
Simulation-based approach to Vehicle Routing
Problem with Traffic Jams

Jacek Mańdziuk
Faculty of Mathematics and Information Science

Warsaw University of Technology, Warsaw, Poland
Email: j.mandziuk@mini.pw.edu.pl

and
School of Computer Science and Engineering
Nanyang Technological University, Singapore

Email: j.mandziuk@ntu.edu.sg

Maciej Świechowski
Systems Research Institute

Polish Academy of Sciences
Warsaw, Poland

Email: m.swiechowski@ibspan.waw.pl

Abstract—Capacitated Vehicle Routing Problem (CVRP) is
a well-known NP-hard optimization problem. In this paper,
we transform it into a non-deterministic dynamic version by
introducing traffic jams (TJ).

The paper is the first attempt of applying the Upper Confi-
dence Bounds applied to Trees (UCT) algorithm in the domain of
dynamic transportation problems. In short, UCT is an extension
to the Monte Carlo Tree Search (MCTS) method, however, unlike
MCTS which makes use of uniformly distributed simulations,
the UCT algorithm aims at maintaining an optimal balance
between exploration and exploitation. The MCTS/UCT algorithm
is enhanced by the usage of knowledge-based actions, which
shares common traits with the human way of solving this task.

Our solution is compared with an Ant Colony Optimization
method showing its upper-hand and raising hope for a cross-
domain applicability of the proposed approach.

I. INTRODUCTION

Vehicle Routing Problem (VRP) [1] represents a rich family
of problems concerning combinatorial optimization in trans-
portation systems. They share a common concept of graph-
based representation of a set of customers which are to be
served by a fleet of homogenous vehicles. The goal is to
minimize the total length of vehicles’ routes under certain
conditions describing the way in which the customers need
to be served. A description of a particular VRP version
considered in this paper is presented in the next section.

VRP is an NP-hard problem [2] typically approached using
meta-heuristic methods. Due to variety of VRP formulations
used in practice, there exist multiple approximation algorithms
for solving the problem, most of them designed to address
specific real-life requirements or constraints, e.g., Savings
algorithm [3], Multi-route improvement algorithm [4], Sweep
algorithm [5], Ant Colony Optimization [6], Memetic Algo-
rithm [7], [8], Granular Tabu Search [9] or Particle Swarm
Optimization [10], [11], [12].

In this paper, we propose a new approach based on the Up-
per Confidence Bounds applied to Trees (UCT) algorithm [13],
[14]. UCT is a machine-learning scheme that incorporates a
tree of possible problem states (problem configurations), which
are searched by means of simulations. Our approach has been

inspired by wide UCT utilization in game domain, in particular
in the General Game Playing framework [15], [16], [17],
[18], [19], or in games with high degree of dynamism (like
Havannah [20], [21]), or the ones for which a compact and
reliable evaluation function in not known (e.g., Go [22], [14]).
In all the above-mentioned game domains, the UCT method
defines de facto a state-of-the-art approach. Although the basic
MCTS/UCT approach can be classified as a “knowledge-free”
method [23], [24], this work investigates various possibilities
of injecting domain knowledge into the system so as to
make the obtained solutions more robust, while preserving the
“learning by simulation” nature of the method.

The approach presented in this study shares common traits
with the human way of solving tasks. Using the set of sensible
actions that modify routes and the idea of checking possible
scenarios coming out from taking these actions are very close
to what humans actually do when solving dynamic versions of
VRP in practice. Certainly, humans do not require examining
such a high number of possible scenarios (i.e. do so many
simulations) as UCT does, as they can efficiently rely on
their cognitive skills, in particular experience-based knowledge
transfer between solved problem instances. Apparently, this
human-centric cognitive ability can be, in some sense, com-
pensated by large enough number of tested scenarios, leading
to high quality results.

The remainder of the paper is organized as follows: in the
next section, the particular variant of VRP (called CVRPwTJ)
considered in this piece of research is introduced. Section III
provides a brief description of the baseline MCTS/UCT
method, whereas Section IV is devoted to application of UCT
to solving CVRPwTJ, which is the main contribution of this
paper. Section V presents the experimental setup, empirical
results and their comparison with the Ant Colony Optimization
(ACO) algorithm. The final section summarizes the main
outcomes and concludes the paper.

II. PROBLEM FORMULATION

VRP is a generalization of the Traveling Salesman Problem.
The problem can be modeled using an undirected graph

G = (V,E), where V = {v0, v1, . . . , vn} is the vertex set
and E = {(vi, vj) : vi, vj ∈ V, i < j} is the edge set. In VRP,
a set of n customers represented by vertices {v1, v2, . . . , vn},
a specified depot v0, and a fleet of m vehicles are considered.
Each edge eij = (vi, vj), i, j = 0, . . . , n has an associated
weight cij which represents the cost (a distance) between vi
and vj (being either two customers or a customer and a depot).
Furthermore, for each customer vi the demand di, which needs
to be serviced by exactly one vehicle, is defined. The time in
the problem is discrete and the speed of each vehicle is defined
as one distance unit per one time unit.

The goal is to minimize the total routes’ length of all ve-
hicles according to the following constraints: (*) each vehicle
has to start from a depot and end its route in a depot, and
(**) every customer has to be served exactly once and by one
vehicle.

If vehicles are homogenous, each with identical capacity c
and it is additionally required that (***) the sum of customers’
demands assigned to each vehicle must not exceed vehicle’s
capacity c, then VRP is extended to Capacitated VRP (CVRP).

