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Abstract—This paper proposes an incremental mechanism for
the automatic recognition of physical activities performed by
humans. The specific research field has become quite relevant as it
may offer important information to areas such as ambient intelli-
gence, pervasive computing, and assistive technologies. The works
in the related literature so far assume the a-priori availability of
the dictionary of activities to be recognised. This work is focused
on relaxing that assumption by learning and recognizing the
human activities in an incremental manner based on the acquired
datastreams. To this end, we designed a learning mechanism
based on hidden Markov models for recognising human activities
among those of a dictionary. The major novelty of the proposed
mechanism is its ability to detect the occurrence of new activities
and update the dictionary accordingly. We conducted experiments
on a publicly available dataset of six human activities, i.e. walking,
walking upstairs, walking downstairs, sitting, standing, and laying,
where the efficiency of the proposed algorithm is demonstrated.

Keywords—Human activity recognition; hidden Markov models;
online dictionary learning.

I. INTRODUCTION

During the last decades, there has been an exponential
growth in the development of wearable devices able to support
novel ranges of applications [1], [2]. In this context, an im-
portant application is the recognition of human activities (i.e.
cycling, running, walking, etc) [3], [4]. by using wearable sen-
sors, such as accelerometers, gyrometers, etc. Human Activity
Recognition (HAR) gains increased importance when the focus
is placed upon medical, military, and security applications, e.g.
to have knowledge of the activities performed by a soldier in
the battlefield for providing strategical advices, monitor the
activities of a patient who may suffer from high blood pressure,
make informed decisions in combats, etc.

The literature about HAR based on wearable devices in-
cludes a great and diverse gamut of methods and approaches1.
A thorough review is provided in [10]. Typically, HAR systems
are based on machine learning technologies able to learn and
subsequently recognise activity patterns. A great variety of
input signals have been used for HAR, such as environmental
characteristics (temperature, audio level, etc.), acceleration,
location, psychological signals, etc. These may be used either
in raw format or after a feature extraction phase, and then
combined with pattern recognition algorithms. Time and fre-
quency domain features have been proposed [11], [12] along
with both generative and non-generative modelling tools [10].
The majority of the authors have employed learning-based

1It should be mentioned that HAR based on external sensors, i.e. sensing
units attached to predefined points of interest such as smart homes [5], [6],
cameras [7]–[9], is outside the scope of this work.

classification algorithms, such as neural networks [13] and
support vector machines [14], [15], decision trees [16], k-
nearest neighbours [17] or classifier ensembles [18]. Hidden
Markov models (HMMs) have also been considered for HAR.
[19] extracts features from the low-frequency components of
the acceleration signals for feeding a HMM. However, details
regarding the training of the HMM are not provided. The
authors of [20] fused data obtained from two wearable inertial
sensors. An hierarchical HAR system composed of an HMM
operating on the outputs of two neural networks each one
processing data belonging to a single sensor, is proposed. In
both works the behaviour of the signals in time is not explicitly
incorporated in the HMMs.

Despite the different considered machine learning tech-
nologies, all these approaches implicitly assume the a-priori
availability of the dictionary of activities. In fact, they assume
the a-priori knowledge of all the activities to be classified and
the availability of data (to be used for learning) for each of
them. Even though they do offer satisfactory results in static
conditions, it is practically impossible to adapt them to evolv-
ing conditions (where new classes need to be incorporated)
since full system retraining is required. This limitation hardens
substantially their application on real world dynamic scenarios.

This work, which is inspired by [21], proposes a new
mechanism for HAR dealing with the activity recognition and
the incremental learning of the dictionary online. The proposed
mechanism processes the incoming datastreams and is able
to associate them to an activity existing in the dictionary,
or understand whether a new activity is encountered through
a change detection technique. In case a novel activity has
appeared, the mechanism learns its characteristics online and
inserts it into the dictionary of activities automatically. The
only assumption made by the proposed system is that each
activity lasts for at least a specific amount of time as it is
usual that a user will not rapidly change his/her activity status.
Performance assessment is made on the database used in [22]
which includes measurements of a tri-axial accelerometer and
gyrometer embedded on a smartphone device.

The rest of this paper is organised as follows. Section II
formulates the problem, while Section III details the proposed
mechanism for HAR and incremental dictionary learning.
Section IV analyses the experimental set-up and results, while
our conclusions drawn in Section V.

II. PROBLEM FORMULATION

The technological scenario refers to a wearable device
including M sensors, each of which generates a scalar in time
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Fig. 1. The block diagram of the proposed HAR mechanism. After feature
extraction, the mechanism recognises automatically the performed activity by
consulting the dictionary A. In case a new one is detected by the change
detection component, the mechanism learns its distribution and incrementally
updates the dictionary A.

measurement Xi(t), i = 1 . . .M . The sampling frequency has
been suitably identified in a preliminary sensor configuration
phase. The sensors could be homogeneous (e.g. accelerome-
ters) or heterogeneous measuring different physical quantities
(e.g. both accelerometers and gyrometers).

