
This work is supported by National Natural Science Foundation of China (NSFC) under Grants No. 61273136, No.61573353 and No. 61533017

ADP with MCTS Algorithm for Gomoku

Zhentao Tang, Dongbin Zhao, Kun Shao, Le Lv

The State Key Laboratory of Management and Control for Complex Systems. Institute of Automation,

Chinese Academy of Sciences. Beijing 100190, China

tangzhentao2016@ia.ac.cn, dongbin.zhao@ia.ac.cn, shaokun2014@ia.ac.cn, iamlvle@126.com

Abstract—Inspired by the core idea of AlphaGo, we combine

a neural network, which is trained by Adaptive Dynamic

Programming (ADP), with Monte Carlo Tree Search (MCTS)

algorithm for Gomoku. MCTS algorithm is based on Monte

Carlo simulation method, which goes through lots of simulations

and generates a game search tree. We rollout it and search the

outcomes of the leaf nodes in the tree. As a result, we obtain the

MCTS winning rate. The ADP and MCTS methods are used to

estimate the winning rates respectively. We weight the two

winning rates to select the action position with the maximum one.

Experiment result shows that this method can effectively

eliminate the neural network evaluation function’s “short-

sighted” defect. With our proposed method, the game’s final

prediction result is more accurate, and it outperforms the

Gomoku with ADP algorithm.

Keywords—adaptive dynamic programming; Monte Carlo tree

search; Gomoku

I. INTRODUCTION

Computer board games have been the focus of artificial
intelligence research for a long time. Gomoku is a popular two-
player strategical board game. It is traditionally played with Go
pieces (black and white stone) on a board with 15x15
intersections. The winner is the player who first obtains an
unbroken row of five pieces horizontally, vertically or
diagonally. For solving such games, some typical methods
were raised, such as the proof-number search [1], dependency-
based search [2] and thread-space search [3]. And one of the
most classic algorithms of playing Gomoku is the game tree
searching, which is based on the min-max tree combined with a
board evaluation function of leaf board situations. However, as
William said [4], a complete search to a depth of n moves
requires evaluations of p!/(p-n)! board situations, where p is the
current number of legal moves. Hence, to finish a search
completely is an impossible task. Fortunately, the history
heuristic with alpha-beta search has been used to speed up
game tree search [5]. Although we all know that the deeper a
solver can search in a game tree, the more effective it is. These
methods have an obvious defect: time and space complexity
growing exponentially with search depth. In other words, the
depth of search can always be a bottleneck.

To solve this problem, we propose a new algorithm for
Gomoku that combines shallow neural network with Monte
Carlo simulation. Employing ADP to train the neural network
and playing against itself can produce a professional player for
Gomoku. After training, the neural network can get the wining
probability of any possible board situation. Actually, we use
neural network to evaluate board situations and obtain

reasonable quantities of candidate moves to be taken. Then, we
take these candidate moves as root nodes of MCTS and attempt
to integrate our move prediction network with MCTS.
Therefore, we obtain two results of winning probability
respectively from neural network and MCTS. The final wining
probability of prediction is the maximum sum in the weighted
neural network and MCTS results.

The organization of the remaining paper is arranged as
follows: in Section II, we discuss some related work using
neural network or reinforcement learning for Gomoku. Section
III provides a brief description of the MCTS. Section IV
presents the implementation of ADP with MCTS in detail.
Section V presents the experimental results that show the
performance of ADP with MCTS algorithm and the compared
results. Finally, we present discussion and summarize the paper
with pointing out a direction for future research.

II. RELATED WORK

Early in 1990s, Freisleben proposed a neural network that
had the capacity of learning to play Gomoku [6]. Its essence
was to train a network by rewarding or penalizing from a
special reinforcement learning algorithm, which was called
comparison training [7]. Reinforcement learning is a novel
machine learning method which concerns how software agent
ought to take actions in an environment so as to maximize
some notions of cumulative reward. The most competitive
advantage of reinforcement learning is that it does not need
knowledge about the Markov decision process (MDP) and can
target the large MDPs when exact methods become fairly
complex, such as Texas Hold’em Poker [8] and Go [9].
Furthermore, reinforcement learning has been used as a model
for explaining the action-selection mechanism of the brain [10].
Temporal difference (TD) learning has primarily been used for
the reinforcement learning problem, which is a prediction-
based machine learning method. TD learning algorithm was
applied to Gomoku by Mo [11] and Gong [12]. Nevertheless,
the experiment results have shown that this approach for
Gomoku is not as effective as TD-Gammon [13].

