
HERMES: A High-Level Policy Language for
High-Granularity Enterprise-wide Secure Browser

Configuration Management
Ananth Jillepalli, Daniel Conte de Leon

Ctr. for Secure and Dependable Sys.
University of Idaho

Email: {ajillepalli, dcontedeleon}@ieee.org

Stuart Steiner
Ctr. for Secure and Dependable Sys.

University of Idaho
Email: ssteiner@vandals.uidaho.edu

Frederick T. Sheldon
Dept. of Computer Science

University of Idaho
Email: sheldon@ieee.org

Abstract—In this article, we describe the characteristics,
structure, and uses of HERMES. HERMES is a high-level
security policy description language. Its characteristics are: (1)
enable the specification of organizational domain knowledge in
a hierarchical manner; (2) enable the specification of security
policies at desired granularity levels within the organizational
IT and OT infrastructure; (3) enable security policies to be
automatically instantiated into security configurations; (4) it is
human-centered and designed for ease of use; (5) it is application
and device independent. We show an example of using HERMES
to write a high-level policy and show examples of how such policy
can be instantiated into a domain and device, user and role,
application and action specific security configuration. We also
describe the integration of HERMES within the HiFiPol:Browser
policy management system. We believe HERMES is a necessary
step toward securing the client side of the web ecosystem and
prevent or mitigate the current onslaught of web browser-based
attacks, such as phishing.

I. INTRODUCTION

The web has become an essential tool for the economy,
government, and civic society. A survey by RightScale Inc.,
found that 95% of U.S. organizations, public and private, offer
or use cloud-based or web-based services [1]. It is estimated
that 46% of the world population use the web today and this
percentage is growing [2]. As such, web security has become
extremely important. However, recent security breaches, which
have resulted in more than a billion compromised records from
organizations of all types and sizes, show that web and IT
and OT cybersecurity is currently in a precarious state. To
contribute towards the effort of securing the web ecosystem is
the goal of the work presented in this paper.

Web browsers are the essential client component of the
web ecosystem. Modern web browsers expose powerful virtual
machine environments, ubiquitous network access, and per-
manent storage. Many of the recent high-profile cybersecurity
breaches started with spear-phishing of targeted users. Then
the attacks progress with the use of URL spoofing, code
injection and other attacks [3]. Extensions or plug-ins add
another vulnerability vector [4]. Many, if not most, of these
web browser-based attack vectors could have been mitigated
or eliminated if client web browsers were configured with

a high-granularity domain-, device-, user-, role-, application-
, and action-based secure configuration. For example, using
different web browsers to ensure domain separation, selec-
tively enabling or disabling JavaScript, and restricting access
depending upon user and role, device, and application are
some ways to configure web browsers for secure browsing.
Such a hi-fidelity configuration is not practically possible in
today’s diverse IT/OT infrastructure with current technology
and tools.

In order to enable modern organizations to design and
implement highly-specific and security tailored web browser
configurations, we argue that an enterprise-wide and policy-
oriented, rather than configuration-oriented, web browser con-
figuration management system is needed. We have designed
such a system, namely: HiFiPol:Browser [5]. HERMES is an
essential and core component of HiFiPol:Browser. HERMES
is a high-level security policy description language that enables
system administrators to write security policies that could then
be implemented across the IT/OT ecosystem using HiFiPol.
HERMES is the contribution described in this paper.

This paper is organized as follows: An expanded description
of the problem that current organizations face when securing
the web-based ecosystem is described in section II. Our ap-
proach and proposed solution, which the HERMES language is
a part of, is described in section III. The characteristics, struc-
ture, and grammar of the HERMES language are described in
detail in section IV. A case study of a fictional organization,
that demonstrates and discusses the practical usage of the
HERMES language, is presented in section VI. The integration
of HERMES into the HiFiPol:Browser [5] policy management
system is described in section VII. Related work is discussed
in section VIII, with a description of differences between our
work and previous related research or systems. Future work
is presented in section IX. Finally, our conclusion is provided
in section X.

II. PROBLEM

Today’s web browsers offer worldwide network accessi-
bility, turing-complete execution capabilities, advanced native
graphics, and access to permanent storage. These features,



combined with widespread adoption and daily use, make
browsers a primary target for exploitation [6], [7]. In addi-
tion, web browsers are a primary target of cyber-attacks due
to the lack of adequate domain separation. In today’s web
ecosystem, browsers are used to access critical and confidential
organizational systems and data and, at the same time, used to
browse the web at large, trusted and untrusted. For example,
an organizational user may use a web browser in a portable
device, with a default configuration, to read the news and
connect untrusted websites. Soon after, the same user in the
same device, connects into the organizational VPN and, using
the same browser, accesses a sensitive system. In another
example, a user, unaware that is being the target of a spear
phishing attack, clicks on the provided hyperlink. As a result,
the same web browser used to browse the intranet before opens
up, using a permissive configuration.

