
An improved mini-batching technique: Sample-and-Learn

Andreas Antoniades
Department of Computer Science

University of Surrey, U.K.
Email: a.antoniades@surrey.ac.uk

Clive Cheong Took
Department of Computer Science

University of Surrey, U.K.
Email: c.cheongtook@surrey.ac.uk

Yaochu Jin
Department of Computer Science

University of Surrey, U.K.
Email: yaochu.jin@surrey.ac.uk

Abstract—Artificial neural networks suffer from prolonged
training times, this is intensified when the volume of data
is big. Mini-batching has become the standard in training
neural networks. By reducing the number of data used to
train each iteration the training time greatly shortens; even
in a big data environment. A number of techniques such as
parallel computation have rendered mini-batching a necessity
for complex neural network models. Due to simplicity however,
mini-batching methods have a number of inherent disadvan-
tages that can affect the accuracy and convergence of a model.
In this work, we focus on the ordering of samples presented to a
neural network and propose a random sampling approach for
generating mini-batches in linear time. Experimental results
show that networks using our proposed Sample-and-Learn
approach converge in fewer iterations while providing com-
parable or better accuracy.

1. Introduction

Designing scalable neural networks for big data is a
challenging task. Batch training of networks, which requires
an entire pass over the data in each iteration, is no longer
viable and researchers start to look at alternative training
methods [1]. Online training methods use a single sam-
ple from the training set X for the learning and update
processes at each iteration. The selection process can be
random or from a distribution such as Gibbs sampling [2].
Online approaches tend to be faster than batch learning
and particularly applicable in environments where the data
becomes available through time. Another advantage of the
online learning method is that it can be used to track changes
in the data through time.

Mini-batching presents a compromise solution between
batch and online learning approaches, that is both simple
and effective. A subset S is created from the training set
X of a predetermined size s; often referred to as batch
size. For a mini-batching of 100 the first iteration uses
S1 = {x1, x2, .., x100} to train, while the second iteration
uses S2 = {x101, x102, .., x200} and so on. This method
reduces the time taken by each iteration and is ideal for
big data environments and complex models. Due to its
simplicity, mini-batching has been widely accepted by the
machine learning community and a number of improvements

have been proposed the last few years.
A parallel implementation of mini-batching is concep-

tually straightforward, yet it gives rise to the problem of
high communication costs. In [3], a technique based on ap-
proximate optimization is proposed to allow for an efficient
distributed implementation of mini-batching with reduced
communications costs.
Another issue is that a neural network using mini-batching is
exposed to data from different distributions at each iteration
due to the non-stationarity of the data. In this case, networks
need to continuously adapt to the new data. This is often
referred to as covariance shift [4]. An effective approach to
alleviate this problem is to normalise the data of each batch
independently [5].

Despite its success in improving, mini-batching suffers
from one major drawback; the data is presented to the
network in the same order at each iteration, increasing the
chance for overfitting. Moreover, the grouping of data points
in mini-batches is generally fixed; i.e. data points X1 and
X2 have a high probability of always appearing in the same
mini-batch. In [6], shuffled data was used for training and
were found to be beneficial for stochastic gradient descent,
which is the algorithm the majority of neural networks use.

Random sampling can be used to collect a few samples
of the data set, to form a reservoir of the data for training.
First, our proposed scheme circumvents the issue of over-
fitting due to the shuffling of data, by performing random
sampling. Second, reservoir sampling involves collecting
samples over the entire dataset, better reflecting the non-
stationarity of data, instead of a localised batch generated
by mini-batching.

A Sample-and-Learn scheme is proposed to leverage
both of these benefits for the training of a neural network.
As an application of big data, we consider two large classifi-
cation problems, including supersymmetric and Higgs boson
particle detection. Both datasets were considered in [7].
The authors empirically illustrated the advantages of deep
learning for the two datasets, whereas our objective is to
investigate models that use mini-batching and the proposed
Sample-and-Learn scheme.

2. Reservoir Sampling against volume and ve-
locity data

The aim of a reservoir sampling algorithm is to collect
a set (or reservoir) of random samples of size s from a
dataset, whose size N is very large or not known. This
type of algorithm has found applications in databases [8],
data streaming [9], and even in the well-known expectation
maximisation learning algorithm [10], but has not been con-
sidered in the training of neural networks for big data. The
processing of data streams implicitly entails the problem of
volume and velocity of the data. One pass reservoir sampling
addresses the problem of volume of the data by collecting
only a subset of samples from the data set, whereas the
online operation and the light computational complexity of
reservoir sampling makes it well suited for coping with the
velocity of the data.