Capacitated Vehicle Routing problem with Traffic Jams
(CVRPwTJ) further extends the CVRP by introducing the
Traffic Jams (TJ). TJ may occur at any edge eij with certain
probability P at the beginning of each (discrete) time step.
If it does, the regular cost cij of traversing the given edge
is multiplied by the intensity factor I(eij) (sampled from
a certain probability distribution) for a randomly selected
number of steps L(eij). If a TJ happens to occur on an
already jammed edge, then only TJ length is increased by
a newly sampled length L(eij), whereas the intensity I(eij)
remains unchanged (i.e. the one assigned previously is used).
This way an exponential growth of TJ intensity is avoided
which might have otherwise appeared in the case of repetitive
TJs occurrence on a certain edge. The details of experimental
setup are discussed in Section V-A. It is worth underlying
that the solution methods tested in this paper are aware
beforehand only about the TJ probability distributions and do
not have access to the actual realizations of TJ, unless their
materialization in a certain time step.

Introduction of the varying traversal costs carry a few
consequences. Firstly, the triangle inequality does no longer
hold with regards to the customers’ positions which may
render geometry-based methods useless. Secondly, highly dy-
namic changes may require immediate reactions by means of
remodeling the current solution constructed during the main
simulation. To address this issues, we propose the MCTS/UCT
algorithm equipped with a set of actions aimed at reactive local
optimizations (see Section IV-C).

More precisely, the solution, i.e. a set of routes, is con-
structed step by step by means of simulations. We will reserve
the term main simulation for the dynamic construction of the
solution, in order to avoid confusion with UCT internal, off-
line simulations aimed at testing various actions/modifications
without applying them to the actual solution. Apart from
the impact (the actual solution vs. various tested scenarios),
the main simulation and off-line simulations have the same

structure. They are divided into discrete steps. In each step,
the current traffic situation is calculated based on assumed TJ
distributions and the resulting TJ are imposed. Next, at least
one vehicle must be assigned a non-empty visiting schedule.
We will call such vehicles active. Active vehicles are moving
simultaneously one step ahead according to their plans. The
total cost of the simulation is incremented by the sum of edges
costs traversed by the vehicles. Unless the problem is solved,
i.e. all vehicles have returned to the depot after serving all
clients and fulfilling the constraints (*)-(***), the simulation
proceeds to the next step.

III. MONTE CARLO TREE SEARCH AND UPPER
CONFIDENCE BOUNDS APPLIED TO TREES

UCT is an action-selection algorithm in Monte Carlo Tree
Search aimed at maintaining a balance between exploration
and exploitation. As we have already stated in the introduction,
UCT is the main routine of many world-top game-playing
agents. Recently, the algorithm also gained attention in the area
of probabilistic planning implemented by the Markov Decision
Process (MDP) model [25], [26], [27].

The underlying UCT idea is to perform multiple simulations
in order to verify various lines of actions (scenarios) and
estimate their potential payoffs. The problem is represented in
the form of a tree whose nodes and edges represent problem
states and possible actions in that states, respectively. The
root node represents the current state, its children the possible
subsequent states, etc. The tree is iteratively searched (by
simulating sequences of performed actions) and gradually
expanded, usually one node per simulation due to memory
limitations. Each iteration consists of four phases depicted in
Figure 1. The maximum number of iterations per decision step
is either defined a priori or limited by the time allotted for
performing a single action. In the first phase – Selection –

Fig. 1. Scheme of the UCT method.

the part of the tree stored in memory is searched until a leaf
node is reached. While searching the tree in this phase, in each
visited node the UCT formula is applied, which advises to first
try each action once and then, whenever the same position is

reached again in a search process, choose move a∗ according
to the following formula (1):

a∗ = arg max
a∈A(s)

{
Q(s, a) + C

√
ln [N(s)]

N(s, a)

}
(1)

where A(s) is a set of all actions available in state s, Q(s, a)
denotes the average result of playing action a in state s in
the simulations performed so far, N(s) is a number of times
state s has been visited and N(s, a) - a number of times
action a has been sampled in this state. Constant C controls
the balance between exploration and exploitation, since the
formula postulates choosing actions with the highest expected
rewards and, at the same time, avoiding repetitive sampling of
the same actions while others might yet prove more beneficial.

In the second phase – Expansion – the first state expanded
outside the in-memory part of the UCT tree is added to the
tree. Next, in the Simulation phase a uniform random playout
(also called rollout) is performed until the terminal state is
reached. Finally, in the last phase, called Backpropagation,
the statistics related to the obtained result of the performed
simulation (problem outcome read out in the terminal state)
are used to update the internal statistics of all in-memory tree
nodes visited in the current iteration up to the root node. This
way, the algorithm performs partly guided random sampling
of the state-space. In our approach, in the Simulation phase the
UCT algorithm may choose among a certain set of specifically-
designed available actions (see Section IV-C).

With the UCT simulations finished in a given time step,
choosing the next move is simply a matter of finding the action
with the highest Q(s, a) value in the current (root) state.

IV. APPLICATION OF UCT IN CVRPWTJ
Our main task consists in adaptation of the UCT method

to solving CVRPwTJ. To this end we need to address the
following issues:
• Decide whether the algorithm should construct the solu-

tion from scratch or start from the initial solution. We
went for the latter option. Since at time zero there are
no TJ imposed yet, we start our algorithm by finding an
initial solution to the static CVRP problem instance with
the help of a modified Clark and Wright [3] savings algo-
rithm [28]. In this initial solution, each route commences
and ends in a depot and the routes are pairwise separated
(except for the initial and final position which is always a
depot). This set of optimized paths, with depot being the
first and the last element, forms the input to our UCT-
based approach.