Currently, hi-fidelity and high-granularity security policy
design and implementation is practically impossible to achieve
in today’s technologically diverse organizations. Developing,
implementing, and maintaining tailored security configurations
considering the number of devices, applications, roles and
users, and systems and domains, and their combinations
thereof would be unmanageable for most organizations. For
example, an organization with 5000 employees, 3 roles per
employee, 10000 devices or endpoints, 5 different browsers,
and 30 web-applications, would need to develop and maintain
hundreds of thousands of hi-fidelity configurations; Or up to
millions, depending on the needed group granularity since not
all possible combinations would be needed. To compound the
problem, today’s web browsers use disparate configuration
languages and semantics [8], [9]. However, if (a) security
policies were described in an easy to understand high-level
policy language, (b) checked for consistency and automatically
instantiated into hi-fidelity configurations, and (c) automat-
ically deployed to each endpoint and application, then, we
strongly believe that this situation would be reversed.

III. APPROACH

In this section, we briefly describe the approach, technolo-
gies, and tools that we are currently developing in order to
enable IT/OT security administrators to develop and imple-
ment hi-fidelity security configurations starting with a high-
level description of their organization, users and roles, devices,
applications, and their corresponding tailored browser security
policies.

The proposed approach is to study and develop a Policy-
oriented enterprise-wide policy management system: Hi-
FiPol:Browser. Such a system will enable IT/OT security per-
sonnel to write high-level policies, check them for consistency
and completeness, generate needed high-granularity secure
browser configurations, and then automatically deploy these
configurations into the corresponding devices or endpoints.

The HiFiPol:Browser Policy Management System is di-
vided into two subsystems: Development and Deployment
[5]. Figure 1 is a pictorial representation of this. The policy

Figure 1: HiFiPol:Browser Subsystems

Development subsystem enables the development of high-
level policies and the transformation of these platform and
application independent security policies into domain-, device-
, user-, role-, application-, and action-specific web browser
configurations [5]. HERMES plays a crucial part in the De-
velopment subsystem, by acting as the vehicle through which
security policies can be specified using a human-centered
language. The Deployment subsystem enables the automatic
deployment of configurations, which are generated by the
Development subsystem, across client devices in the organ-
ization [5]. Integration of HERMES into HiFiPol:Browser is
described in section VII. For a more detailed description of
the HiFiPol:Browser architecture we refer the reader to the
work of Jillepalli et. al. [5].

To put this work in context we briefly describe here the
status of this endeavor. (1) We have analyzed current browser
security policies for all 3 major browsers and found that
there is almost no syntactic or procedural homogeneity in
the way current browsers manage security configurations [8],
[9]; (2) We have developed a complete prototype, entitled
“Open Browser GP”, of a GUI-based tool that allows remote
configuration of web browsers [8], [9]. From that prototype
we learned that a GUI-based tool is a good tool to manage
and deploy configurations. However, we also found that a
high-level policy is also needed to achieve our goals. (3)
We have created HERMES (V0.1), a high-level and policy-
oriented language for the specification of such policies. This
work was described in a recent publication by Jillepalli et.
al. [5]. A detailed description of our plans for future research
work is presented in Section IX.

IV. CHARACTERISTICS OF THE HERMES LANGUAGE

HERMES allows IT/OT security personnel to describe their
organization and security policies based on the description of
four domains: Organizational Domains and Devices, Groups
of Users and Roles, Applications, and Actions. Each of these
domains can be defined using a hierarchical structure. Policies
are declared as actions applied to a given combination of
(sub)domains or devices, roles or users, and applications. The
HERMES name was coined from the phrase High-level, Easy
to use, and Reconfigurable Machine Environment Specification
language.

The specific needs which HERMES was designed to address
are presented in the form of five primary characteristics: (1)
enable the specification of organizational domain knowledge
in a hierarchical manner; (2) enable the specification of
security policies at desired granularity levels within the or-
ganizational IT/OT infrastructure; (3) enable security policies



to be automatically instantiated into security configurations;
(4) be human-centered and designed for ease of use; (5) be
application and device independent.
Domain Knowledge: HERMES enables the specification of
organizational and domain hierarchies natively. For example,
an organization can be specified by its name Acme. Then it’s
Marketing department can be specified as a child of Acme and
referred to as Acme.MKTG. A tree or graph structure can be
defined at any desired level of granularity. Organizations are
well accustomed to using tree-like organizational hierarchies.
This hierarchical specification of organizational structures also
applies to all policy domains such as groups of devices and
users and roles. For example, Acme.ENG.CS.REG.PC1 rep-
resents a device and Acme.ENG.ECE.Alice represents a user.
This is a well known notation for system administrators. This
characteristic is a major difference between HERMES and
other previous policy languages. Most other policy languages
allow the specifier to declare policy but not the organizational
structures that the policy applies to.
Granular Policies: HERMES enables the specification of
policies at any desired level of abstraction. Using HERMES a
policy designer can specify that a given action or prohibition
must apply to all browsers within an organization or to a
single browser (application domain), in a single device (device
domain), for a single user (role or user domain). For example,
we could specify that APP.ALL browsers (application domain)
in all devices declared in Acme.ENG.CS (device domain)
should have JavaScript disabled (action domain). In another
instance, we could specify that Acme.BROWSER.Firefox for
user Acme.FINANCE.ACCOUNTANT.Bob should have his-
tory disabled.
From Policy to Configuration: HERMES enables the auto-
matic generation of browser policy configurations based on a
high-level policy specification. The system that we are building
to carry such complex objective is called HiFiPol:Browser. The
architecture of this system has been described in [5].
Human-Centred and Designed for Ease of Use: HERMES
was designed with the goal of being written and read by
humans rather than computers. Many other policy specification
languages in the literature and in use are based on XML or
other verbose markup languages, HERMES is not. XML-based
languages are great for machine-to-machine communication
but maybe not ideal for human-to-human communication.
We believe and expect that HERMES will enable policies
described in it to be used as the basis for IT/OT personnel
design and discussions about organizational security policies.
This aspect of being easy to read and write by humans,
multiplies the usability of HERMES as a policy specification
language, since policies are designed by humans.
Platform Independent: HERMES is a text-based language
capable of specifying security policies for all browsers in
any platform in any type of organization. This exposes the
complete set of source code management tools available to
system developers. Tools that many IT personnel and system
administrators have began to use in what is called DevOps.