There are several reservoir sampling algorithms. The
most prominent one is known as Algorithm R [11], which
selects s samples randomly (from a uniform distribution)
from the data set (of size N), given that N > s. It
has a computational complexity of O(N) and an improved
implementation can be found in [12].

In the context of our proposed Sample-and-Learn
scheme for the training of neural networks, Algorithm R
has been considered. Being a sampling algorithm without
replacement, Algorithm R has a linear computational com-
plexity, scaling better with big data unlike more expensive,
two-pass sampling algorithms; making it a viable choice.
The pseudo code for Algorithm R can be found in Alg.1. Big
data often implies that no prior knowledge on the data set
is available; hence it is more appropriate to select a subset
of the data from a uniform distribution rather than from a
skewed distribution.

Algorithm 1 Algorithm R

1. Define reservoir size s
2. Repeat
3. Read the kth sample
4. If(k < s)
6. Add kth sample to reservoir
7. Else
8. Generate a random number r between 1

and k
9. If(r < s)
10. Replace the rth sample in the

reservoir with kth sample
12. Until k=N+1

3. The proposed Sample-and-Learn Scheme

A benefit of big data is the availability of data for
learning, which minimises the risk of overfitting; this cannot
be exploited when a small data set is used. The underlying
idea behind our proposed method, Sample-and-Learn, is to
provide exposure to a large spectrum of the data, but perform

Initialise
Neural Network

Sample
training data

Train for
e Iterations

Stopping Criteria
met?

Yes

End

Calculate
Accuracy

Figure 1: Diagram of the proposed learning process.

Figure 2: Reservoir Sampling over a number of iterations.
Shaded circles represent the samples chosen by the reservoir
at each iteration. This is a scenario where five iterations were
allowed, the reservoir size is two and the number of samples
is five.

the learning of the neural network on data at much smaller
scale. The proposed learning process can be found in Fig.
1.

For the purpose of illustration, consider a data set com-
prising of a total of five samples {s1, s2, s3, s4, s5} and
a reservoir of size two. The aim is to allow most of the
samples from the data set into the reservoir at least once
throughout the many iterations. If we allow five iterations
for learning, then a possible set of reservoirs generated for
the five iterations is shown in Fig. 2. The best case scenario
would be for all samples, or at least the majority, to pass
through the reservoir, which is the case in Fig. 2. The
addition of reservoir sampling for each iteration increases

the computational complexity of learning by O(N).
Remark #1 The example in Fig. 2 indicates that the input to
the neural network may be sampled at different periods. In
other words, the neural network may learn from the input of
{s2, s4}. In fact, Algorithm R can provide a shuffled input
of {s4, s2} to the neural network.

3.1. Statistical Analysis of Sample-and-Learn
Scheme

For rigour, we provide a statistical analysis of our pro-
posed Sample-and-Learn method. In particular, we illustrate
how the data size and the number of iterations of the
training neural network affect its accuracy. It is shown that
the probability of the kth sample being in the reservoir
of Algorithm R in one-pass through the entire data set is
computed as s/N . Recall that s denotes the size of the
reservoir and N denotes the size of the entire data set.
Therefore, the probability of not getting kth sample after
E iterations can be expressed as:

Pnot(k) =

[
1− s

N

]E
(1)

Probability of getting kth sample at least once after E
iterations can be computed as:

Pr(k) = 1−
[
1− s

N

]E
(2)

Remark #2: Equation (2) shows that increasing either s or
E results in an increase in the probability of obtaining the
kth sample Pr(k). The greater the probability of getting the
kth sample Pr(k) to train the neural network, the better the
accuracy of the neural network.
However, it is not clear from Equation (2) whether the size
of training data s or the number of iterations E has a greater
impact on Pr(k). To this end, the rate of change of Pr(k)
with respect to both s and E is derived as follows.
Let

X = 1− s

N
(3)

From (2), its derivatives can be obtained as

∂Pr(k)

∂s
=

E

N

[
X

]E−1

(4)

∂Pr(k)

∂E
= −XE ln(X) (5)

Remark #3: Given that N � s, Equations (4) and (5)
indicate that a change in the number of iterations ΔE has
a greater impact on the probability Pr(k) in Equation (2)
than a change in data size Δs.
For clarity, it is also instructive to determine the relationship
between Δs and ΔE, which can be expressed as

