
Multi-Channel Bayesian ART for Robot Fusion
Perception

Wei Hong, Chin∗, Chu Kiong, Loo∗, Naoki Masuyama∗
∗Faculty of Computer Science and Information Technology

University of Malaya, Kuala Lumpur, 50603 Malaysia
Email: weihong118118@gmail.com, ckloo.um@um.edu.my, naoki.masuyama17@gmail.com

Abstract—Multiple sensor data fusion is the technique of
associate information from a number of different sensors to
produce a robust and comprehensive description. Data fusion
pose is using in various robotics application such as environment
mapping, object recognition and robot localization. Their relation
is generally hard coded and difficult to learn incrementally if
new objects or events arise. In this paper, we propose a new
learning architecture termed as Multi-Channel Bayesian ART
which is very flexible can be adapted to new domains or different
sensor configurations easily. The other advantages of the proposed
method are: 1) it is capable of incremental on-line learning
without forgetting previously-learned knowledge 2) It can process
data real time and does not require any prior training to make it
work in natural environment. The effectiveness of our proposed
method is validated by real experimental results implemented on
robot.

Keywords—Hybrid map, Intelligent robotics, Mobile robot, Nav-
igation, SLAM,

I. INTRODUCTION

Multi-sensory information is a universal perception consid-
ering such information is of involvement in all robotic systems
where information processing is essential. In such frameworks
for the improvement of the precise activity data repetitive
sensors are vital where the quantity of the sensors as well
as the resolution of the sensors can change due to data with
various sampling time from the sensors. Distinctive sensors can
have distinctive benefits relying upon their individual working
conditions and such assorted data can be a profitable addition
for precise and additionally reliable autonomous robot control
through its dynamics and kinematics. The challenge for this
situation is the unification of the regular data from different
sensors in a manner that the resultant data presents enhanced
information for desired activity. Autonomous robotics consti-
tutes a crucial chapter of robotics and the autonomous robotics
research is extensively described in previous work, e.g. [1], [2],
[3]. In this branch of robotics continuous data from the envi-
ronment is collected by sensors and processed in real time. The
precise and reliable data driving the robot is fundamental for a
safe navigation the direction of which is in general not defined
in advance. The accuracy of this information is to accomplish
by method for both physical and analytical repetition of the
sensors. The precision is obtained by integrating the sensory
information from the multiple sensors in a multi-sensor system.
This coordination is completed by joining data from various
sensors for a final estimation result and this is widely part
termed as sensor combination.

Robotic systems that can perform tasks autonomously and
capable of decide which behavior is the best to complete the
task usually possess multiple sensors such as a laser scanner,
a camera and other sensor system. If these sensory data can
be associated in an appropriate approach, the response of the
robot can be more reliable because of the higher quality of data
for the classification. Moreover, the environment of the robot
is not often static, for example, new persons, new obstacles or
furniture relocation might happen. Therefore, the robot should
be able to handle with new situation and adapt its reaction,
that is, it should learn to distinguish these new objects.

The ultimate goal of data processing as fusion is to
enable the framework to measure the state of the environment
and specifically we can refer to the condition of a robot’s
environment in the present case. A similar research handling
with this challenge, to be specific a multiresolutional filter
application for spatial data fusion in robot navigation has
been described previously where data fusion is accomplished
using several datasets gathered from wavelet decomposition
and not from individual sensors [4]. Besides, several machine
learning methods are developed to perform data fusion [5].
For example, a time-delayed neural network (TDNN) is im-
plemented in an automatic lipreading system to fuse audio and
visual information. A major limitation of these network is the
problem of catastrophic forgetting, i.e., learned associations
from input data to output classes could be negatively affected
if the network is trained on-line.

Many of the previous research work for classifying infor-
mation from various sorts of sources are generally based on
two concepts. For sensor fusion, the obtained information per
channel can be combined in advance (data-level fusion) [6], [7]
and the classification is done later with all information. On the
other hand, a classifier is connected to every sensor channel
separately and the decision of every classifier is consolidated
subsequently (decision-level fusion) [8], [9]. However, both
data- and decision-level approaches suffer from the predefined
fixed architecture and therefore adapt inadequately to new
configurations of sensor channels.