V. FORMAL GRAMMAR OF HERMES
An HERMES policy specification is written in entity blocks.

Entities have two components: head and body. A Entity
Head corresponds to entity type and an identifier. An Entity
Body defines a set of fields or attributes and the order of
these does not change the semantics. HERMES was designed
using a context-free [10], definite-clause [11], and block-like
grammar format [12]. Most of the BNF (Backus-Naur Form)
specification of HERMES is provided in Listing 1.� �

1
2// Policy Rules:
3// A policy is a set of domain
4// or policy defining entities.
5
6<EntityBlockListDefinition> :=
7<RightSquare><EntityBlockList><LeftSquare>
8
9<EntityBlockList> :=
10<EntityBlock> |
11<EntityBlock> , <EntityBlockList>
12
13// Policy Entity Rules:
14// A policy entity is comprised of
15// an identifier, followed by a colon,
16// then followed by a name. After the name
17// a list of attributes is enclosed by { }.
18
19<EntityBlock> :=
20<EntityIdentifierName><Colon>
21<EntityIdentifierValue>
22<RightCurly>
23<EntityMemberListDefinition>
24<LeftCurly>
25
26<EntityMemberListDefinition> :=
27<RightSquare><EntityMemberList><LeftSquare>
28
29<EntityMemberList> :=
30<EntityMember> |
31<EntityMember> , <EntityMemberList>
32
33<EntityMember> :=
34<FieldComponent> |
35<AttributeComponent> |
36<EntityComponent>
37
38// Policy Entity Attribute Rules:
39// A policy entity attribute is a
40// field name and corresponding value
41// separated by a colon.
42
43<FieldComponent> :=
44<FieldName><Colon><FieldValue>� �

Listing 1: HERMES BNF Notation

VI. CASE STUDY

In this section, a discussion about the practical uses of
the HERMES specification language is presented by using a
case study and a set of example polices. The final resulting
web browser configurations, respective to the set of example
policies, are also shown in this section.



A. HERMES Policy Composition

In HERMES, a policy is a set of relations between four
different entities, each characterized by Figures 2, 3, 4, and 5.
In these figures, Dev, App, Usr, and Act correspond to Domain,
Subdomain, or Device, Application, User ro Role, and Action.
A policy can be defined as a subset of the Cartesian product
of all entity sets.

∴ Policy ∈ (Dev ×App× Usr ×Act)

An example domain and policy specification for a fictional
organization, named Acme is presented here. The example
domain structure, which will be reflected in the HERMES
specification, is represented through the following graph struc-
tures:

B. Case Study Organizational Hierarchies

Acme Corporation

Marketing

Public

PC-101

Purchasing

Public

PC-201

Private

PC-301

Development

Private

PC-401

Figure 2: Organizational Hierarchy Graph.

The hierarchical representation os Acme’s sub-domains and
devices is represented in Figure 2.

Applications

Web Browsers

FireFox

v46 v45

G. Chrome

v50 v51

Office Apps

Word

v2010

Excel

v2016

Misc. Software

Firewall

Figure 3: Application Hierarchy Graph.

Categorization of applications used by Acme and the respec-
tive versions of those applications, is represented in Figure 3.

The structure and grouping of users and their respective role
assignment is represented by Figure 4.

A set of relevant configuration actions applicable to appli-
cations used by Acme are represented by Figure 5.

User Groups

Admin

Joe Charles

Standard

Alice Tony

Privileged

Robert Alex

Figure 4: User-Group Hierarchy Graph.

Actions

JScript

Allow

Exceptions

Block

All

Cookies

Allow

Delete when closed

Block

Everywhere

Figure 5: Possible-Actions Hierarchy Graph.