In spite of this, we think that in TD learning, the action
decision or the value function can also be described in a
continuous form, approximated by a nonlinear function line in
neural networks. This is the core idea of Adaptive Dynamic
Programing (ADP) [14-16]. The performance of the ADP for
Gomoku has been improved by pairing it with a three-layer
fully connected neural network to provide adaptive and self-
teaching behavior. However, the input of the neural network
was designed by pre-determined pattern. Therefore, the

mailto:tangzhentao2016@ia.ac.cn
mailto:dongbin.zhao@ia.ac.cn
mailto:shaokun2014@ia.ac.cn
mailto:iamlvle@126.com

network was only effective for those games with available
expert knowledge. Also, it has a short-sighted defect for neural
network evaluation function.

Monte Carlo Tree Search (MCTS) is a method for finding
optimal decisions in a given domain by taking random
simulations in the decision space and building a search tree
according to the results. Besides, it has a long history within
the numerical algorithm and significant successes in various AI
games, such as Scrabble [17], Bridge [18], especially for Go
[19], like MoGo [20], ManGO [21]. Although MCTS was also
introduced to Gomoku, it did not take a very good effect as
expected. This is mainly because MCTS needs some complex
domain knowledge additionally to work on a high level.
Besides, MCTS must spend lots of time in simulation to get a
satisfactory result.

The computer Go program AlphaGo, created by DeepMind,
won 4:1 in a five game match against Lee Sedol, is one of the
world’s best Go player. According to the DeepMind’s paper
[22], AlphaGo uses a novel method combining deep neural
network with the Monte Carlo simulation to evaluate board
situation and selects the best move. Inspired by it, we apply
Monte Carlo Tree Search into Gomoku, as well as combining
with our previous work [23]. Accordingly, we actually obtain
the final win rate both from ADP and MCTS algorithms.

III. MONTE CARLO TREE SEARCH

Monte Carlo Tree Search (MCTS) [24] requires a large
number of simulation and builds up a large search tree
according to the results. An important feature of MCTS is its
estimated value will become more and more accurate with the
increase of the simulation times and nodes accessed. The basic
process of MCTS is shown in Fig. 1. It consists of four main
stages: Selection, Expansion, Simulation, and Backpropagation.

Fig. 1. The basic process of MCTS [24].

The basic process of MCTS starts from the first stage called
Selection. At this stage, it begins from the root node, and
recursively applies the child selection policy (also known as
Tree Policy) to descend through the tree until it reaches the
most urgent expandable node. Then at Expansion stage, it can
add one or more child nodes to expand the tree according to the
available actions. At the third stage called Simulation, it can
run a simulation from the leaf node based on the settled policy
(or called Default Policy) to produce an outcome. Finally, at
Backpropagation stage, it can back propagate the simulation
result through the selected nodes to update their state values.

In this paper, we present two kinds of MCTS algorithms.
One is called Heuristic Monte Carlo Tree Search (HMCTS),
and the other is called Upper Confidence bounds for Tree
(UCT). The HMCTS for Gomoku is presented in Algorithm 1.