In this paper, we propose an algorithm for integrating data
originating from multiple sensors to overcome classification
tasks like those already stated. To be more specifically, we
propose a robotic system that capable of learn and classify
objects in its environment. The proposed method is based
on the Bayesian Adaptive Resonance Theory (ART), and we
have developed a new Simplified Bayesian ARTMAP net-
work optimized for classification works based on muli-modal
information. Our proposed framework overcomes problems978-1-4799-7560-0/15/$31 c©2015 IEEE



from processing sensor channels independently from each
other, which can lead to loss of inter-dependencies of sensor
channels. In addition, the proposed method prevents the early
combination of sensor information without considering the
different modalities of the sensor channels.

The rest of the paper is organized as follows. Section II
introduces the theoretical framework of the proposed. The
experimental results shown in Section III while experiment
result are discussed in Section IV. Concluding remarks are
finally presented in Section V.

II. MULTI-CHANNEL BAYESIAN ART

Our proposed method architecture consists of two layers,
as shown in Figure . The input layer is formed by multiple
Bayesian ARTs to learn and categorize multiple sensory in-
formation. The higher level of layer is Simplified Bayesian
ARTMAP module. The proposed method learns a mapping
from input vectors provided by multiple sensors. The M-
dimensional sensory information is transmitted to Bayesian
ART channels and the learning undergo 3 main process which
is i) Neuron competition, ii) Neuron matching and iii) Neuron
learning.

The definition of neurons in each channels can be inter-
preted as a region in the input space. Each neuron contains
a multidimensional Gaussian distribution, with mean vector
µ̂j , covariance matrix Σ̂j , and a prior probability P̂ (wj). The
learning process is initialized with 3 parameters: the maximal
hypervolume SMAX , the initial covariance matrix Σ̂init, and a
prior probability P̂ (wj)init.

Fig. 1: Multi-channel Bayesian ART framework

A. Bayesian ART

In this section, we explain the Bayesian ART learning
process. 1) Neuron Competition: In this stage, all existing
neuron compete with each other to map the input data. The

a posteriori probability of the jth neuron to represent the M-
dimensional data x is calculated as follows:

Mj = P̂ (wj |x) =
p̂(x|wj)P̂ (wj)

Ncat∑
l=1

p̂(x|wl)P̂ (wl)

(1)

where Ncat is the number of neurons and P̂ (wj) is the
estimated prior probability of the jth neuron. The likelihood
of wj with respect to x is estimated using all data that have
already been associated with the multivariate Gaussian neuron
wj :

p̂(x|wj) =
1

(2π)M/2|Σ̂j |1/2

× exp{−0.5(x− µ̂j)
T Σ̂−1

j (x− µ̂j)} (2)

where µ̂j and Σ̂j are the estimated mean and covariance matrix
of the jth neuron.

The winning neuron J is the one with the maximum a
posteriori probability (MAP):

J = arg max(Mj) (3)

This proves that Jth neuron wJ is either more populated than
other neurons (i.e. having high P̂ (wj)) or more likely to be
the correct neuron for x (i.e. having high p̂(x|wj) since it is
the closest neuron to x) or both. Based on both probabilities
and Bayes’ theorem, the MAP criterion is expected to choose
a winning neuron more accurately than if using only one of
the probabilities. For example, the MAP criterion may prefer
a neuron having a priori probability which is higher than that
of another node although the normalized by the covariance
distance of the former to the pattern is larger than that of the
latter.

2) Neuron Matching (Vigilance Test): The neuron match
is to ensure that the chosen neuron is able to represent the
current data received from sensors. The test restricts the Jth
neuron hypervolume SJ to the maximal hypervolume allowed
for a neuron SMAX:

SJ ≤ SMAX (4)

where the hypervolume is defined as the determinant of the
Gaussian covariance matrix. For a diagonal covariance matrix,
this hypervolume is reduced to the product of the variances
each for a dimension:

SJ , det(ΣJ) =

M∏
d=1

σ2
Jd

(5)

If the winning neuron fulfills the vigilance criterion in equa-
tion (4), learning is then performed. If the winning neuron
fails the vigilance criterion, the neuron is removed from the
competition for this sensory input and the Bayesian ART
determines another neuron till one complies with equation (4).

3) Neuron Learning: When a chosen neuron fulfills the
maximal hypervolume criteria in equation (4), the node ele-
ments are then updated as follows:

µ̂J(new) =
NJ

NJ + 1
µ̂J(old) +

1

NJ + 1
x (6)



Σ̂J(new) =
NJ

NJ + 1
Σ̂J(old) +

1

NJ + 1
(x− µ̂J(new))

× (x− µ̂Jnew))T ∗ I (7)

P̂ (wJ) =
NJ

Nnode∑
l=1

Nl

(8)

N new
J = N old

J + 1 (9)

where NJ is the number of times that Jth neuron have been
chosen as winner for learning before receiving the current input
sensory information and I is the identity matrix.