C. Usage of HERMES and Subsequent Results

The following are a collection of four listings, each demon-
strating the HERMES implementation for (a) organization’s
environment specification, (b) security policy specification
with respect to organization’s different departments, (c) policy
knowledge-base (collection of instantiated policies) and (d)
final generated configuration corresponding to the specific
policies (as mentioned in point (b)). These listings are as
follows:

1) Using HERMES to specify domain data: Listing 2 is
an excerpt, demonstrating the usage of HERMES language
in specification of organizational domain knowledge for the
fictional Acme Corporation. All four of the specification
matrix layers [Domain/Device, Application, User/Role, and
Action] can be specified using HERMES in such a hierarchical
manner.

Listing 2 explanation: Let us assume there are three
departments in Acme Corp: Marketing (MKT), Purchasing
(PRCH), and Development (DEV). Let us also assume there
are four devices in Acme, across the three above-mentioned
departments: PC-101 in MKT, PC-201 and PC-301 in
PRCH, and PC-401 in DEV. The HERMES specification
conveying this infrastructural information is present in the
Listing 2.

2) Using HERMES to specify action policies: Listing 3
shows the usage of the HERMES language for the spec-
ification of security policies for web browsers in different
departments of Acme. HERMES allows a wide range of spec-
ifications inside the policy block, ranging from descriptions



and rationales to applicability and inheritance. ApplyTo and
ToApp denote “apply to which group of users/roles” and
“apply to which applications” respectively.� �
1
2 Domain: Acme
3 {
4 Description: "Acme Organization."
5 List: [MKT, PUR, DEV]
6 }
7
8 SubDomain: MKT
9 {

10 Description: "Marketing Department."
11 DeviceList: [PC-101]
12 Parent: Acme
13 }
14
15 SubDomain: PRCH
16 {
17 Description: "Purchasing Department."
18 DeviceList: [PC-201, PC-301]
19 Parent: Acme
20 }
21
22 SubDomain: DEV
23 {
24 Description: "Development Department."
25 DeviceList: [PC-401]
26 Parent: Acme
27 }� �
Listing 2: HERMES excerpt in specifying organizational
domain knowledge for Acme.

Listing 3 explanation: The HERMES policies in the listing
demonstrates the security policy specifications for devices of
three departments in Acme, the departments being: Marketing,
Purchasing, and Development. These five policies specify
configurations for two web browsers (Mozilla Firefox and
Google Chrome) so that the web browsers are specified to
perform: (a) enable JavaScript functionality in the Marketing
department’s devices (PID_01_000), (b) enable the cookie
functionality, while disabling third-party cookies, in the Pur-
chasing department’s devices (PID_02_000, PID_02_001,
and PID_02_002), and (c) disable all JavaScript functionality
in the Development department’s devices (PID_03_000).

In Listings 3 and 5, we can observe that in due course
of the processing of policies, as presented in the example
case study, policy conflicts arise, which need to be detected,
identified, and resolved in order to enable the smooth and
seamless transition of policies from HERMES to deployable
configurations. Particularly in Listing 3, we can observe a
direct conflict of policy, because policies PID_02_000 and
PID_02_001 are opposite to each other and thus, creates a
conflict.

Likewise, policy PID_02_002 is a child of, and is in
conflict with, PID_02_001. Thus, resolution algorithms must
be developed to solve such conflicts. Using these algorithms,
the knowledge-base will be instantiated accordingly, to deal
with conflicts and to associate the facts of knowledge-base

with respective entities. (More on conflicts in section IX).� �
1
2 Policy: PID_01_000
3 {
4 Description: "Enabling JavaScript
5 functionality."
6 Rationale: "Marketing staff requires
7 JavaScript for designing ads."
8 Status: "Enabled"
9 Field: JavaScript: "Enabled"

10 ApplyTo: "MKT"
11 ToApp: "APP.ALL"
12 }
13
14 Policy: PID_02_000
15 {
16 Description: "Enabling all cookie
17 functionality."
18 Rationale: "Purchasing websites require
19 cookie functionality."
20 Status: "Enabled"
21 Field: Cookie: "Enabled"
22 ApplyTo: "PRCH"
23 ToApp: "APP.ALL"
24 }
25
26 Policy: PID_02_001
27 {
28 Description: "Disabling all cookie
29 functionality."
30 Rationale: "Purchasing websites require
31 security against cookie injection
32 attacks."
33 Status: "Enabled"
34 Field: Cookie: "Disabled"
35 ApplyTo: "PRCH"
36 ToApp: "APP.ALL"
37 }
38
39 Policy: PID_02_002
40 {
41 Description: "Disabling all third
42 party cookies."
43 Rationale: "Purchasing data requires
44 privacy."
45 Status: "Enabled"
46 Field: Cookie.Third: "Disabled"
47 ApplyTo: "PRCH"
48 ToApp: "APP.ALL"
49 Parent: "PID_02_000"
50 }
51
52 Policy: PID_03_000
53 {
54 Description: "Disabling JavasScript
55 functionality."
56 Rationale: "Development Environments
57 need protection against script attacks."
58 Status: "Enabled"
59 Field: JavaScript: "Disabled"
60 ApplyTo: "DEV"
61 ToApp: "APP.ALL"
62 }� �
Listing 3: HERMES excerpt in specifying security policies
for Acme ’s applications.