• Define the way in which partial problem solutions repre-
sented by individual trucks’ routes will be combined into
one, coherent and effective global solution. This issue is
discussed in section IV-A.

• Define what constitutes the problem state in CVRPwTJ
and what kind of information needs to be stored in the
UCT tree nodes (c.f. section IV-B).

• Design the set of possible actions in the way that will
allow to avoid combinatorial explosion of possible next

states in the case where actions performed for each
vehicle during simulations are taken jointly as a single
state update (see section IV-C).

A. Application of UCT to the problem

Suppose the initial solution is composed of k routes, i.e.
uses k trucks. Then, as stated above, the initial UCT tree is
actually a forest composed of k trees - each in the form of a
path with the first and the last elements being a depot. The
consecutive elements on each path denote the clients visited
by respective trucks in subsequent time steps. For example,
the fourth elements in all paths represent the set of clients
visited in the third step of the solution.

The internal UCT simulations are performed at each time
step from the root nodes simultaneously in all k trees. As
explained in Section III the trees are gradually extended in
a typical UCT fashion (one leaf node at each simulation),
however, there are three main differences compared to the
baseline UCT implementation.

First of all, since the shorter the solution the better, the UCT
formula (1) is modified to the following version (2), which
favors the shorter average outcomes Q(s, a):

a∗ = arg max
a∈A(s)

{
C

√
ln [N(s)]

N(s, a)
−Q(s, a)

}
(2)

Second of all, the next compound step (movement of all k
trucks) is a result of a combined knowledge obtained from all k
trees. More precisely, in each tree the most promising action is
selected, then these k selected actions are sorted in descending
order based on their UCT values (i.e. values C

√
ln[N(s)]
N(s,a) −

Q(s, a) in (2)) and afterwards executed in this order.
The third difference compared to classical UCT imple-

mentation is that simulation ends when there are no more
active trees (all trucks have completed their routes) or the step
counter reaches a pre-defined threshold value of MAX STEPS
(the so-called Early Termination), whichever comes first. We
set MAX STEPS to be equal to the maximum length of
a traffic jam. There are few reasons behind using Early
Termination over the “natural” finishing at terminal state only.
Firstly, simulations are much faster and, therefore, more of
them can be performed. Secondly, simulation is focused more
on the current traffic situation. Thirdly, memory usage is
drastically decreased. We tested both a natural termination
and Early Termination and the latter leads to the comparable
or slightly improved results in approximately one order of
magnitude shorter computational time.

A dynamic (affected by the traffic) cost of each action
chosen in a simulation increases the cumulative score of a
simulation. When the Early Termination condition is applied,
the sum of static costs (i.e. without TJ consideration) computed
for the remaining fragments of the routes is added to the score.
Once the simulation is completed, such a compound result
from all k trees is back-propagated from the last visited nodes
in each tree to the root nodes.

After a certain number of internal simulations, the actual
(real) decision regarding the movement of k trucks is made
according to the smallest Q(s, a) value among the child nodes
in each of the k trees. These Q(s, a) values are sorted in an
ascending order (i.e. first the action in the tree with the lowest
Q(s, a) is executed, then the action in the tree with the second-
lowest Q(s, a), etc.). Please note, that execution of an action
in one tree may disable some further actions (in subsequent
trees). In that case the next best action in the latter tree is
selected instead.

B. State Representation

Note that different sequences of visited customers in a
route may lead to the same state, e.g., [0, 11, 9, 4, . . . , 0] and
[0, 9, 11, 4, . . . , 0] after the first two time steps. In our imple-
mentation, we detect isomorphic states (called transpositions)
and use only one node in the tree per each transposition. In
that case the tree is transformed to a Directed Acyclic Graph
(DAG)1. Implementation of the concept of state transpositions
requires precise conditions for the state equality to be defined.
Two states are mapped to one state (in the UCT tree) iff they
share the following data: (1) the current position of a vehicle
in a route, (2) the remaining capacity of a vehicle which can
be allocated and (3) the remaining set of customers scheduled
for a route.

If two states differ by at least one of the above-listed
properties, they are represented by different nodes. Hence a
node can be properly interpreted only in the context of the
respective route (route-states representation). The complete
UCT state is defined by a k-tuple of route-states - one per
each route.

C. Possible Actions in the UCT Trees

At each step of the UCT simulations as well as real
decisions regarding the vehicles’ tours, all possible actions are
considered in each of the k root nodes. There are three types of
actions differing by their complexity: level-0, level-1 and level-
2, which modify 0, 1 and 2 existing routes, respectively. In
each case, there are some pre-conditions which define legality
of an action. Otherwise (if the action is illegal) it is not
considered in a given state. Level-0 and level-1 actions used
in our approach are listed in Table I.

All these actions are simple and self-explained. Apart from
specific legality conditions, there are also “natural” legality
conditions related to the number of customers left in a route.
For instance, each action apart from A0 and A1 requires exis-
tence of at least two non-depot customers - the current planned
one to visit and at least one candidate for the replacement of
the current one in the tour order. Action A7 requires a route
to have at least three customers.

Except for the above-mentioned 9 actions there are also
4 more complex, level-2 ones, numbered from A9 to A12.
These actions operate on two routes and, in principle, all pairs
of routes are considered. Consequently, there can be many

1For the sake of simplicity and due to a commonly used collocation the
above-described DAG will be referred to as UCT tree

realizations of a particular action in one time step, depending
on the number of route pairs that fulfill legality conditions. In
the following description the two currently iterated routes are
denoted by ri and rj , where i 6= j.