Another possibility is that the network not able to find any
neuron that match the current input. In this case, an uncom-
mitted neuron will be activated. Thus, the learning algorithm
incrementally produces neurons to learn and remember feature
patterns for representing the received input data.

B. Simplified Bayesian ARTMAP

In this paper, we have developed the Simplified Bayesian
ARTMAP (SBAM) which is an extension of Bayesian
ART suitable for supervised learning. However, compare to
Bayesian ARTMAP, SBAM networks are classifiers, i.e., they
learn a mapping from input vectors to a particular set of
discrete class labels. This difference to Bayesian ARTMAP
greatly decreases the complexity of the network. It only com-
prises a single Bayesian ART component whose F2 neurons
were extended with an associated class label.

During learning, a SBAM network receives pairs of an
input vector and an associated correct class label. The input is
transmitted to the internal Bayesian ART, then the class label
of the winner neuron will be compared to the given class label.
Regardless of matching or not matching, the match-tracking
algorithm temporary raises the vigilance to force the choosing
of another neuron. A new neuron will be committed if all nodes
are not match in the F2 layer. A trained SBAM framework
can be utilized to predict a class label for a new input.

C. Overall Learning Process

The input of the Bayesian ART modules itself can be
produced by different sensors or different features calculated
on the sensory information from one physical sensor. Thus,
the input channels do not compulsory have to represent a
sensor but could also be a feature vector. In this framework, we
implement the parallel match-tracking algorithm based on the
information as far as available. However, it had to be adapted
to our learning system [10], [11]. A detailed explanation of
the functionality of the concrete implemented algorithm will
follow within this section.

During learning, the SBAM network receives the correct
class label in addition to the current input. Therefore, a training
input consists of i = 1, ..., N feature vectors ~vi and the target
class label. For the first iteration, each Bayesian ART module
i tempt to assign its input to a known category. If that fails, it
creates a new category with ~vi as initial weight vector. When
all Bayesian ART networks have categorized their input, a
vector ~z termed recognition code is created from the weight

vectors of the winner neurons. It is crucial to notice that the
ART modules are not yet to perform a training step with their
inputs. The input vector for the SBAM module is stated as
follow: ~zc = (~z1, . . . , ~zN ) where the ~zi are generated by

~zi =
NJ

NJ + 1
µ̂i
J +

1

NJ + 1
xi (10)

In Eq. 10, µ̂i
J represents the weight vector of the winner neuron

of the i’th Bayesian ART module. If the SBAM categorizes
the concatenated vector ~zc into a category whose class label
matches the expected class then all Bayesian ART modules
and the SBAM are updated respectively. Otherwise, the parallel
match-tracking algorithm is activated.

The parallel match-tracking algorithm requires the intro-
duction of base hypervolume for each network module. The
base hypervolume for the SBAM is denoted by SSBAM and by
SARTi (with i = 1, . . . , N ) for Bayesian ART modules. These
base hypervolumes store the parameter values which were
set at the beginning. The currently used hypervolume of the
network is then indicated as the working hypervolume. Every
time a new input is transferred to the network, all working
hypervolumes are set back to their base hypervolume values.
In fact, the base hypervolumes do not need to have the same
value.

At the beginning, the parallel match-tracking process
searches for the Bayesian ART module with the lowest confi-
dence, that means the one with the highest hypervolume value.
This module is denoted as ARTlc. If more than one Bayesian
ART has the same matching value, the first one in the list is
selected. Next, the hypervolume of all Bayesian ART modules
and the SBAM is raised just enough so that the ARTlc resets
the winner neuron. To fulfill this, a δ value is calculated by
using the matching value of the winner neuron of ARTlc. The
value of δ is calculated as follows:

M∏
d=1

σ2
lc + ε− SJ , 0 < ε ≤ 1 (11)

This δ value is used to increase all working hypervolume
values as follow:

Snew
i = Sold

i − δ, ∀i ∈ {SBAM, ART1, . . . , ARTN} (12)

The working hypervolume is set to the SBAM and the
Bayesian ART networks by the parallel match-tracking al-
gorithm. The parallel match-tracking here changes the hyper-
volume of the SBAM module externally which becomes the
internal base hypervolume of the SBAM. In this way, the least
confidential channel is blamed for the misclassification. Thus,
not the entire network needs to change but rather just the part
which is most likely the cause for the omission.