The process of instantiation from policy to final deployable
configurations is composed of multiple stages. This is currently
ongoing research work. More detail on the different forms of
instantiation in section VII and the process is shown in Fig.
7.� �
1
2 // Domain data facts
3 domainDescription('policy.yaml','Acme',
4 'Acme Corporation').
5 domainList('policy.yaml','Acme',
6 'MKT, PUR, DEV').
7 subDomainDescription('policy.yaml','MKT',
8 'Marketing Department.').
9 subDomainDeviceList('policy.yaml','MKT',

10 'PC-101').
11 subDomainParent('policy.yaml','MKT',
12 'Acme').
13 subDomainDescription('policy.yaml','PRCH',
14 'Purchasing Department.').
15 subDomainDeviceList('policy.yaml','PRCH',
16 'PC-201, PC-301').
17 subDomainParent('policy.yaml','PRCH',
18 'Acme').
19 subDomainDescription('policy.yaml','DEV',
20 'Development Department.').
21 subDomainDeviceList('policy.yaml',
22 'DEV','PC-401').
23 subDomainParent('policy.yaml','DEV',
24 'Acme').
25
26 // Policy specification facts
27 policyDescription('policy.yaml',
28 'PID_01_000','Enabling JavaScript
29 functionality.').
30 policyRationale('policy.yaml',
31 'PID_01_001','Marketing staff requires
32 JavaScript for designing ads.').
33 policyStatus('policy.yaml',
34 'PID_01_001','Enabled').
35 policyField('policy.yaml',
36 'PID_01_001','Cookie.Lifetime,"Disabled').
37 policyApplyTo('policy.yaml',
38 'PID_01_001','RLE.admin').
39 policyToApp('policy.yaml',
40 'PID_01_001','APP.Google_Chrome').
41 policyParent('policy.yaml',
42 'PID_01_001','PID_01_000').� �
Listing 4: Excerpt of policy knowledge-base, which is a
collection of facts, instantiated from policies in listing 3.

3) Policy Knowledge-Base generated from HERMES: List-
ing 4 shows the resultant policy knowledge-base, which has
been generated as a result of parsing the domain knowledge
(like the one given in listing 2) and policy specifications (like
the ones given in listing 3). The knowledge-base is a collection
of facts, which have been instantiated on the basis of given
policies. In Listing 4, the facts reflect domain data of Listing
2 and policy PID_01_000 from listing 3.

4) Final Instantiated Web Browser Configurations: Listing
5 demonstrates the final resultant configuration corresponding
to the policies specified in listing 3. These configurations are

rewritten after a series of instantiations similar to the one
showed in listing 4. The process of rewriting is manual now,
but is planned to be automatic in the future. The configuration
is shown for two web browsers, Mozilla Firefox and Google
Chrome (as we are assuming Acme uses the two web browsers
only).� �

1
2For Mozilla Firefox browsers in
3Marketing department's devices:
4user_prefs("javascript.enabled", true);
5
6For Mozilla Firefox browsers in
7Purchasing department's devices:
8user_prefs("network.cookie.
9cookieBehavior", 0);
10user_prefs("network.cookie.
11cookieBehavior", 2);
12user_prefs("network.
13cookie.thirdparty.sessionOnly", false);
14
15For Mozilla Firefox browsers in
16Development department's devices:
17user_prefs("javascript.enabled", false);
18
19For Google Chrome browsers in
20Marketing department's devices:
21"default_content_setting_values":
22{"javascript":0},
23"default_content_settings":
24{"javascript":0},
25
26For Google Chrome browsers in
27Purchasing department's devices:
28"default_content_setting_values":
29{"cookies":0,"cookies":2},
30"default_content_settings":{"cookies":
310,"cookies":2},
32"block_third_party_cookies":true,
33
34For Google Chrome browsers in
35Development department's devices:
36"default_content_setting_values":
37{"javascript":2},
38"default_content_settings":
39{"javascript":2},� �

Listing 5: Resultant actual web browser configurations
corresponding to the policies given in listing 3.

Listing 5 explanation: The text in specified listing demon-
strates actual web browser configuration file syntax for Mozilla
Firefox and Google Chrome, for devices of the three depart-
ments in Acme: Marketing, Purchasing, and Development.
these configurations instruct web browsers to: (a) enable all
JavaScript functionality in Marketing department’s devices,
(b) enable cookie functionality, while disabling third-party
cookies, in Purchasing department’s devices, and (c) disable all
JavaScript functionality in Development department’s devices.

Though there exists a conflicting cookie configuration
setting in Purchasing department’s configurations for both
Mozilla Firefox and Google Chrome web browsers, the
browsers give priority to the configuration occurring first in



the configuration file. Therefore, since enabling cookies is the
first occurring configuration in both the web browsers, it is set
as the web browsers’ setting.

D. Deployment of Final Configurations

The final and fully-instantiated configurations are then
remotely deployed by deployment component of Hi-
FiPol:Browser [5].

1) Proposed Repository Structure: The final configuration
files would be relocated to respective agent repositories on a
server.