In the case of action A9, the current route (ri) is finished
and all its customers are appended to rj . This action is similar
to A8, except that in this case the customers are inserted
into the existing route instead of forming a new one. The
following legality conditions must be fulfilled: (1) from the
current vehicle location there are TJ to all remaining customers
planned in ri; (2) the edge from the vehicle location in ri to
the depot is not jammed; (3) rj has enough capacity left to
accommodate demands of all customers in ri (planned to be
transferred to rj).

Not going into details, actions A10 and A11 exchange
customers between two routes based on a common exchange
scheme, differing by the range of customers replacement. In
A10, the replacement is the smallest possible (the exchange
is finished with the first non-jammed situation). In A11, the
exchange is more complex and aims at exchanging the biggest
possible parts of the routes (to some extent similarly to the
crossover operation in Genetic Algorithms with the crossover
point fixed on the current locations in the respective routes).
In both cases the following prerequisites must be fulfilled: (1)
one of the routes begins with a TJ; (2) after exchange none of
the routes begins with TJ; (3) the exchange does not violate
capacity constraint in any of the vehicles.

The last action – A12 – is a two-route extension of A8. It
finishes two routes ri and rj and starts a new one rk. The
action is implemented in four variants depending on the order
in which customers are inserted into rk. Therefore, even for
the same pair of routes, there can be up to four instances of
the A12 action: (1) rk := ri + rj ; (2) rk := rj + ri; (3)
rk := Reverse(ri) + rj ; (4) rk := Reverse(rj) + ri. The +
sign denotes the concatenation of routes,which omits the depot
from the first one, e.g., [4, 5, 1, 0] + [3, 2, 0] = [4, 5, 1, 3, 2, 0].

All proposed actions are based on the following underlying
rationale: if the currently selected candidate edge is not
jammed then traverse it, otherwise try to enhance the planned
route (by avoiding the traffic jam) by means of local changes
in the planned orders of visited clients.

In the case of actions A0-A7 the in-route optimization
takes place. Actions A6 and A7 are the only ones which
allow to optimize a route which is not jammed. They may be
particularly suitable when the route is far from optimal due
to some changes forced in earlier steps. Since these actions
implement greedy local improvement scheme, in order to
prevent their too frequent usage, there is a penalty coefficient
assigned to them which increases the estimated score value Q
in the UCT equation (2). Actions A8 and A12 immediately
complete the current routes. Since there is neither TJ on the
edge leading to the depot nor on the one from the depot to the
next planned customer, the next turn will potentially be made
on non-jammed edge starting from the depot. The remaining
three actions: A9, A10 and A11 exchange customers between
the two routes so as to reach locally (temporarily) non-jammed

TABLE I
ACTIONS OF THE TYPES level-0 AND level-1. Ac. DENOTES THE CODE OF AN ACTION, L. IS LEVEL-TYPE, Pre-conditions AND Post-conditions - ARE THE

SETS OF PREREQUISITES REGARDING THE ROUTE BEFORE AND AFTER THE MODIFICATION, RESP. +TJ / −TJ DENOTE THE FACT THAT THE EDGE
CURRENTLY PLANNED TO BE TRAVERSED IS JAMMED / NOT JAMMED, RESP. +TJ to all MEANS THAT THERE ARE TJ TO ALL PLANNED CUSTOMERS

(FROM THE CURRENT LOCATION) BUT NOT TO THE DEPOT.

Ac. L. Pre-conditions Post-conditions Action
A0 0 −TJ −TJ Continue the planned (non-jammed) route.
A1 0 +TJ +TJ Continue the planned (jammed) route.
A2 1 +TJ −TJ Move the current client at the end of a route (just before returning to the depot).
A3 1 +TJ −TJ Move the current client X into locally optimal place in a route, i.e. between clients B and C so as to minimize |BX|+ |XC| − |BC|.
A4 1 +TJ −TJ Insert the first found client to whom there is no TJ before the current client (as the first one).
A5 1 +TJ −TJ Reverse the route (except for the depot which remains the closing element).
A6 1 −TJ Insert the client to whom the edge from the current state is the cheapest as the first one.

Due to greedy nature of this action, the score Q in (2) is multiplied by a penalty factor of 1.15.
A7 1 −TJ Insert the client to whom the edge from the current state is the second cheapest as the first one.

Due to greedy nature of this action, the score Q in (2) is multiplied by a penalty factor of 1.15.
A8 1 +TJ to all −TJ The current route is finished (by immediately moving to a depot).

A new route is commenced from the depot with all customers left inherited from the finished route.

solution.
In theory, one might proceed with defining even more

complex actions, e.g., the ones involving three or more routes,
but such approach immediately becomes infeasible due to
computational complexity explosion.

V. EXPERIMENTAL RESULTS

In this section, the experimental setup and TJ parametriza-
tion are presented together with the results of applying the
proposed approach to a set of popular static CVRP benchmarks
modified by imposing the TJ. The results are compared with
the realization of static solution (not reacting to TJ occurrence)
and ACO algorithm designed for solving CVRPwTJ.

A. Experimental Setup

The experiments were performed for a set of static bench-
mark problems specified in Table II enhanced by adding
dynamic TJ. The initial conditions (i.e. the number of available
trucks, their capacity, clients requests’ sizes and the coordi-
nates of the depot and the customers) are part of the benchmark
sets. At each time step, for each edge (a direct link between
two clients or a client and a depot) the TJ was imposed with
probability P . If TJ happened to appear on a given edge a
it was assigned a randomly selected intensity I(a) and length
L(a) (measured in time steps). The above TJ assignment was
applied at the beginning of each time step, for all edges.