Algorithm 1: HMCTS for Gomoku

input original state s0;

output action a corresponding to the highest value of MCTS;

add Heuristic Knowledge;

obtain possible action moves M from state s0;

for each move m in moves M do

reward rtotal ← 0;

while simulation times < assigned times do

reward r ← Simulation(s(m));

rtotal ←rtotal + r;

simulation times add one;

 end while

 add (m, rtotal) into data;

 end for each

return action Best(data)

Simulation(state st)

if (st is win and st is terminal) then return 1.0;

 else return 0.0;

 end if

 if (st satisfied with Heuristic Knowledge)

 then obtain forced action af;

 new state st+1 ← f(st, af);

 else choose random action ar ∈ untried actions;

new state st+1 ← f(st, ar);

 end if

 return Simulation(st+1)

Best(data)

 return action a //the maximum rtotal of m from data

Note that here f is a function to generate a new board state
from last board state and action. Heuristic knowledge which is
common knowledge for Gomoku players can save more time in
simulation than random sampling. Therefore, it helps the result
getting converge earlier than before. The rules are explained as
follows:

 If four-in-a-row is occurred in my side, the player will
be forced to move its piece to the position where it can
emerge five-in-a-row in my side.

 If four-in-a-row is occurred in opposite side, the player
will be forced to move its piece to the position where it
can block five-in-a-row in opposite side.

 If three-in-a-row is occurred in my side, the player will
be forced to move its piece to the position where it can
emerge four-in-a-row in my side.

 If three-in-a-row is occurred in opposite side, the player
will be forced to move its piece to the position where it
can block four-in-a-row in opposite side.

Though Gomoku is a zero-sum game like Go, a draw result
rarely occurs in Gomoku. As a matter of fact, the final result
usually turns out to be win or lose. Therefore, we make the
reward be 1 when the final result is win or 0 when the final
result is loss or a draw. Then the Q-value of an action can
represent the expected reward of that action.

()

1

1
(,) (,)

(,)

N s

i i

i

Q s a l s a z
N s a 

  (1)

where N(s,a) is the number of times that action a has been
selected from state s, N(s) is the number of times that a game
has been played out from s, zi is the result of the ith simulation
played out from s, and li(s,a) is 1 if action a is selected on the
ith playout from s or 0 otherwise.

 The other widely used MCTS algorithm is UCT [24],
which is based on Upper Confidence Bounds (UCB). UCB is
known as capable to solve the multi-armed bandit problem.
The most obvious virtue of UCB is that it helps to balance the
conflict between exploration and exploitation and find out the

final result earlier. Its simplest form is:

2ln()
j

j

n
UCB x

n
  (2)

where
jx is the average reward from jth simulation, nj is the

number of times that node j is visited, and n is the overall

number of plays so far. The reward
jx encourages the

exploitation of higher reward selection, but the right-hand term

2ln() / ()jn n encourages the exploration of less visited choices.

UCT is originated from HMCTS, but the difference to
HMCTS is that the UCB can help to find out the suitable leaf
nodes earlier than original algorithm, thus, UCT can save more
time than the original version.

The UCT for Gomoku is presented in Algorithm 2.

Algorithm 2: UCT for Gomoku

input create root node v0 with state s0;

output action a corresponding to the highest value of UCT;

while within computational budget do

 vl ← Tree Policy(v0);

 Policy ← Heuristic Knowledge;

 reward r ← Policy(s(vl));

 Back Update(vl , r);

end while

return action a(Best Child(v0))

Tree Policy(node v)

 while v is not in terminal state do

 if v not fully expanded then return Expand(v);

 else v ← Best Child(v, 1/ 2);

 end if

 end while

 return v //this is the best child node

Expand(node v)

 choose random action a ∈ untried actions from A(s(v));

 add a new child v’ to v

 with s(v’) ← f(s(v), a) and a(v’) ← a;

 return v’ //this is the expand node

Best Child(node v, parameter c)

returnarg max((() / ()) 2 ln N() / ())
v child

Q v N v c v N v


  

Policy(state s)

while s is not terminal do

 if s satisfied with heuristic knowledge then

 obtain forced action a;

 else choose random action a ∈ A(s) uniformly;

 end if

 s ← f(s, a);

 end while

 return reward for state s

Back Update(node v, reward r)

 while v is not null do

 N(v) ← N(v) + 1;

 Q(v) ← Q(v) + r;

 v ← parent of v;

 end while

Here, v indicates a node which has four pieces of data: the
state s(v), the next action a(v), the total simulation reward Q(v),
the visited count N(v). And v0 is the root node corresponding to
state s0, vl is the last node reaching the end of the game
simulation, r is the reward for the terminal state reached by
running the policy, the result of the overall search
a(Best_Child(v0)) is the action a that leads to the best child of
the root node v0.