Figure 6: Proposed repository structure for configuration files
deployment to agents through HiFiPol:Browser architecture
design.

For the purpose of this case study, we have adopted the ALL
deployment approach for the sake of simplicity. As can be
seen in figure 6, under Domain_ALL, there are four groups:
DEF, DEV, MKT, PRCH. Whereas: DEV, MKT, and PRCH are
the group repositories for respective policies of Development,
Marketing, and Purchasing departments within Acme , applied
to all users, devices and applications (Firefox and Chrome in
this case) in the respective departments.

Since we assumed that there would be only two browsers
(Mozilla Firefox and Google Chrome) in the Acme , we can
see in figure 6 that there are only two configuration files (under
respective web browser directories) for each of the specific
department which have had policies specified (as exampled in
listing 3). From these directories, the configuration files will
be transferred to respective agent machines currently through
SSH using python scripting. However, SSH is only intended

to be a temporary prototype and we are looking at other
sophisticated deployment platforms.

The ALL and DEF keywords in Fig. 6 correspond to
unconditional policy application and default policy applica-
tion, respectively. These will be discussed in detail in future
articles.Now that we have seen the practical implementation
potentiality of HERMES, we can see how HERMES can fit
into a bigger picture (which is HiFiPol:Browser) in the next
section.

VII. INTEGRATION INTO THE HIFIPOL
FRAMEWORK

HERMES has been designed to enable text-based pol-
icy specification functionality in the framework of Hi-
FiPol:Browser [5]. HERMES acts as the foothold medium
between humans and machine understandable facts, which will
be further processed into deployable configurations.

Figure 7: HiFiPol:Browser Development Subsystem

Fig. 7 shows the architecture of the Development subsys-
tem.

Under our current research plan, HERMES is to be used
in the Policies File, also called “Policies Specification File”,
which is a file or set of files, that house the specification
policies. As seen in the Figure 7, HERMES, present in Policies
File will be parsed into a Policy Knowledge-Base (PKB)
through use of Policy Implementation Engine. The PKB then
will undergo conflict detection, identification and resolution,
resulting in Conflict-Free Policy Knowledge-Base (C-F PKB).
The C-F PKB will be then processed by domain / device
instantiation leading to creation of a Level One Instantiated
C-F PKB.

At that stage, user/role instantiation will be carried out to
result in a Level Two Instantiated C-F PKB. A final instanti-
ation of actions would be carried on, resulting in creation of
a Fully Instantiated C-F PKB, which would be a conflict-free
policy knowledge-base with complete (four-layer) instantiation
of given policies. These fully instantiated policies will be then
rewritten into Final Application Specific Configurations using
Configuration Rewrite Engine.



The further process, which succeeds the stage last discussed,
where we have the final application specific configurations, is
detailed in the sub-subsection VI-D1. Therefore, in such a way,
HERMES would play an important role (and would seamlessly
integrate into the architecture design) by triggering the chain
of transformations, which ultimately help in achieving the
functionality of HiFiPol:Browser Architecture.

VIII. RELATED RESEARCH

Several XML-based languages have been created for spec-
ification of configurations. The most relevant to our work
are: Security Policy Assertion Language (SecPAL) [13], Open
Vulnerability and Assessment Language (OVAL), eXtensible
Access Control Markup Language (XACML) [14], Extensible
Configuration Checklist Description Format (XCCDF) [15],
Margrave (focused on firewall analysis) [16], [17], and Secu-
rity Policy Language (SPL) [18]. Some of these are part of the
Security Content Automation Protocol (SCAP) specification
[19].

The SCAP-related languages and protocols are designed
for the purpose of configuration specification, auditing, and
validation. In contrast, the HERMES language is oriented
toward high-level security policy specification. SCAP lan-
guages specifications are highly detailed and XML-bases. This
makes them well-suited for tool-to-tool communication and
enables compatibility between tools. But, System and network
administrators are used to text-based specification languages.
For example, Linux and Cisco(R) IOS configuration files.

However, this also makes SCAP languages not well suited
for specifying high-level policies that can be mechanically
converted to low-level configurations and checked for validity.
SCAP-based configuration specifications could be generated
from HERMES high-level policies after policy instantiation
has occurred.

The work discussed in “Security Policy Language” [18] by
Dr. Perez et. al., about creating the Security Policy Language
(SPL) and the Common Information Model (CIM) is similar
to the contribution described in this article. However, SPL
and CIM are also XML-based languages, thus are machine-
oriented rather than human-focused.

The similarities between SPL and HERMES are: (a) clear
and well defined semantics, (b) flexibility and extensibility of
language, (c) readability, and (d) independence with respect to
platform and domain. Perez et. al. also address the issues of
conflict detection, refinement, and resolution.

The differences between the work of Perez et. al. and
the work describe in this article are: (1) In SPL, system
specifications are described in a separate language called as
System Description Language (SDL), whereas, when using
HERMES, there is no foreseen need for a second language,
and (2) For security policy (not configuration) specification,
HERMES fulfills the specific purpose of acting as a medium
to express domain information and policy information using
the same language. All involved entities within domain and
policy can be expressed using HERMES.