The benchmarks were downloaded from the CVRP web-
page [29] and modified into CVRPwTJ according to the
following TJ uniform probability distributions:
P ∈ {0.02; 0.05; 0.15},
I = UINT [10, 20],
L = UINT [2, 5],
where UINT [a, b] denotes random uniform selection of any

integer x, such that a ≤ x ≤ b. Based on the initial calibration
tests, the value of C in (2) was set to 1.8 multiplied by the
length of the initial solution found for the static instance.

B. ACO Approach to CVRPwTJ

Our implementation of the ACO approach is based on
a standard algorithm used to solve the Traveling Salesman
Problem (TSP). The two main differences (compared to TSP)

TABLE II
CHARACTERISTICS OF STATIC CVRP BENCHMARKS USED FOR DEFINING

CVRPWTJ INSTANCES. COLUMNS, FROM LEFT TO RIGHT, DENOTE
RESPECTIVELY: THE NAME OF A BENCHMARK SET, NUMBER OF CLIENTS,

NUMBER OF VEHICLES, TRUCK’S CAPACITY, THE BEST (STATIC)
SOLUTION ROUNDED TO THE INTEGER VALUE AND THE NUMBER OF UCT
INTERNAL SIMULATIONS PER MOVE (PERFORMED ACTION) USED IN THE

EXPERIMENTS.

Instance n m c BEST #Sim.
P-n19-k2 19 2 160 212 30 000
P-n45-k5 45 5 150 510 30 000
E-n51-k5 51 5 160 521 30 000
A-n54-k7 54 7 100 1167 30 000
A-n69-k9 69 9 100 1168 30 000
E-n76-k5 76 7 220 682 30 000

A-n80-k10 80 10 100 1764 30 000
P-n101-k4 101 4 400 681 30 000

C-n150D-k5 150 12 200 1097 30 000
Tai-n150b-k5 150 14 1918 2862 30 000

are that in CVRPwTJ a set of k cycles (one per each vehicle)
needs to be found instead of one Hamiltonian cycle and
that the problem is dynamic. Between every two consecutive
updates of the main simulation state, the ACO system is
executed to find the current best solution and based on that
(and the new traffic situation), a new state is defined. The state
is defined as a list of current trucks’ positions, a collection of
current traffic jams and a list of unvisited customers.

Main algorithm loop
A pseudocode of the main loop is presented in Algorithm 1.

During the decision time, the ACO system runs MAX I
iterations with a population of MAX A ants. The number
of ants was set to max(100, 2n). MAX I was set to 200 for
benchmarks with n < 69, to 100 for n = 69, and to 75 for
benchmarks with n > 69. The above parameters were limited
by the assumed time allotted for reaching the solution, which
was, anyway, greater than that required by the UCT-based
approach. When comparing real-time usage of the methods,
the ACO system required nearly twice as much time than the
UCT approach to complete all benchmarks.

In each iteration, each ant starts with the current state and

Algorithm 1 The external loop of the ACO approach run at the
beginning of each time step. A pseudocode of the AntIteration
function is presented in Algorithm 2.
bestSolution = NULL
for iteration = 1 to MAXI do

for ant = 1 to MAXA do
SetTruckPositions() // to real positions
SetTraffic() // to real traffic
AntIteration(ant)
solution = ant.GetSolution()
if solution better than bestSolution then
bestSolution = solution

end if
UpdatePheromone()

end for
end for
return: bestSolution

Algorithm 2 The procedure of choosing the most feasible
client for a route continuation, executed for each ant during a
single AntIteration. The selection of a customer is based on
eq. (3) presented below.

while UnvisitedCities.Count > 0 do
for each active route: R do
viableCustomers[] = Customers WHERE Demand <=
R.CapacityLeft
if ((there exists a non-jammed transit from R.LastCustomer
to any customer in viableCustomers) OR (new truck is not
available)) then
PseudoRoulette(viableCustomers[])

else
FinishRoute(R)
StartNewActiveRoute()

end if
AdvanceMovement() // move trucks
RemoveF inishedRoutes()

end for
end while

finds a complete remaining solution to the problem, i.e. a set
of k routes for the trucks. When the solution is found, its
quality is evaluated and the pheromone is deposited in a way
explained in detail in the following subsections. In addition,
the overall best solution found so-far, by any ant, is stored in
memory. When there is time to make a real decision (in the
main simulation) the next positions of the trucks are read out
from this best solution.

Each of the MAX I external iterations depicted in Alg. 1
consists of repetitive calls of AntIteration procedure, presented
in Algorithm 2. For each route, the procedure starts from
the current vehicle’s position and finds the next customer to
be added to the route based on pheromone trails and the
current dynamic cost of traversing particular edges. If there
are TJ to all customers from a particular position or the left
truck’s capacity is not sufficient to serve any of the remaining
customers then the truck is set to return to the depot and a
new route is started.

Pseudo-roulette selection
The minimum and the maximum possible pheromone de-

posits, fmin and fmax, are set to 2 amd 50, respectively.
The initial solution computed by the CW algorithm [28] is
used to set the starting number of routes (k) and deposit the
initial pheromone. Edges, which belong to the initial solution
are initialized with the pheromone value equal to 5 ∗ fmin,
whereas those which are not part of the initial solution receive
the minimum amount of pheromone fmin. The pheromone
value is confined to the interval [fmin, fmax] by assigning it
the respective boundary value whenever it falls outside this
interval. This restriction scheme has proven to be beneficial
during preliminary experiments.