 Note that the MCTS is required to be repeatedly carried out
for enough times to ensure the prediction can be more accurate.
The most serious problem about time consuming in MCTS is
that MCTS must spend a lot of time on searching some
unnecessary feasible actions (unnecessary actions mean it wins
in a low winning probability).

IV. ADAPTIVE DYNAMIC PROGAMMING WITH

MONTE CARLO TREE SEARCH

Adaptive dynamic programming (ADP) used in Gomoku is
trained by temporal difference learning (TDL), which is a

widely used reinforcement learning algorithm. The ADP
training structure is illustrated in Fig. 2. The details for training
the ADP can be seen in [23]. To solve the problem we have
mentioned before, we try to obtain candidate action moves by
ADP. Every one of candidate moves obtained from ADP
should be the root node corresponding to each progress of
MCTS. In other words, not only does it ensure the accuracy of
the search, but also reduces the width of search. Compared
with only using MCTS, it should save a large amount of time
to find out the suitable action for Gomoku.

The current board state x(t) is fed forward to the Action
Selection, which generates the control action u(t). Under the
action u(t), we obtain the next step transition state x(t+1),
which is fed forward to the utility function r which produces a
reward r(x(t+1)). The critic network is used to estimate the cost
function V. Then the reward r(x(t+1)), the estimate V(t) and the
estimate V(t+1) are used to update the weights of the critic
network to make the cost function V satisfy with the Bellman
equation.

Fig. 2. The ADP structure.

The critic network in the ADP of Gomoku is a feed forward
three-layer fully connected neural network. The structure is
shown in Fig. 3.

x1

x2

x3

xn-1

xn

(1)w

(2)w

v(t)...

...

.
Fig. 3. The structure for the critic network [23].

The final output v(t) of the neural network is the winning
probability of the player with a board state, derived as follows.

1

1

() () ()
n

i j ji

j

h t x t w t


 （）
 (3)

()

1
()

1 exp i
i h t

g t





 (4)

(2)

1

() () ()
m

i i

i

p t w t g t


 (5)

()

1
()

1 exp p t
v t





 (6)

where
(1)

jiw is the weight between jth input node and the ith

hidden node; xj is the jth input of the input layer; n is the total
number of input nodes; hi (t) is the input of the ith hidden node;

gi(t) is the output of the ith hidden node;
(2)

iw is the weight

between hidden node and output node; m is the total number of
hidden nodes; p(t) is the input of the output node;.

In the critic network, there are 274 nodes in the input layer,
100 nodes in the hidden layer and 1 node in the output layer. In
the input layer, there are five input nodes indicating the number
of every pattern except for the five-in-a-row. The coding
method is shown in Table I. The reason why the number of
input nodes is 274 is also mentioned in [23].

TABLE I. CODING METHOD OF THE INPUT NODES [23]

The number of

the pattern
Input 1 Input 2 Input 3 Input 4 Input 5

0 0 0 0 0 0

1 1 0 0 0 0

2 1 1 0 0 0

3 1 1 1 0 0

4 1 1 1 1 0

>4 1 1 1 1 (n-4)/2

a. n is the number of one kind of input pattern.

As the experiment result shown in [23]，we select the

program ST-Gomoku [23], which has the best performance
compared with the rest of cases, as our neural network
evaluation function. But unlike our previous work, instead of
only getting one move which has the maximum wining
probability by neural network evaluation function, we will
obtain 5 candidate moves with the top five wining probability.