∂Pr(k)

∂E
= −N

E

∂Pr(k)

∂s
X ln(X) (6)

Notice that X in Equation (3) is a fraction, hence ln(X) is
a negative number. By letting ln(X) = −λ, Equation (6)
becomes

∂Pr(k)

∂E
= λX

N

E

∂Pr(k)

∂s
(7)

Using the approximation ∂y/∂x ≈ Δy/Δx, where Δ is the
change in variable x or y and taking the inverse of (7), the
relationship between a change in number of iterations ΔE
and a change in data size Δs can be approximated as

ΔE ≈ E

λXN
Δs (8)

Remark #4: To achieve the same level of accuracy, Equa-
tion (8) implies that training a neural network with a smaller
data size does not cause a significant increase in the number
of iterations. In other words, a small change in data size
corresponds to a much smaller change in the number of
iterations, in order to have the same effect on the probability
Pr(k) in Equation (2).

3.2. Comparison to mini-batching

In this section we provide a comparison between our
proposed method, Sample-and-Learn, and mini-batching.
Recall that our objective is to provide a learning scheme
that allows a randomly sampled set of datapoints to be
presented to the network. We compare the two methods in
terms of the probability of each datapoint to be selected and
the computational cost.

3.2.1. Probability of datapoint selection.
We have already calculated the propability of a datapoint

to be selected at least once through a number of iterations
to be:

Pr(k) = 1−
[
1− s

N

]E
(9)

For mini-batching, since the selection is deterministic, the
probability of selecting a datapoint is proportional to the
batch size s and the number of iterations E, and inversely
proportional to the size of the data set N .

Pb(k) =

{
1 if sE ≥ N

sE
N if sE < N

(10)

Assuming that we are dealing with big data, where N is
extremely large and using all the datapoints is not viable,
we define Pb(k) = sE

N . For small N , Pb(k) > Pr(k),
however as N increases, Pb(k) ≈ Pr(k). Fig. 3 depicts
how δ(P (k)) = Pb(k) − Pr(k) approaches zero as N
increases. Given a large enough datasets, we estimate that
Pb(k) ≡ Pr(k). As a result we can conclude that Sample-
and-Learn and mini-batching are equal in terms of the
probability of presenting a specific sample to the network
for big datasets.

Datasize N ×10 5
0 0.5 1 1.5 2 2.5

P
ro

ba
bi

lit
y

0

0.2

0.4

0.6

0.8

1
Pb
Pr

Figure 3: The probability of not selecting a specific sample
for different data set sizes N . For this simulation E = 100
and s = 100.

3.2.2. Computational Complexity.
The total computational complexity C of a network

with a single hidden layer and a logistic regressor can be
approximated as:

C = E(N(dc+ h)) (11)

where N denotes the number of datapoints, d is the di-
mensionality of the data, c is the number of weights of the
hidden layer, h is the number of hidden neurons and E is
the number of iterations run. which corresponds to the big
Oh notation of:

O(ENdc) (12)

We expect that standard mini-batching is faster than our
Sample-and-Learn scheme. This is because every iteration
is followed by the reservoir sampling process with com-
putational complexity O(N), see Fig. 1. To improve the
computational complexity of Sample-and-Learn we have
designed two improvements to reservoir sampling, multi
reservoir sampling and asynchronous sampling.

The first improvement, takes into consideration the vol-
ume of N for big datasets. To address the sheer size of big
data (e.g. 11×106 samples as considered in our simulations),
a number of reservoirs L are generated for each pass over
the data. That would enable us to accelarate the selection
process of samples to be considered for the training of our
models. Note that this approach is memory intensive since
more reservoirs will be stored in memory. Yet, given enough
memory we can generate hundreds of reservoirs for training
in a single pass over the data. Recall that algorithm R is a
sampling algorithm without replacement, therefore a partic-
ular sample can only exist once in each reservoir. However,
the same sample can exist in two different reservoirs.

The second improvement comes in the form of asyn-
chronous sampling. Meaning that, an iteration of training
En does not need to be completed for the sampling process
of the reservoir Sn+1 for the next iteration to be generated.
This insight has led us to implement reservoir sampling on
a standalone thread that asynchronously creates reservoirs
of the data and stores them in a shared queue. When the

neural network finishes an iteration, it simply queries the
shared queue for the next available reservoir.