The customer selection procedure chooses the next client
to be visited using the pseudo-roulette. Let vi denotes the
current customer, vj - the potential unvisited customer, and dij
- the current dynamic (traffic-aware) cost of moving between
vi and vj . With probability 0.05 the closest (by means of
dynamic cost) unvisited customer is selected as the next one
to be visited and with probability 0.95 the next customer is
chosen according to the roulette-wheel selection mechanism
with probabilities calculated as follows:

pij =
ταij ∗ η

β
ij∑

ij(τ
α
ij ∗ η

β
ij)

ηij = (
BASE

dij
)
2

(3)

where τij denotes the pheromone amount deposited on the
edge eij and BASE is the length of the initial (static) solution.
The remaining two parameters: α = 2 and β = 3 were set
based on some number of preliminary tests.

Pheromone update Once ant a finds a solution (completes one
iteration of the algorithm), its quality is computed according
to the following equation:

Qa = (BASE/D)2 (4)

where D denotes the total dynamic cost of the found solution.
After all ants complete the current iteration, the pheromone

increment is computed for each edge eij in the following way:

∆τij =
∑

allantsa

(δijQa) (5)

where δij can take one of the three values: 0: if eij was not
part of the solution found by ant a; 10: if eij was part of the
solution found by ant a, but the solution was not the globally
best one; 20: if eij was part of the solution found by ant a
which was the overall best solution (elitist approach).

The pheromone update procedure also takes into account
pheromone evaporation, namely 90% of the pheromone de-
posited so-far is evaporated. Equation (6) presents the final
formula defining the amount of pheromone deposited at the
beginning of the next iteration.

τij := Conf(0.1 ∗ τij + ∆τij) (6)

where Conf function confines pheromone values to
[fmin, fmax] interval in the way described above.

When the last iteration is completed by all ants, the best
solution is found. It is used only locally to move the trucks ac-
cording to the schedule contained in the solution. Afterwards,

TABLE III
THE AVERAGE VALUES AND STANDARD DEVIATIONS (IN PARENTHESES)

ACROSS 50 TRIALS. THE BEST RESULTS IN EACH ROW ARE BOLDED.

Instance P Static (σ) Ants (σ) UCT (σ)
P19 0.02 388.9 (214.9) 281.2 (46.9) 244.9 (10.9)
P19 0.05 612.0 (213.3) 311.8 (93.1) 269.3 (23.1)
P19 0.15 1278.0 (358.9) 391.2 (155.9) 340.9 (61.3)
P45 0.02 1007.7 (326.2) 607.6 (53.9) 601.0 (20.7)
P45 0.05 1759.6 (411.9) 682.0 (74.4) 646.8 (35.7)
P45 0.15 3299.5 (733.3) 949.7 (281.7) 781.8 (54.3)
E51 0.02 989.2 (240.6) 614.1 (40.0) 615.6 (22.2)
E51 0.05 1571.6 (386.3) 650.1 (50.4) 667.1 (40.5)
E51 0.15 3509.7 (824.7) 789.9 (174.8) 845.4 (70.2)
A54 0.02 1939.2 (542.7) 1338.7 (84.0) 1254.9 (41.3)
A54 0.05 3072.4 (887.7) 1456.4 (286.0) 1347.5 (77.9)
A54 0.15 6275.0 (1441.9) 1829.0 (519.4) 1647.6 (139.2)
A69 0.02 2005.7 (531.8) 1395.9 (96.7) 1265.2 (43.3)
A69 0.05 3235.4 (644.1) 1538.1 (294.5) 1377.3 (103.0)
A69 0.15 6631.7 (1437.4) 2096.4 (588.4) 1731.8 (173.1)
E76 0.02 1318.7 (295.5) 746.0 (54.4) 779.0 (32.6)
E76 0.05 2130.0 (460.4) 826.7 (159.9) 834.7 (39.8)
E76 0.15 4536.7 (838.0) 1037.2 (264.3) 1085.6 (68.9)
A80 0.02 2774.1 (625.2) 1907.1 (146.7) 1929.3 (58.4)
A80 0.05 4100.6 (830.1) 2003.3 (442.6) 2063.8 (121.9)
A80 0.15 9066.5 (1437.4) 3161.8 (829.6) 2588.4 (141.7)

P101 0.02 1436.5 (262.6) 846.8 (69.2) 815.0 (25.4)
P101 0.05 2552.0 (547.3) 893.8 (127.3) 891.6 (38.2)
P101 0.15 5419.6 (801.5) 1375.0 (322.2) 1204.0 (81.9)

C150D 0.02 1883.0 (368.8) 1297.0 (75.5) 1202.0 (39.1)
C150D 0.05 3099.1 (587.5) 1392.5 (193.3) 1318.7 (53.5)
C150D 0.15 6766.7 (840.1) 1987.5 (492.4) 1810.2 (110.6)

Tai150b 0.02 4994.7 (1165.5) 4367.5 (515.0) 3021.5 (100.7)
Tai150b 0.05 8751.9 (1936.7) 4834.3 (836.4) 3270.1 (176.3)
Tai150b 0.15 18104.0 (2581.2) 7081.4 (1715.2) 4442.5 (285.5)

Best result count 0 (0) 8 (0) 22 (30)

the best solution is forgotten and the pheromone trails are reset
in a similar way as in the beginning of the algorithm. Again,
the initial solution is used to define the amount of deposited
pheromone on each edge. Clearing pheromone traits after each
main simulation step, i.e. when new TJ are imposed on the
routes, is indispensable due to high dynamism of the problem.
We found out that without such a reset, the algorithm performs
much worse, often even worse than the static approach (which
does not take into account TJ at all).