Traditional approaches assume a fixed and a-priori known
activity dictionary A = {A1, . . . , AN}, where Ai denotes the
i-th activity and N the total number of activities. Acquired
measurements are partitioned into overlapping windows of data
(of length K) each one classified into an action among those
present in the dictionary. Moreover, they assume availability
of a training set Xi(t), i = 1 . . .M, 1 ≤ t ≤ T0. These are
partitioned into windows [Xi(t1), . . . , Xi(t2)], i = 1 . . .M of
length w = t2 − t1. Every window of data is annotated with
an action belonging to the dictionary A.

Instead, this work makes no assumption regarding the
dimensionality of A, nor requires an annotated training set.
Our only assumption is that each activity lasts ta samples.
Obviously, the worst case scenario would be rapid changes
of novel activities, i.e. a scenario where activities not present
in A occur and change swiftly. Nonetheless that is unrealistic
since a user tends to perform the same activity for a reasonable
amount of time due to practical and physical constrains.

The goal of the proposed system is to exploit the available
raw signals for a) performing HAR, i.e. associating the mea-
surements obtained at time t > ta, i.e. Xi(t), i = 1 . . .M, t >
ta, with a human activity Ai, which may be recurrent, and b)
learning the dictionary A over time.

III. THE PROPOSED SOLUTION FOR HAR AND

DICTIONARY LEARNING

This section describes the proposed algorithm realizing
the activity recognition and the learning of the dictionary.
The proposed embraces the following steps (see Fig. 1): a)
recognition of the ongoing activity, and b) dictionary learning.
These steps are explained in the following two subsections.

A. HMM-based Human Activity Learning

The first step is to extract features which may reveal
characteristic information for HAR. To this end, windows of
raw signals [Xi(t1), . . . , Xi(t2)], i = 1 . . .M , w = t2 − t1
are transformed to the vector of features Fw = {F 1

w, . . . F
f
w},

where f is the total number of features. Principal Component
Analysis (PCA) is applied onto Fw for retaining the l compo-
nents with the highest variance. HMM learning is conducted
on these components. Moreover we rely on a training set TS
to learn the first action A1 and a validation set V S to estimate
two thresholds Tl and Tu as described below.

An HMM H is characterized by the following set of
components, i.e. H = {S, P, T, π}, where

1) S comprises the the number of states,
2) P is the the probability density function associated with

each state. In this work it is modelled as a mixture of

Gaussians (GMM), P (y|x) =
K∑

k=1

pkp(y|x(k)), where

pks are the mixture weights, y is a continuous-valued
data vector, i.e. the features, x(k) represents the k − th
component of the vector, x = [σ, μ] , p(y|x(k)) =

1

(2π)d/2|σ|e
− 1

2 (y−μk)
tσ−1

k (y−μk).

3) T is the state transition probability matrix T = {τij}
where entry τij represents the probability of moving from
state j at time t to state i at time t+1. For example, the
transition probability of moving from state 1 to state 2 is
represented by τ12, and

4) π is the initial state distribution defined as π = {π̄i},
where π̄i corresponds to the probability that the HMM
starts in state i, i.e. πi = P [q1 = S1], 1 ≤ i ≤ N .

In order to learn the components of and HMM we employ
the Baum-Welch algorithm [23]. During evaluation, the Viterbi
algorithm [24] is used to find the most probable path taken
across the states in the HMM. It uses dynamic programming
and a recursive approach to find the path. Its outcome is a
log-likelihood demonstrating the statistical affinity between the
novel data and the one used during training.

The cornerstone of the proposed HAR framework is de-
tector of changes in the performed activity since it allows
to activate the procedure for identifying a new activity or
recognizing an activity among those existing in A. The change
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Fig. 2. The way the proposed HAR framework determines the onset time
instance of a change in the performed activity.



1. Input: feature sequence representing activity i, γ1,
γ2, Wb;
2. Partition the sequence into TS and V S;
3. Build Hi on TS;
4. Compute detection threshold
Tl = min(llv)− γ1(llv −min(llv)), where llv are the
log-likelihoods computed on V S and ¯llv its average
value;
5. Compute the onset detection threshold
Tu = min(llv)− γ2(llv −min(llv));
while (1) do

6. Compute the log-likelihood Lt = P (F t
w|Hi);

7. if Lt < Tl then
8. Change detected at time t = t̂;
9. t̂0 = {min(t|Lt < Tu), t ≥ t̂−Wb};

10. FC = {Fw|t̂0 < t < t̂};
11. Activation of the identification module on
FC , Alg. 2;

end
end

Algorithm 1: The algorithm for detecting activity changes
and estimating the time instance the change started.

detection test (CDT), which is inspired by [25], inspects the
statistical behaviour of the observed features, while including
two phases: a) detection of a change in the incoming features,
and b) estimating the time instance the new activity started.