“The Margrave Policy Analyzer” [16], [17], a tool devel-
oped by Kathi Fisher et. al. is similar to HiFiPol:Browser,
and by extension, to HERMES. However, differences do
exist. Some of the differences are: HERMES is human-centric
and hierarchical in structure, where entities are not nested
inside several other entities. In HERMES, relationship between
entities are discussed using names, but not using nesting.

IX. FUTURE WORK

In the recent past we have performed research work that
resulted in the Open Browser GP tool [8], [9] for GUI editing
and automatic deployment of browser configurations. A lesson
learned from that work was that editing configurations in a
GUI is extremely time consuming because of the sheer number
of options. This was one of the reasons, among several other,
that propelled us to create high-level language that could
abstract most of the complexity. Retrospectively, this drawback
is similar to the drawbacks of Microsoft’s Policy Management
tools used in the Active Directory system. These tools are
not true policy management tools, they are configuration
management tools.

In the future, we intend to investigate approaches to GUI
editing of high-level security policies, rather than low-level
configurations. These GUI tools should be able to show current
and expected system configurations, and current and expected
high-level security policies. Our work on policy abstraction
and refinement will need to be considered within this context.
In addition, new GUI tools should be able to read and write
the HERMES language in order to enable synchronized GUI
and text-based policy management.

Future research work that we have already began to tackle
is the analysis of policy conflicts in HERMES and the conflict
resolution rules, strategies, and algorithms. This is an essential
step in order to be able to proceed with the automatic policy
instantiation process. We plan to analyze, in-depth, the possi-
ble conflicts that could arise when writing a high-level policy.
Then we plan to develop techniques and algorithms for conflict
detection and resolution. Preliminary analysis demonstrates
that most conflicts are either direct policy conflicts or can be
discovered and solved by applying inheritance rules.

With respect to design level optimizations, we have began
devising a mechanism called conditional instantiation. In con-
ditional instantiation there are two pre-defined configuration
generation methods: ALL and DEF (for default). When ALL
is used, policies are applied to all children objects and subjects
in a group without having to duplicate configurations for each
member of the group. When DEF instantiation is indicated,
policies are applied if and only if there are no other policy
specifications or actions already applied (or expected to be
applied) to a particular group. Both of these methods will
greatly reduce the number of generated policy instances and
enable the specification of policies at any desired level of
abstraction without incurring on a performance and storage
penalty. Implementing a deployment model based on this
conditional instantiation mechanism will improve the overall



system efficiency by decreasing the number of configuration
files to its minimum possible.

X. CONCLUSION

Currently, in a technically diverse organization, there are
extremely difficult challenges associated with ensuring a se-
cure web browser ecosystem. To aid with this problem we
have designed HiFiPol:Browser - A policy-oriented and high-
level web browser policy management system. At the core
of HiFiPol:Browser is HERMES. HERMES is a high-level
security policy specification language and it is the contribution
presented in this article. The specific needs which HERMES
is designed to address, and the trade-offs undertaken during
design of HERMES are discussed in section IV. An example
case study was introduced that demonstrates HERMES’ usage.
The case study (section VI) shows how both the hierarchical
organizational domain knowledge and the policies of an organ-
ization can be represented in HERMES, in order to enable the
designated security personnel to design policies at any desired
level of granularity.

We also showed an example of how final configurations
would look like after policy transformation and instantiation is
performed. An explanation of how we plan to integrate HER-
MES into the HiFiPol:Browser system was given in section
VII. A survey of related research was presented in section VIII,
describing the similarities and differences between HERMES
and other existing configuration languages. Finally, in section
IX, we described the list of future tasks. We strongly believe
that HERMES and HiFiPol:Browser or a similar high-level
policy language and associated system with similar objectives
are very much needed. HERMES and HiFiPol:Browser have
the potential to enable the implementation of defense in depth
and domain separation [20], [21] secure design principles for
browser security.

ACKNOWLEDGMENTS

We would like to thank the U.S. National Science Foun-
dation (NSF) for partially funding this research work under
NSF award number 1027409 and 1565572. The State of Idaho
under an IGEM grant for Cybersecurity Capacity Building
also partially funded this research work. We would also
like to thank the program committee, conference chairs, and
reviewers for their help improving this paper. The opinions
expressed in this paper are not those of the NSF or the State
of Idaho.

REFERENCES

[1] “2016 - state of the cloud report,” http://www.rightscale.com/
press-releases/rightscale-2016-state-of-the-cloud-report, Feb. 2016,
RightScale Incorporation.

[2] “Internet usage statistics,” http://www.internetworldstats.com/stats.htm,
Nov. 2015, miniwatts Marketing Group.

[3] A. Zammouri and A. A. Moussa, “Safebrowse: A new tool for strength-
ening and monitoring the security configuration of web browsers,” in
Proc. International Conference on Information Technology for Organi-
zations Development (IT4OD), 2016.

[4] H. Al-Maghrabi, ShahdShami, S. A. Sefri, and H. M., “Private browser
mode: Secured! or unsecured?” International Journal of Applied Engi-
neering Research, vol. 11, no. 14, pp. 8238–8242, 2016.