The ARTlc will select another category as the decrease of
the hypervolume (12) will cause (4) to fail for this Bayesian
ART network. Thus, another weight vector is chosen, which
leads to a changed recognition code ~zc. If the uncommitted
neuron is one Bayesian ART is chosen or its hypervolume
reaches 0, this network has to commit a new neuron. This
process will be repeated until the SBAM network classifies
the input correctly. Only if all Bayesian ART modules are
committed a new neuron, the SBAM also has to commit a new



neuron, and therefore, a new category as well. This category
is labeled with new label.

If the proposed method is learned, the network is used to
provide class predictions for new input data, the class label is
provided as output.

III. EXPERIMENTAL DESIGN & RESULT

Our proposed method was verified on data sets collected
from H20 robot as shown in Figure 2. For analysis, two types
of data are collected from a camera and a laser range finder
(LRF). The visual data were recorded with a resolution of 640
x 320 pixels. The objects contained in this dataset are a person
and a chair in front of the robot recorded in different distances
and angles to the robot. Samples of the image are shown in
Figure 3 and Figure 4 shows the image captured by the robot
from different angle.

Fig. 2: H20 robot that gather experimental data.

(a) Chair subject (b) Human subject

(c) Sofa subject (d) Rack subject

Fig. 3: Sample pictures of test subjects

Fig. 4: Sample pictures of test subjects taken from different
angle

Based on the raw data from the camera and laser range
finder, first object detection is implemented on each sensor
channel individually. For the camera image, the visual feature
is a simple histogram computed on the value channel of the
image converted into HSV color space. On the other hand, the
feature extraction of laser range measurements is performed by
dividing the overall measurement into segments of consecutive
scan values with nearly the same length. This can be done by
calculating the length difference of each pair of neighboring
distance measurements and a threshold.

In this dataset, data are labeled manually and the decision
which laser scan region belongs to which visual object is also
determined by hand. In each picture of dataset only one object
is included. The overall tested data contains 50 value sets for
a chair, a human, a sofa and a rack that located in front of the
robot.

In the first experiment, we validate the proposed method
by clustering objects separately and determine the number of
neurons are needed for representing these objects. Figure 5
illustrates the classification accuracy of the proposed method
with different value of hypervolume. Next, Figure 6 shows
the number of nodes added during the learning process. In
addition, the error rates are used for evaluating the classifi-
cation performance which is false negative rate (FNR). The
FNR accumulates the errors where an object was not correctly
detected. The experiment result of FNR value for our proposed
method is plotted in Figure 7. In addition, Table I shows the
confusion matrices for the proposed method to illustrate which
errors occur and in which quantity. From the experiment result,
the proposed method correctly classify the chair 47 times, the
human 48 times, the sofa 45 times and the rack 46 times out
of 50 trials. Next, it also capable of classify the human subject
48 times correctly out of 50 trials.

Fig. 5: Classification accuracy for different value of hypervol-
ume.



Fig. 6: Number of neuron added during learning process.

Fig. 7: Error rates for data gathered from the robot.

IV. DISCUSSION

We have shown that the proposed framework is able
to learn and classify objects and human without any prior
knowledge. Based on the experimental plot, the optimum hy-
pervolume value for learning is from 0.9 to 1. The performance
of the framework is decreasing when maximal hypervolume is
decreasing.

In the experiment, the proposed method classified incor-
rectly due to the noise of the image and laser scanner data
collected from the robot. In addition, the graph shows that
the optimum maximal hypervolume value for learning and
classification is 1. All the experiment was run in real time
and computed by the moderate specifications of laptop.

V. CONCLUSION

The experiments presented show the feasibility of the
proposed approach. The proposed method capable of taking
more than one sensory source for learning and classification
purpose. In addition, it can also perform on-line learn and
classify objects incrementally which overcome the plasticity-
implicity dilemma. Lastly, it can process data in real time and
does not prior training that suitable to implement in natural
environment.

TABLE I: Confusion matrices of the proposed method us-
ing datasets gathered from robot. The percentage values are
rounded.

Correct / prediction Chair (%) Human (%) Sofa (%) Rack (%)

Chair 47 (94) 0 3 (6) 0
Human 0 48 (96) 0 2 (4)
Sofa 5 (10) 45 (90) 0 0
Rack 0 4 (4) 0 46 (96)

Future work in this subject will include an analysis of
effectiveness of the value of framework parameters. In addi-
tion, we will extend the proposed method to learn from more
two sensors. Lastly, we will conduct more experiments using
different kind of objects for further validation.
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