In more detail, the CDT operates as follows: the inputs
of the CDT algorithm depicted in Alg. 1 are the feature
sequence Fw, γ1, γ2, and Wb, while γ2 < γ1. γ1 is a
parameter responsible for change detection, γ2 for detecting
the initiating point, and Wb is the buffer size in samples that
represents the maximum number of samples that the algorithm
can go back in time, i.e. the maximum difference between
the change detection t̂ and initiation point t̂0. The algorithm
divides the features extracted from the training sequence to
training TS and validation sets V S (line 2, Alg. 1). During
this process we employ 90% of the data for training and
10% for validation purposes. Then it learns Hi using TS
(line 3, Alg. 1) and computes the lower threshold Tl as
Tl = min(llv) − γ1(llv − min(llv)), where llv are the log-
likelihoods computed on V S and ¯llv the average value (line
4, Alg. 1). The following step calculates the onset detection
threshold Tu = min(llv)−γ2(llv−min(llv)) (line 5, Alg. 1).

During operation the algorithm evaluates the feature vector
at time t, i.e. F t

w, using Hi by means of log-likelihood Lt (line
6, Alg. 1). Lt comprises a degree of resemblance between the
observed features, i.e. F t

w, and the one used for learning Hi.
In case Lt falls below Tl the algorithm detects a change (line
8, Alg. 1) and goes back in the previously computed feature
vectors to find the sample where the change started t̂0 (line
9, Alg. 1). The feature sequence between theses two points is
gathered, i.e. FC = {Fw|t̂0 < t < t̂}, (line 10, Alg. 1) and
the human activity identification module is activated (line 11,
Alg. 1). The way the proposed algorithm detects the initiating
point a new activity if demonstrated in Fig. 2. FC represents a
new sequence of feature vectors that can be associated to the
recently detected action. In the next phase the mechanism will

1. Input FC , A, ta;
2. for k=1:N do

3. L(k) = P (FC |Ak);
4. if L(k) > T k

l then
5. C = [C; k];

end
end
6. if isempty(C) then

7. Appearance of new activity;
8. Partition FC + ta into TS and V S;
9. Learn HN+1 on TS;

10. Compute TN+1
l and TN+1

u on V S;
11. Add HN+1 to A;

else
12. Find max(C), i.e. kmax and associate FC with
activity Akmax ;

end

Algorithm 2: The activity recognition and dictionary learn-
ing algorithm.

discriminate between already known activities (among those
present in the dictionary) and a new activity (to be included
in the dictionary that is initially empty).

B. HAR and Learning of the Activities Dictionary

The proposed mechanism performs HAR and dictionary
learning based on the following logic: once a change is
detected and FC has been established by Alg. 1, we control
whether the features in FC can be associated with one of
the activities in A, i.e. we evaluate A = {A1, . . . , AN}. We
retain all the HMMs producing log-likelihoods above the re-
spective lower thresholds, i.e. T i

l , while the one producing the
maximum log-likelihood comprises the identified activity. In
case there is no HMM satisfying that condition, the algorithm
detects a new class, learns the respective HMM, and updates
the dictionary A.

The inputs to Alg. 2 are the feature sequence FC , the
dictionary A, and ta. The algorithm evaluates all the HMMs
in A (line 2, Alg. 2) and retains in C the ones having a log-
likelihood above the respective lower threshold Tl (line 4-5,
Alg. 2). In case C is not empty the algorithm assigns to FC

the class with the highest log-likelihood (line 12, Alg. 2). On
the contrary, the algorithm detects a activity not existing in A
(line 7, Alg. 2) and learns the respective distribution HN+1

(line 9, Alg. 2). After computing the corresponding thresholds
TN+1
l and TN+1

u (line 10, Alg. 2), it adds HN+1 to A (line
11, Alg. 2).

IV. EXPERIMENTS

This section aims at providing a thorough evaluation of
the proposed solution. To this end we considered the SBHAR
dataset [22], which is publicly available and includes six basic
activities, i.e. walking, walking upstairs, walking downstairs,
sitting, standing, and laying. It includes data coming from 30
participants generating approximately 5h of data at a sampling
rate of 50Hz. Following the literature [22], we employed the
features tabulated in Table II leading to a feature vector Fw

of dimensionality equal to 156. The selection of this dataset
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Fig. 3. The predictions made by the proposed system along with the ground truth with respect to six recurrent activities.

facilitates comparison between the different methodologies
which is a common issue in the HAR literature as each system
works with a different dataset, while there is no standard
dataset [10]. Moreover, to fully exhibit the capabilities of the
proposed system we address the issue of recurrent activities.

a) Figures of merit: The works performing HAR sim-
ply consider the recognition rate per activity as a performance
metric, i.e. ri, which is computed as

ri =
#ofcorrectlyIdentifiedFeatureV ectors

#totalNumberofFeatureV ectors
,

where i is the activity. This figure aims at measuring the ability
to correctly associate the incoming feature sequence with an
activity present in the dictionary A.