Figure 4: Timeline of the Sample-and-Learn scheme

In this work, we consider s to be both the batch and
the reservoir size since both of these serve identical roles,
i.e. how much data is used per iteration for training. Inte-
grating multi-reservoir and asynchronous sampling reduces
the computational cost of training with Sample-and-Learn
to approximately CSandL ≈ Cb. The pseudocode for our
Sample-and-Learn algorithm with the improved algorithm R
can be found in Alg. 2. A timeline of the suggested scheme
is illustrated in Fig. 4. The first sampling pass over the
data needs to be completed before training can commence.
After each pass the L generated reservoirs are put into a
buffer queue that supplies the learning algorithm with data.
Sampling continues asynchronously with training constantly
providing new reservoirs until the buffer limit m is reached.

Algorithm 2 Sample-and-Learn

1. Define Global queue q, reservoir size s
2. Define error E, previous error Ep

3. Launch new thread(Algorithm3)
E = ∞

4. Repeat
Ep = E

5. Read the next reservoir
Sn = q.dequeue()

6. Train for one iteration
7. Calculate validation error E
8. Until E>Ep to avoid overfitting
9. Calculate test error

Algorithm 3 Multi-reservoir Algorithm R

1. Define number of reservoirs per pass
L and queue of size m× s

2. Repeat
3. if (q.size() < m)
4. Repeat
5. Read the kth sample
6. l = 0
7. Repeat for reservoir l
8. If(k < s)
9. Add kth sample to reservoir l
10. Else
11. Generate a random number r

between 1 and k
12. If(r < s)
13. Replace the rth sample in

reservoir l with kth sample
14. l=l+1
15. Until l=L
16. Until k=N+1
18. q.add(L reservoirs)
17. Until True

4. Simulations

To illustrate the efficacy of our Sample-and-Learn
scheme, a number of simulations using real world data were
considered. The datasets used include the the supersymmet-
ric particles dataset (Susy) and the Higgs boson dataset [7].
The Theano [13] framework was used for the realisation
of the neural networks. Simulations were run on an Nvidia
GTX980 with an I7 3990K clocked at 4.2GHz and 28GB of
ram. We used early stopping, see Algorithm (2), to moderate
the training of our neural networks and used a 70/15/15
split for the training/validation/testing sets respectively. For
each iteration of training, the neural network used s sam-
ples to train and for every 50 iterations the network was
validated against an independent validation set. A number
of simulations, for s ∈ [10, 50, 100, 300, 500], were carried
out to demonstrate the impact of volume of the training
data on the computational cost. For each simulation set,
the results were averaged over 10 trial runs to alleviate the
probabilistic behaviour of Sample-and-Learn as well as to
allow for different weight initialisations.

4.1. Susy dataset

The Susy dataset was created using Monte Carlo simu-
lations for discriminating a process where new supersym-
metric particles are produced and a background process
[7]. The first 8 features are kinetic properties measured by
particle detectors in a particle accelerator. The last 10 are
functions of the first 8 features, handcrafted by physicists
to help discriminate between the two classes. The complete
dataset was used with all features, a total of 5×106 samples
where 46% are positive. The machine learning problem is
to classify whether the kinetic properties and high level

TABLE 1: Training parameters for all the considered meth-
ods

Parameter Susy Higgs

Hidden layers 3 4
Hidden layer order [200, 50, 10] [200, 50, 20, 5]
Learning rate 0.001 0.03
Validation frequency 50 50

features belong to a process that generates supersymmetric
particles or a background process.

4.2. Higgs dataset

The Higgs dataset was produced using Monte Carlo
simulations for discriminating a signal process that theo-
retically produces Higgs bosons from a background process
[7]. The dataset is divided in two parts, the first contains
kinetic properties measured by particle detectors in a particle
accelerator and makes up the first 21 features. The second
part contains 7 handcrafted high level features created by
physicists. The complete dataset was used with all features,
a total of 11 × 106 samples where 53% are positive. The
problem is to classify whether the kinetic properties and high
level features belong to a process that theoretically creates
Higgs boson particles or a background process.