C. Results

For each benchmark and each of the three jam probabilities
P , the proposed UCT-based approach was tested against the
ACO algorithm and additionally compared with the static
approach in a series of 50 experiments. Since the static variant
does not optimize the routes created as the initial solution, it
can be regarded as a reference point to measure the effect of
on-line and self-adaptive planning capabilities of the methods
under comparison. In order to make the experiment fair, all
approaches operated on the same TJ realizations (which were
sampled “out of the system” and were unknown to the methods
beforehand). Naturally, TJ realizations varied between indi-
vidual runs (50 different TJ realizations per benchmark was
sampled). The results are presented in Table III. Not going into
details, it can be seen from the table that the UCT is superior
to the other two approaches. The ACO system is clearly better

than the static option, but - at the same time - is relatively far
behind the UCT, which turned out to be the best approach in
22 out of 30 cases. Moreover, in all cases the UCT approach
has the lowest standard deviation.

In terms of running times comparison based on a single
iteration, the ACO method is significantly slower than the UCT
approach. The main reason for that is much higher cost of
route construction in ACO than in the UCT . Please observe
that in each decision point an ant can select any not-yet-visited
client so the number of considered options is much higher than
in the case of action-based, restricted UCT implementation.

Actually, this carefully selected set of actions seems to be
crucial in avoiding computational explosion that would have
otherwise stemmed from testing all possible scenarios. Fur-
thermore, the limited number of possible route continuations
allows for storing all of them in an effective and feasible
way in the set of UCT trees. This stored knowledge provides
some kind of a smoothness in the real route construction
process. Please observe, that when it comes to take the real
decision about the trucks’ movement (in the main simulation),
the knowledge stored in the subtrees corresponding to all
tested actions is critical. The pheromone mechanism available
in the ACO approach cannot be effectively used to smooth
the solving process across iterations. Apparently, due to the
existence of traffic jams, not resetting the pheromone between
the main simulation steps actually deteriorates the results as
they fixate too heavily on the previous traffic situation. We
believe that this implicit knowledge transfer between iterations
intrinsically existing in the UCT solution model together with
the limited selection of possible actions account most for the
proposed method’s efficacy.

Analysis of action-selection patterns implemented by the
UCT approach revealed that the frequency of selection of a
given action differs significantly depending on whether it is
measured in the internal simulations (30 000 per step) or
among the actually played actions in the main simulation.
Clearly, the probability of traffic jams (P parameter) also
influences distribution of chosen actions. In short, out of
approximately 4.5 ∗ 109 simulated actions, the most frequent
one was A0, chosen in 56.9%, 67% and 72% of the cases,
respectively for P = 0.15, 0.05 and 0.02. What could be
expected, the lower the amount of uncertainty (by means of
imposed TJ) the higher the usage of action A0 (i.e. continua-
tion of the planned route if not jammed). In the case of actually
played (real) actions, the dominance of A0 was even higher
and reached 72.9%, 87.9% and 93.5% for P = 0.15, 0.05 and
0.02, respectively, out of approximately 4 ∗ 104 decisions in
total for each P .

In the case of highest P , except for A0, the most com-
monly used actions in the internal simulations were A6(9.9%),
A4(8.7%) and A7(8%), and among the actual decisions,
actions A4(8.5%), A5(3.9%) and A3(3.8%). For lower values
of P , the frequency selection visibly shifts towards actions A6
and A7 (after A0, of course) at the cost of the remaining ones.

Due to space limits we do not elaborate further on the
nuances of the results and action-selection patterns, but what

seems to be a truly interesting observation is the fact that all
8 winning cases of ACO happened for the 3 data sets only
(E51 and E71 - three wins and A80 - two wins). Further
investigation of the peculiarities of these three sets in an
attempt to discover the reasons for their particular unsuitability
for the UCT-based approach is one of our current research
goals.

VI. CONCLUSIONS

In this paper, a new method of solving the Capacitated
Vehicle Routing Problem with Traffic Jams is presented.
The method has been inspired by the MCTS/UCT algorithm
successfully applied in General Game Playing and several
other games. We proposed a way of adapting this approach
to CVRPwTJ - an example of NP-hard dynamic combinatorial
optimization problem. To this end we introduced new problem
representation in the form of a forest of UCT trees, in which
each tree is associated with one route. The number and range
of actions which are performed in these trees are restricted in
order to avoid combinatorial explosion of possible simulated
scenarios.

The results of UCT-based approach were evaluated against
results of a carefully tuned ACO algorithm and the static
solution (not reacting to traffic jams). Our approach produces
convincingly better solutions to the benchmark problems in
22 out of 30 cases. Moreover, it is the most stable method,
i.e., having the lowest standard deviation, among the tested
algorithms.

Promising results and the inherent generality of proposed
approach, which stems from the MCTS/UCT universality, give
hope for further successful development of the method and its
application to solving other types of stochastic transportation
problems and beyond that area.

ACKNOWLEDGMENTS

The research was financed by the National Science Centre
in Poland grant number DEC-2012/07/B/ST6/01527.

REFERENCES

[1] G. B. Dantzig and J. Ramser, “The truck dispatching problem,” Man-
agement Science, vol. 6, no. 1, pp. 80–91, oct 1959.

[2] J. K. Lenstra and A. R. Kan, “Complexity of vehicle routing and
scheduling problems,” Networks, vol. 11, pp. 221–227, 1981.