Inspired by the idea of AlphaGo, we try to use ADP to train
a shallow neural network combining with MCTS. Firstly, we
obtain 5 candidate moves and their winning probabilities from
the neural network which is trained by ADP. We call them
ADP winning probabilities. Secondly, the 5 candidate moves
and their situations of board are seen as the root node of MCTS.
Then, we obtain 5 winning probabilities respectively from
MCTS method. We call them MCTS winning probabilities. To
get a more accurate prediction of winning probability, we
calculate the weighted sum of ADP and its corresponding
winning probability of MCTS. It is defined as:

x(t)
Action

Selection

Critic

Network

r(x(t+1))

g

_

+

+

V(t+1)

V(t)

u(t)

Gomoku
x(t+1)

Critic

Network

1 2(1)pw w w    (7)

where wp is the final winning probability of prediction, w1 is the
winning probability of the ADP, w2 is the winning probability
of the MCTS, λ is a real constant between [0, 1]. As it implies,
when λ=0, the winning prediction only depends on the MCTS.
On the contrary, λ=1 means that winning prediction only
depends on the ADP.

The full ADP-MCTS is presented in Algorithm 3.

Here s0 indicates original state. MADP is the set of ADP’s
moves, and MMCTS is the set of MCTS’s moves. WADP is the set
of top 5 winning probabilities by the ADP, and WMCTS is the set
of winning probabilities by the MCTS. ADP and MCTS Stages
mean to find out their winning probabilities by the ADP or
MCTS respectively from feasible moves.

As shown in Fig. 4, when λ=0.5 it seems to be the best to
the final result. In other words, it appears only when its
dependency to ADP and MCTS is balanced, the prediction of
winning probability will be more accurate.

It should be pointed out that the candidate moves, obtained
from ADP, make the MCTS’s search space smaller than before.
That is why ADP with MCTS saves more time than the method
only uses MCTS. The other thing should be noted is the reason
for just selecting 5 as the number of candidate moves. When
the number of candidate moves is much bigger than 5, it will
not save time as much as expected. In contrast, it most likely to

Fig. 4. Winning rate against ADP depends on λ.

be the same as the ADP if the number of candidate moves is
smaller than 5. Also, 5 is based on the experiment’s results,
which turns out that 5 is a balance number for time consuming
and playing level of Gomoku.

V. EXPERIMENTS AND ANALYSIS

The present methods combining ADP with HMCTS or
UCT both have been implemented. Our goals are as follows:
first, compare the difference between HMCTS and UCT. Then,
compare four different methods mentioned above and pick out
the one which performs best when playing against each other.
Finally, the best one, which is selected, will play against a
commercial program called 5-star Gomoku [25].

In these experiments, the test system is based on a hardware
platform of AMD A10-5750M APU with Radeon(tm) HD
Graphics 2.50GHz while the software platform is Windows 10.
Additionally, Open Multi-Processing (OpenMP) is an
application programming interface that supports multi-platform
shared memory multiprocessing programming in C and C++,
thus, we use it to help MCTS convergence to the final result
earlier.

A. Comparison between HMCTS and UCT

In Table II, the number in the first column and its
corresponding rows represents the times of simulation with
UCT or HMCTS. Considering the same MCTS method, the
more simulations to be taken, the higher probability to win.
This proves that the precision of winning probability could be
improved with increasing the number of simulations. Note that
the precision of MCTS prediction increases with a logarithmic
form, hence, it will be almost imperceptible when the number
of simulation is over 1,000.

TABLE II. COMPARISION BETWEEN HMCTS AND UCT

 HMCTS VS UCT Score Ratio

HMCTS-1 VS UCT-1 62:38 1.632

HMCTS-10 VS UCT-10 75:25 3.0

HMCTS-50 VS UCT-50 71:29 2.448

HMCTS-100 VS UCT-100 67:33 2.030

HMCTS-200 VS UCT-200 60:40 1.50

HMCTS-400 VS UCT-400 58:42 1.381

Algorithm 3: ADP with MCTS

input original state s0;

output action a correspond to ADP with MCTS;

MADP, WADP ← ADP Stage(s0);