In this article, we need to evaluate as well the ability of
the system to discover correctly the dimensionality of A, i.e.
to enumerate the observed activities. To this end we introduce
the enumeration rate v measuring the ability of the proposed
algorithm to correctly identify the true number of activities N
present in the experiment (in percentage).

b) Algorithm parametrization: The parameter ta was
set equal to 300 subsequent feature observations. The number
of states of the HMM was selected from the set s ∈ {3, 4, 5, 6}
and the number of Gaussian functions from the set g ∈
{2, 4, 8, 16, 32, 64, 128}. After an exhaustive exploration in the
interval [0,1] with step 0.1, we set γ1 = 0.4, γ2 = 0.1.
The buffer size was set Wb = 20 after searching the space
[0,100] with step 5. Finally the number of retained principal
components was 10.

c) Human activity recognition and enumeration: Dur-
ing evaluation we acquired the data with respect to all the
activities and presented them to the proposed system, while
each activity appeared twice in the incoming stream. The
experiment was iterated 100 times and the final rates were
averaged. The sequence of activities was the following: walk-
ing, walking upstairs,walking downstairs, sitting, standing, and
laying. The algorithm had both to enumerate the number of
occurred activities, i.e. 6, as well as learn the distribution
exhibited by the features of each one online.

Two iterations of the operation of the proposed algorithm,
one with recurrent activities and one without, are depicted in

Fig. 3 and Fig. 4 respectively. The final rates per activity are
84.5%, 76.1%, 86.5%, 99.6%, 96.5%, and 99.6%, for walking,
walking upstairs, walking downstairs, sitting, standing, and
laying respectively, as we can see in the confusion matrix
shown Table I. The overall average rate is 90.5%, while v =
99.8%. As we can see the largest amount of misclassifications
concerns the family of walking activities, i.e. walking, walking
upstairs, and walking downstairs which is similar to [22].
There, the average recognition rate is higher (96.7%) than
the one reached by the proposed mechanism. However the
dictionary is assumed to be a closed and known a-priori set,
while data with respect to every activity is available for SVM
training. Overall, we infer that the performance demonstrated
by the proposed algorithm is quite encouraging.

V. CONCLUSIONS

This work analysed an novel mechanism for HAR and
online dictionary learning. The proposed algorithm operates
in the feature space, where the distribution of each activity is
modelled by means of HMMs. Each HMM is accompanied
by a CDT responsible for detecting new classes of activities
and updating the dictionary of human activities on-the-fly. A
carefully designed experimental protocol was followed, which

TABLE II. THE FEATURES EMPLOYED IN THIS WORK COMPUTED OVER

WINDOW OF SIZE w.

Feature Description
mean(Xi) arithmetic mean

std(Xi) standard deviation

mad(Xi) median absolute deviation

max(Xi) the maximum value

min(Xi) the minimum value

skewness(Xi) the skewness of the signal

kurtosis(Xi) the kurtosis of the signal

maxFreqInd(Xi) largest frequency component

energy(Xi) average sum of squares

sma(Xi,i = 1, . . . , 3) signal magnitude area

entropy(Xi) the entropy of the signal

iqr(Xi) interquartile range

autoregression(Xi) 4th order Burg autoregression coefficients

correlation(Xi,i = 1, . . . , 2) Pearson correlation coefficient

meanFreq(Xi) frequency signal weighted average

energyBand(Xi, [a, b])
spectral energy of a frequency

band with limits [a, b]
angle(Xi,i = 1, . . . , 3,mean) angle between signal mean and vector



TABLE I. THE CONFUSION MATRIX PROVIDING THE RESULTS OF THE PROPOSED HAR ALGORITHM. THE HIGHEST RATES ARE EMBOLDENED

Presented
Responded Walking Walking Upstairs Walking Downstairs Sitting Standing Laying

Walking 84.5 5.3 10.2 - - -

Walking Upstairs 23.9 76.1 - - - -

Walking Downstairs 12 1.5 86.5 - - -

Sitting - - 0.4 99.6 - -

Standing - - - 3.5 96.5 -

Laying - - - - 0.4 99.6

illustrated the appropriateness of the proposed algorithm to
the specific problem. In the future we plan to integrate a fault
diagnosis component for isolating a potentially faulty sensor(s)
and perform HAR relying only on the healthy ones.
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