4.3. Network parameters

Two multi layer perceptron networks were utilised
for the comparison between Sample-and-Learn and mini-
batching. Initial simulations were run to optimise the initial
parameters of the models. Due to the size of the datasets, the
initial optimisation of parameters was not exhaustive. The
networks used for both datasets and their parameters can be
found in Table 1. For both networks, the cross entropy cost
function was considered:

J = −y log(φ(z)) + (1− y) log(1− φ(z)) (13)

where y is the desired class, φ the activation function and
z the output. The hyperbolic tangent function was used as
the activation function for all networks:

φ(θ) = tanh(θ) =
sinh(θ)

cosh(θ)
=

exp (θ)− exp (−θ)

exp (θ) + exp (−θ)
(14)

5. Discussion

The empirical results confirmed our hypothesis, i.e.
neural networks learn better from randomly sampled and
shuffled data. This is due to the fact that the randomisation
process that alleviates overfitting in training. For the Susy
dataset, we observe similar accuracy between the two
competing algorithms. However, the iterations and total
time required for convergence for the network trained with

Sample size s
0 100 200 300 400 500

N
o.

 o
f I

te
ra

tio
ns

×10 5

0

1

2

3

4

5
Mini-batching
Sample-and-Learn

(a) Iterations until convergence

Sample size s
0 100 200 300 400 500

T
im

e
pe

r
ite

ra
tio

n
(s

)

0

0.05

0.1

Mini-batching
Sample-and-Learn

(b) Time taken per iteration

Sample size s
0 100 200 300 400 500

T
im

e
to

 c
on

ve
rg

en
ce

 (
s)

50

60

70

80

90

100

110

120
Mini-batching
Sample-and-Learn

(c) Total time to converge

Figure 5: Results for the Susy dataset for different s.

TABLE 2: Results for Susy dataset

Scheme s Iterations Time/Iteration(s) Total Time(m) Accuracy

Sample-and-Learn 10 278150 0.0216 102.48 80.23(0.97)
50 81350 0.0540 73.45 81.98(0.75)
100 51200 0.0673 57.42 82.19(0.32)
300 38350 0.0901 57.12 81.82(0.42)
500 28150 0.1201 56.34 81.03(0.61)

Mini-Batching 10 364070 0.0188 117.21 80.15(1.57)
50 159950 0.0427 113.79 80.23(0.43)
100 79950 0.0536 71.42 80.14(0.12)
300 69700 0.0599 69.96 80.01(0.21)
500 57800 0.0721 69.45 79.88(0.38)

TABLE 3: Results for Higgs dataset

Scheme s Iterations Time/Iteration(s) Total Time(m) Accuracy

Sample-and-Learn 10 99550 0.0876 144.34 72.61(1.03)
50 62100 0.1347 138.69 74.13(0.74)
100 36050 0.2104 126.37 74.37(0.78)
300 27400 0.2931 134.75 73.80(0.71)
500 23750 0.3685 131.13 71.02(0.69)

Mini-Batching 10 147100 0.0681 166.13 70.10(3.05)
50 83300 0.1022 139.61 72.98(0.68)
100 52750 0.1720 151.21 73.21(0.71)
300 45150 0.2122 159.68 70.78(0.46)
500 35150 0.2658 165.24 69.79(0.2)

Sample-and-Learn were significantly less.
For the Higgs dataset, similar behaviour is observed

with regards to training time and iterations to convergence.
Additionally, the network trained with Sample-and-Learn
on the Higgs data had a slight accuracy advantage over
mini-batching. Results for the Susy and Higgs datasets can
be found in Table 2 and Table 3 respectively. The averaged
results from 10 trial runs for each simulation are presented
including the number of iterations needed to converge, the
time taken per iteration, the total training time and model
accuracy with deviation in parenthesis. Additionally, we
provide the statistical signifigance between the competing
techniques for different sample sizes in Table 4.
Remark #5 As our analysis in Section 3.2 suggested,
Sample-and-Learn is indeed more computationally intensive
for each iteration than mini-batching.
Remark #6 Our empirical results indicate that randomly
sampled shuffled data created using Sample-and-Learn

TABLE 4: Statistical signifigance (p-value) for classification
accuracy between the competing algorithms for different
sample sizes

Sample size s 10 50 100 300 500
Susy 0.0217 0.0097 0.0015 0.0007 0.0001
Higgs 0.0266 0.0237 0.0018 0.0011 0.0012

enabled our neural networks to learn faster. This reduced
the number of iterations needed for a network to converge,
see Fig. 5a. As a result, we observed a consistent speedup
in the total training time of the network, as seen in Fig.5c.
The maximum speedup for the Susy dataset was 34% when
s = 50. For the Higgs dataset the maximum speedup was
16% and was observed at s = 100.
Remark #7 For both mini-batching and Sample-and-Learn,
the optimal sample size to achieve the highest accuracy is
within the region of s ∈ [50, 100]; this result is consistent