WMCTS ← MCTS Stage(MADP);

for each w1, w2 in pairs(WADP, WMCTS) do

wp ← λw1 + (1-λ)w2;

add p into P;

end for each

return action a correspond to max p in P

ADP Stage(state s)

 obtain top 5 winning probability WADP from ADP(s) ;

 obtain their moves MADP correspond to WADP;

return MADP, WADP

MCTS Stage(moves MADP)

 for each move m in MADP do

 create m as root node with correspond state s

 obtain w2 from MTCS(m, s)

 add w2 into WMCTS

 end for each

return WMCTS

0

0.2

0.4

0.6

0.8

1

0

0
.0
5

0
.1

0
.1
5

0
.2

0
.2
5

0
.3

0
.3
5

0
.4

0
.4
5

0
.5

0
.5
5

0
.6

0
.6
5

0
.7

0
.7
5

0
.8

0
.8
5

0
.9

0
.9
5 1

wi
nR
at
e

λ

Table II lists HMCTS-n or UCT-n, where n represents the
times of simulation board game. And when n is in a small
number of simulation, HMCTS’s performance is better than
UCT’s. However, with the simulation times increasing, the
level of UCT will be closer to HMCTS. But overall,
HMCTS’s level is a little higher than UCT, while the cost time
of HMCTS is less than UCT.

It is also worth noting that because of too much time
consuming of MCTS, we limit the times of simulation to 400.
In fact, when the times of simulation reach 400, it may cost 2
to 3 minutes to decide a suitable move, so it is obviously
difficult to be used for Gomoku. In addition, it would not
make significant progress when it only increases a little
simulation times.

The worst thing about MCTS is the time consuming
ensured to obtain a more accurate prediction. While, most of
the feasible moves are totally valueless.

B. Comparison among four differnece methods

Note that we only use HMCTS as the MCTS to be the
competitor, because it has been proved that HMCTS’s
performance is better than UCT’s. Table IV shows that the
levels for Gomoku from high to low are ADP-UCT, ADP-
HMCTS, ADP, HMCTS.

TABLE III. COMPARISION AMONG 4 ALGORITHMS

Algorithm
Opponent Algorithm

Total Ratio
ADP-UCT ADP-HMCTS ADP HMCTS

ADP-UCT - 267:233 360:140 397:103 1024:476 2.151

ADP-HMCTS 233:267 - 354:146 379:121 966:534 1.809

ADP 140:360 146:354 - 348:152 634:866 0.732

HMCTS 103:397 121:379 152:348 - 376:1124 0.335

Table III shows that ADP-MCTS’s performance is better
than ADP’s and much better than MCTS’s. Though UCT’s
performance is worse than HMCTS’s, ADP-UCT’s
performance is a little better than ADP-HMCTS’s.

During the experiment, the time consumed by the proposed
methodology is mainly on MCTS. The cost in ADP is only
about 80ms per move. Nevertheless, MCTS can spend much
more time than ADP, which is around 5~10mins per move.
The mainly reason for causing this time consumed is that
MCTS may spend lots of time in simulations with a large
number of possible moves. To make it effective, we use ADP
to select the final candidate moves in a small amount (such as
5.), so it can guarantee the MCTS’s simulation in a short time.
The results show that the cost of ADP-HMCTS is reduced to
2~3s using OpenMP from originally 10s a move without it.
However, ADP-UCT just spends about 4~5s a move without
using OpenMP. Obviously, ADP-UCT not only stronger but
also faster than ADP-HMCTS.

C. Playing against 5-star Gomoku

TABLE IV. COMPARISION AGAINST 5-STAR GOMOKU

Algorithm

Gomoku Level

Beginner Dilettante Candidate

ADP 100:0 73:27 43:57

HMCTS 46:54 13:87 0:100

ADP-HMCTS 100:0 89:11 71:29

ADP-UCT 100:0 82:18 64:36

 Table IV indicates ADP-HMCTS and ADP-UCT both
reach the level of Candidate, while ADP reaches the level of
Dilettante and HMCTS nearly reaches the level of Beginner.

 Fig. 5. How ADP-UCT to select its move in an informal game against ADP.

TABLE V. HOW ADP-UCT TO SELECT ITS MOVE IN AN INFORMAL GAME

AGAINST ADP.