[5] A. A. Jillepalli and D. C. de Leon, “An architecture for a policy-oriented
web browser configuration management system - HiFiPol: Browser,” in
Proc. IEEE 40th Annual Computer Software and Applications Confer-
ence (COMPSAC), Atlanta, Georgia, USA, 2016.

[6] J. Nielson, C. Williamson, and M. Arlitt, “Benchmarking modern web
browsers,” in Proc. 2nd IEEE Workshop on Hot Topics in Web Systems
and Technologies, 2008.

[7] A. Wang, “Are you using the most secure web
browser?” http://securitywatch.pcmag.com/web-browsers/
325447-are-you-using-the-most-secure-web-browser, Aug. 2014.

[8] V. A. Bhandari, “Analysis of security policies in major web browsers and
development of a multibrowser and multiplatform browser configuration
tool: Open browser gp,” Master’s thesis, University of Idaho, Moscow,
Idaho, May 2015.

[9] D. C. de Leon, V. A. Bhandari, A. Jillepalli, and F. T. Sheldon, “Using a
knowledge-based security orchestration tool to reduce the risk of browser
compromise,” in Proc. IEEE 07th Symposium Series Computational
Intelligence (SSCI), Athens, Greece, 2016.

[10] N. Chomsky, “Three models for the description of language,” in Proc.
Information Theory, IRE Transactions - Volume: 2, Issue: 3, 1956, pp.
113–124.

[11] H. Shimazu and Y. Takashima, “Multimodal definite clause grammar,”
in Proc. COLING ’94 Proceedings of the 15th conference on Computa-
tional linguistics - Volume 2, Stroudsburg, PA, USA, 1994, pp. 832–836.

[12] M. Johnson, “Two ways of formalizing grammars,” in Proc. Linguistics
and Philosophy - Kluwer Academic Publishers - Volume 17, Netherlands,
1994, pp. 221–248.

[13] “Policy language research,” http://research.microsoft.com/en-us/
projects/securitypolicy/, microsoft Research.

[14] “Testing and verification of security policy,” https://sites.google.com/
site/asergrp/projects/policy, tao Xie, Vincent Hu and Rick Kunh.

[15] “XCCDF - The Extensible Configuration Checklist Description Format,”
https://scap.nist.gov/specifications/xccdf/, National Institute of Standards
and Technology.

[16] T. Nelson, C. Barratt, D. J. Dougherty, K. Fisler, and S. Krishnamurthi,
“The margrave tool for firewall analysis,” in Proc. USENIX Large
Installation System Administration Conference (LISA), 2010.

[17] “The margrave policy analyzer,” http://www.margrave-tool.org/, Dan
Dougherty and Kathi Fisler and Shriram Krishnamurthi.

[18] J. B. Bernabe, J. M. M. Perez, J. M. A. Calero, J. D. J. Re, F. J. Clemente,
G. M. Perez, and A. F. Skarmeta, “Security policy specification,” in
Network and Traffic Engineering in Emerging Distributed Computing
Applications, J. Abawajy, M. Pathan, M. Rahman, and M. M. Deris,
Eds. Oxford: IGI Global, 2013, ch. 04, pp. 66–93.

[19] “Emerging specification listing,” http://scap.nist.gov/emerging-specs/
listing.html, National Institute of Standards and Technology.

[20] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts
- 8th Edition. John Wiley & Sons, Inc., 2009.

[21] J. H. Saltzer and M. D. Schroeder, “The protection of information in
computer systems,” Proceedings of the IEEE, vol. 63, no. 9, pp. 1278–
1308, 1975.

http://www.rightscale.com/press-releases/rightscale-2016-state-of-the-cloud-report
http://www.rightscale.com/press-releases/rightscale-2016-state-of-the-cloud-report
http://www.internetworldstats.com/stats.htm
http://securitywatch.pcmag.com/web-browsers/325447-are-you-using-the-most-secure-web-browser
http://securitywatch.pcmag.com/web-browsers/325447-are-you-using-the-most-secure-web-browser
http://research.microsoft.com/en-us/projects/securitypolicy/
http://research.microsoft.com/en-us/projects/securitypolicy/
https://sites.google.com/site/asergrp/projects/policy
https://sites.google.com/site/asergrp/projects/policy
https://scap.nist.gov/specifications/xccdf/
http://www.margrave-tool.org/
http://scap.nist.gov/emerging-specs/listing.html
http://scap.nist.gov/emerging-specs/listing.html

	Introduction
	Problem
	Approach
	Characteristics of the HERMES Language
	Formal Grammar of HERMES
	Case Study
	HERMES Policy Composition
	Case Study Organizational Hierarchies
	Usage of HERMES and Subsequent Results 
	Using HERMES to specify domain data
	Using HERMES to specify action policies
	Policy Knowledge-Base generated from HERMES
	Final Instantiated Web Browser Configurations

	Deployment of Final Configurations
	Proposed Repository Structure


	Integration into the HiFiPol  Framework
	Related Research
	Future Work
	Conclusion
	References