Sample-and-Learn Mini-batching
10 50 100 300 500 10 50 100 300 500

A
cc

ur
ac

y
(%

)

66

68

70

72

74

76

Figure 6: Relative accuracy for Sample-and-Learn (left) and
mini-batching (right) for different sample sizes (s) for the
Higgs dataset.

with mini-batching as discussed in [14].
Remark #8 Our proposed scheme, Sample-and-Learn
consistently matches or exceeds mini-batching in terms of
the classification accuracy of the trained models.
Remark #9 It is clear from Fig.6, that both schemes have
the most consistent performances in terms of accuracy and
accuracy deviation for 50 <= s <= 100. Additionally
both schemes suffer from sample sizes that are too small,
especially mini-batching for s = 10.

6. Conclusion

Indeed, small data helps big data learning. It is in
this spirit that we have proposed a novel training scheme,
i.e. Sample-and-Learn, to address the main issue in big
data, that is the volume of the data. We have shown the
significant reduction in computational cost when a neural
network learns from smaller, randomly sampled data.
For rigour, we have provided a statistical analysis of our
Sample-and-Learn Scheme to demonstrate that it is possible
to significantly reduce the size of the training data size
per iteration without causing a significant increase in the
number of iteration required to attain high accuracy. We
have also compared Sample-and-Learn to mini-batching
both from a statistical and a simulation perspective. As
a real-world application, we considered the large scale
classification of supersymmetric and Higgs boson particles.
Mini-batching captures a localised statistical representation

of the data whereas our Sample-and-Learn enhances the
likelihood of capturing the complete statistics of the data.
As such our proposed method allows for faster convergence
of the trained models.

References

[1] D. R. Wilson and T. R. Martinez, “The general inefficiency of
batch training for gradient descent learning”, Transactions on Neural
Networks vol. 16, no. 10, pp. 1429–1451, 2003.

[2] G. Casella and E.I. George, “Explaining the Gibbs sampler”, the
American Statistician vol. 46, no. 3, pp. 167–174, 1992.

[3] M. Li, T. Zhang, Y. Chen, and A. J. Smola, “Efficient mini-batch
training for stochastic optimization”, in Proceedings of the 20th ACM
SIGKDD 46, pp. 661–670, 2014.

[4] S. Hidetoshi, “Improving predictive inference under covariate shift by
weighting the log-likelihood function”, Journal of Statistical Planning
and Inference, vol. 90, pp. 227–244, 2000.

[5] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift”, in Proceedings
of the 32nd conference on Machine Learning, pp. 448–456 2015.

[6] Y. LeCun, L. Bottou, G.B. Orr, and K.-R. Mller. “Efficient backprop’,
Neural networks: Tricks of the trade”, pp. 9–50. Springer, 1998.

[7] P. Balti, P. Sadowski and D. Whiteson. “Searching for exotic particles
in high-energy physics with deep learning”, Nature Communications
vol. 5, 2014.

[8] P. S. Efraimidis and P. G. Spirakis, “ Weighted random sampling with
a reservoir”, Information Processing Letters - IPL , vol. 97, no. 5, pp.
181–185, 2006.

[9] M. Al-Kateb, L. S. Byung and X. S. Wang, “Adaptive-size reservoir
sampling over data streams”, in Proceedings of the 19th International
Conference in Scientific and Statistical Database Management, pp.22–
31 2007.

[10] V. Malbasa and s. Vucetic, “Back to results A Reservoir sampling
algorithm with adaptive estimation of conditional expectation”, in the
Proceedings International Joint Conference on Neural Networks, pp.
2200-2204, 2007.

[11] S. Vitter, “Random sampling with a reservoir”, in ACM Transactions
on Mathematical Software, pp. 33–57, 1985.

[12] K. H. Li Reservoir-Sampling Algorithms of Time Complexity O(n(1
+ log(N/n))) , in ACM Transactions on Mathematical Software, vol.
20, pp. 481–493, 1994.

[13] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G.
Desjardins, J. Turian, D. Warde-Farley and Y. Bengio, “Theano: A
CPU and GPU math expression compiler”, Proceedings of the Python
for Scientific Computing Conference (SciPy) Jun 2010.

[14] Y. Bengio, K.-R. Muller and G. Montavon, “Practical recommen-
dations for gradient-based training of deep architectures” in Neural
Networks: Tricks of the Trade, Reloaded. Springer, pp. 437–478,

2013.