 Five candidates

of 21th move
ADP Prediction UCT Prediction

Final

Prediction

(H,9) 0.338 0.566 0.452
(F,7) 0.375 0.638 0.507

(E,11) 0.303 0.668 0.486

(G,10) 0.345 0.645 0.495
(D,9) 0.359 0.686 0.523

Table V shows that there are always five candidates of
each move. The selected move is determined by the maximum
of the final prediction value, which is equivalent to 0.5×(ADP
Prediction+UCT Prediction). What we can see from Table V
and Fig. 5. (D,9) is the final selected move which ensures to
win. In this turn, it mainly depends on the UCT. While ADP is
still in the position of the first two. The fact shows that the
UCT may be the excellent supplement of the ADP, and it truly
raises the accuracy of the prediction of winning probability.
Actually, the ADP and UCT improve the performance of
playing Gomoku.

VI. DISCUSSION AND CONCLUSION

In the previous studies of Gomoku, as an usual method, α-
β pruning is used to generate node order, while the concrete
operation in accessing the nodes is to compute the value of
static evaluation function. The facts show that it has made a

big role in the traditional algorithm of Gomoku. While, this
traditional method also brings 3 serious problems. The first is
that static evaluation function always requires complicated
artificial design and it needs a lot of time to consider plenty of
situations. The second is that it can not learn anything while
playing Gomoku. It just obeys the rule which is made before,
and could not be improved by playing. The last is that the
depth of search is always a bottleneck. The time and space
complexities will grow exponentially with search depth, which
limits the real-time performance of the game-tree-based
solvers.

However, we can train a neural network that is able to
learn to play Gomoku using ADP. And it has turned out that
ADP’s program for Gomoku approaches the candidate level of
5-star Gomoku. Meanwhile, it just costs one or two
milliseconds for obtaining a prediction of winning probability
for the neural network, and it can decide a move for average
60ms to 80ms. Thus, it looks to be much quicker than game-
tree-based solvers. Moreover, we can train the neural network
by playing against itself, and it shows its capacity to improve
Gomoku level by learning through the situation of board. That
is to say we can improve the level by training the neural
network rather than programming with the rules.

Overall, we present a method by employing ADP
combined with MCTS algorithm to solve a strategical game in
this paper. From the experiment, ADP with MCTS has
competed the candidate level of 5-star Gomoku. However, it
still has a certain gap with YiXin, the best AI program for
Gomoku. Although developing a stronger AI for a certain
board game is the ultimate goal, self-playing is still a powerful
technique as proven by AlphaGo. We will try to employ deep
neural network to make a better feature representation of the
board in the next stage.

ACKNOWLEDGMENT

We especially acknowledge Zhen Zhang and Yujie Dai for
their valuable preliminary work. And we also thank DeepMind
for their great work about AlphaGo.

REFERENCES

[1] L. V. Allis, M. V. D. Meulen and H. J. V. D. Herik, "Proof-number
search," Artificial Intelligence, vol. 66, pp. 91-124, 1994.

[2] I. C. Wu, H. H. Kang, H. H. Lin, P. H. Lin, T. H. Wei, and C. M. Chang,
Dependency-Based Search for Connect6: Springer International
Publishing, 2013.

[3] L. V. Allis, H. J. Van Den Herik and M. P. H. Huntjens, "Go-Moku and
Threat-Space Search," Interview Questions, 1994.

[4] W. T. Katz and S. Pham, "Experience-based learning experiments using
Go-Moku," in IEEE International Conference on Systems, Man, and
Cybernetics, 1991, pp. 1405-1410 vol.2.

[5] J. Schaeffer, "The history heuristic and alpha-beta search enhancements
in practice," IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 11, pp. 1203-1212, 1989.

[6] B. Freisleben, "A Neural Network that Learns to Play Five-in-a-Row,"
in New Zealand International Two-Stream Conference on Artificial
Neural Networks and Expert Systems, 1995. Proceedings, 1995, p. 87-
87.

[7] G. Tesauro, "Connectionist learning of expert preferences by
comparison training," in Advances in neural information processing
systems 1, 1989, pp. 99-106.

