by human experts. In such a case the

percentage of unlabeled neurons should not be focused on as

an aspect of SOM performance that needs to be optimized.

Instead, only the accuracy of the model is important, as

embodied in the test set classification accuracy.

VI. CONCLUSIONS AND FUTURE WORK

This paper investigated the effect that unlabeled neurons

have on a SOM data model when a space of valid SOM pa-

rameter ranges is considered. Brief overviews of the SOM and

several algorithms for labeling SOM neurons were presented.

The experimental investigation analyzed a population of maps

with different configurations, and focused on the correlations

between the percentage of unlabeled neurons and the means

and standard deviations of three test set classification error

measures. The interaction between these measures has not

been the focus of prior research, and is important because the

adequate use of labeling algorithms relies on such knowledge.

Finally, the importance of unlabeled neurons in the contexts

of EDA and DM was considered. It was recommended that

EDA should avoid unlabeled neurons, but that DM should not

focus on optimizing the percentage of label coverage because

model accuracy becomes the primary concern.

Future work will investigate the relationship between unla-

beled neurons and the performance of example-centric cluster

labeling, which was ignored in this study. The reported exper-

iments focused on the effect of unlabeled neurons across an

area of the valid SOM parameter space, while the influences

that the parameters have on the percentage of unlabeled

neurons and classification performance were ignored. Future

work will thus investigate the effects of these parameters

on the interaction between unlabeled neuron percentages and

classification error. The result of unlabeled neurons produced

by unsupervised labeling methods, such as the LabelSOM

algorithm, is also a potential topic for future exploration.
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