[3] G. Clarke and J. Wright, “Scheduling of vehicles from a central depot
to a number of delivery points.” Operations Research, vol. 12, no. 4,
pp. 568–581, 1964.

[4] A. V. Breedam, “An analysis of the behavior of heuristics for the
vehicle routing problem for a selection of problems with vehicle-related,
customer-related, and time-related constraints,” Ph.D. dissertation, Uni-
versity of Antwerp, Belgium, 1994.

[5] B. Gillett and L. Miller, “A heuristic algorithm for the vehicle dispatch
problem.” Operations Research, vol. 22, no. 2, pp. 340–349, 1974.

[6] M. Dorigo, “Optimization, learning and natural algorithms,” Ph.D.
dissertation, Politecnico di Milano, 1992.

[7] X. Chen, L. Feng, and Y.-S. Ong, “A self-adaptive memeplexes robust
search scheme for solving stochastic demands vehicle routing problem,”
Int. J. Systems Science, vol. 43, no. 7, pp. 1347–1366, 2012.

[8] J. Mańdziuk and A. Żychowski, “A memetic approach to vehicle routing
problem with dynamic requests,” Applied Soft Computing, vol. 48, pp.
522–534, 2016.

[9] P. Toth and D. Vigo, “The granular tabu search (and its application to
the vehicle routing problem),” University of Bologna, Working Paper,
1998.

[10] M. Khouadjia, E. Alba, L. Jourdan, and E.-G. Talbii, “Multi-Swarm
Optimization for Dynamic Combinatorial Problems: A Case Study on
Dynamic Vehicle Routing Problem,” in Swarm Intelligence, ser. Lecture
Notes in Computer Science. Berlin / Heidelberg: Springer, 2010, vol.
6234, pp. 227–238.

[11] M. Okulewicz and J. Mańdziuk, “Application of Particle Swarm Opti-
mization Algorithm to Dynamic Vehicle Routing Problem,” in Artificial
Intelligence and Soft Computing, ser. Lecture Notes in Computer Sci-
ence, vol. 7895. Springer Berlin Heidelberg, 2013, pp. 547–558.

[12] ——, “Two-Phase Multi-Swarm PSO and the Dynamic Vehicle Rouring
Problem,” in Proceedings of the IEEE Symposium on Computational
Intelligence for Human-Like Intelligence. IEEE Press, 2014, pp. 86–
93.

[13] L. Kocsis, C. Szepesvri, and J. Willemson, “Improved monte-carlo
search,” Working Paper, 2006.

[14] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlf-
shagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A
Survey of Monte Carlo Tree Search Methods,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 4, no. 1, pp. 1–43,
2012.

[15] M. R. Genesereth, N. Love, and B. Pell, “General game playing:
Overview of the aaai competition,” AI Magazine, vol. 26, no. 2, pp.
62–72, 2005.

[16] Stanford University, “Stanford gamemaster online repository,” 2012,
http://gamemaster.stanford.edu/showgames.

[17] M. Świechowski and J. Mańdziuk, “Self-adaptation of playing strate-
gies in general game playing,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 6, no. 4, pp. 367–381, 2014.

[18] K. Walȩdzik and J. Mańdziuk, “An Automatically-Generated Evaluation
Function in General Game Playing,” IEEE Transactions on Computa-
tional Intelligence and AI in Games, vol. 6, no. 3, pp. 258–270, 2014.

[19] M. Świechowski, J. Mańdziuk, and Y.-S. Ong, “Specialization of a UCT-
based General Game Playing Program to Single-Player Games,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 8,
no. 3, pp. 218–228, 2016.

[20] R. Lorentz, “Improving monte–carlo tree search in havannah,” Advances
in Computer Games, pp. 105–115, 2011.

[21] F. Teytaud and O. Teytaud, “Creating an upper-confidence-tree program
for havannah,” Advances in Computer Games, pp. 65–74, 2010.
[Online]. Available: http://hal.inria.fr/inria-00380539/en/

[22] S. Gelly and D. Silver, “Monte-carlo tree search and rapid action value
estimation in computer go,” Artificial Intelligence, vol. 175, no. 11, pp.
1856–1875, 2011.

[23] J. Mańdziuk, Knowledge-Free and Learning-Based Methods in Intelli-
gent Game Playing, ser. Studies in Computational Intelligence. Berlin,
Heidelberg: Springer-Verlag, 2010, vol. 276.

[24] ——, “Computational Intelligence in Mind Games,” in Challenges for
Computational Intelligence, ser. Studies in Computational Intelligence,
W. Duch and J. Mańdziuk, Eds. Berlin, Heidelberg: Springer-Verlag,
2007, vol. 63, pp. 407–442.

[25] A. Kolobov, Mausam, and D. S. Weld, “LRTDP versus UCT for
online probabilistic planning,” in Proceedings of the Twenty-Sixth AAAI
Conference on Artificial Intelligence, 2012.

[26] T. Keller and P. Eyerich, “Prost: Probabilistic planning based on uct,”
in Proceedings of International Conference on Automated Planning and
Scheduling, 2012.

[27] Z. Feldman and C. Domshlak, “On monte-carlo tree search: To mc or to
dp?” in Proceedings of ECAI-14. 21st European Conference on Artificial
Intelligence, 2014.

[28] T. Pichpibul and R. Kawtummachai, “An improved clarke and wright
savings algorithm for the capacitated vehicle routing problem,” Science
Asia, pp. 307–318, 2012.

[29] NEO. Networking and Emerging Optmization, 2013,
http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-instances/.