[8] F. A. Dahl, "A Reinforcement Learning Algorithm Applied to
Simplified Two-Player Texas Hold’em Poker," in Machine Learning:
Emcl 2001, European Conference on Machine Learning, Freiburg,
Germany, September 5-7, 2001, Proceedings, 2001, pp. 85-96.

[9] D. Silver, R. Sutton and M. Müller, "Reinforcement Learning of Local
Shape in the Game of Go.," in Proceedings of the International Joint
Conference on Artificial Intelligence, Hyderabad, India, January, 2007,
pp. 1053-1058.

[10] F. Ishida, T. Sasaki, Y. Sakaguchi, and H. Shimai, "Reinforcement-
learning agents with different temperature parameters explain the variety
of human action–selection behavior in a Markov decision process task,"
Neurocomputing, vol. 72, pp. 1979-1984, 2009.

[11] J. W. Mo, "Study and practice on Machine Self-Learning of Game-
Playing.,". vol. Master Thesis: Guangxi Normal University, 2003.

[12] R. M. Gong, "Research and Implementation of Computer Game Strategy
Based on Reinforcement Learning,". vol. Master Thesis: Shenyang
Ligong University, 2011.

[13] G. Tesauro, "Temporal difference learning and TD-Gammon,"
Communications of the ACM, vol. 38, pp. 58-68, 1995.

[14] A. G. Barto, R. S. Sutton and C. W. Anderson, "Neuronlike adaptive
elements that can solve difficult learning control problems," IEEE
Transactions on Systems Man & Cybernetics, vol. SMC-13, pp. 834-846,
1983.

[15] J. W. Paul, "A menu of designs for reinforcement learning over time,"
Neural networks for control, MIT Press, Cambridge, MA, 1990.

[16] D. Zhao, Z. Xia, D. Wang, “Model-free optimal control for affine
nonlinear systems based on action dependent heuristic dynamic
programming with convergency analysis,” IEEE Transactions on
Automation and Science Engineering. vol. 12, no. 4, pp. 1461–1468,
2015

[17] A. Ramírez, F. G. Acuña, A. G. Romero, R. Alquézar, E. Hernández, A.
R. Aguilar, and I. G. Olmedo, "A Scrabble Heuristic Based on
Probability That Performs at Championship Level," MICAI 2009:
Advances in Artificial Intelligence, vol.5845 Lecture Notes in Computer
Science, pp. 112-123, 2009.

[18] M. L. Ginsberg, "GIB: Imperfect information in a computationally
challenging game," Journal of Artificial Intelligence Research, pp. 303-
358, 2001.

[19] A. F. Smith and G. O. Roberts, "Bayesian computation via the Gibbs
sampler and related Markov chain Monte Carlo methods," Journal of the
Royal Statistical Society. Series B (Methodological), pp. 3-23, 1993.

[20] S. Gelly and Y. Wang, "Exploration exploitation in go: UCT for Monte-
Carlo go," in NIPS: Neural Information Processing Systems Conference
On-line trading of Exploration and Exploitation Workshop, 2006.

[21] G. M. J. Chaslot, M. H. Winands, H. J. V. D. HERIK, J. W. Uiterwijk,
and B. Bouzy, "Progressive strategies for Monte-Carlo tree search,"
New Mathematics and Natural Computation, vol. 4, pp. 343-357, 2008.

[22] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M.
Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
"Mastering the game of Go with deep neural networks and tree search,"
Nature, vol. 529, no.7587, pp. 484-489, 2016.

[23] D. Zhao, Z. Zhang and Y. Dai, "Self-teaching adaptive dynamic
programming for Gomoku," Neurocomputing, vol. 78, pp. 23-29, 2012.

[24] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P.
Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, "A
Survey of Monte Carlo Tree Search Methods," IEEE Transactions on
Computational Intelligence and AI in Games, vol. 4, pp. 1-43, 2012.

[25] L. Atomax, "http://www.5-star-gomoku.com-about.com/", 2006.

