
Towards the universal framework of stochastic
nature-inspired population-based algorithms

Iztok Fister Jr., Janez Brest, Uroš Mlakar, Iztok Fister
Faculty of Electrical Engineering and Computer Science

University of Maribor
Smetanova 17, 2000 Maribor

Slovenia
Email: iztok.fister1@um.si

Abstract—Stochastic nature-inspired population-based algo-
rithms have attracted a huge community of researchers and
practioners for who use them for optimization purposes. The
implications of using the methods are almost unlimited. Most of
these nature-inspired algorithms are inspired by the biological
principles of behavior of various animals living in nature. In
our opinion, a lot of research has turned in the wrong direction
recently. Instead of improving existing algorithms, they have been
proposing the new algorithms discontinuously. Unfortunately,
most of these so called ”new nature-inspired algorithms” are ac-
tually modifications of already known algorithms hidden behind
the pompous metaphor-based inspiration. In this theoretically
oriented paper, we propose a universal framework of stochastic
nature-inspired population-based algorithms that try to unify
the more real-coded evolutionary and swarm intelligence based
algorithms under the same umbrella. In line with this, a domain-
specific embedded language is proposed that enables a generation
of the more important stochastic real-coded nature-inspired
population-based algorithms on the one hand, and creation of
the new ones on the other hand. Consequently, this approach
proves that the gap between the nature-inspired algorithms is
actually not so big as seems at the first sight.

I. INTRODUCTION

Observing the nature, tracing the ant trails, watching how
termites build their nests (also mounds), inspecting wolves and
their hunting habits in the deep forests, studying the flying
traces of birds, and even watching small lighting bugs called
fireflies in the young summer nights, had led to extensive de-
velopment of computer algorithms based on nature. Actually,
all these behaviors of animals and insects can be observed
as an optimization process. In line with this, a mathematical
formulation for describing these processes can be used within
these algorithms. As a result, such algorithms can be applied
for solving the hardest optimization problems.

Two families of algorithms have been arisen on this basis,
i.e., Evolutionary Algorithms (EAs) and Swarm Intelligence
(SI) based algorithms. The former have been inspired by
the Darwinian struggle for existence [3], while the latter by
mimicking the behavior of small creatures (also agents) that
together in a community are capable of performing great jobs,
like the already mentioned ants, termites and fireflies [8].

Recently, the development of the new stochastic nature-
inspired population-based algorithm was misused slightly. We
are witnesses of the almost every month occurrence of the new

nature-inspired algorithms that, unfortunately, do not bring
anything new, but try to convince their potential users with
pompous metaphor [15]. Actually, almost each process in the
nature can be described as an optimization process. Therefore,
the potential inspirations for the new nature-inspired algo-
rithms are countless.

The purpose of this paper is to propose an universal
framework which could enable development of these new
algorithms automatically. In line with this, the existing real-
coded EAs and some SI-based algorithms are analyzed. The
common characteristics of these algorithms are then repre-
sented in a feature diagram that is used for developing the
Domain-Specific Embedded Language (DSEL) [9] in Ruby.
The specifications of this DSEL inherit the generic language
constructs for the Ruby interpreter and add domain-specific
primitives for creating the specific stochastic nature-inspired
population-based algorithms. At this moment, this interpreter
is capable of generating the Differential Evolution (DE) [16],
[4] an algorithm that belongs to the EAs family as well as
the more of the real-coded SI-based algorithms, like Particle
Swarm Optimization (PSO) [10], Firefly Algorithm (FA) [6],
Cuckoo Search (CS) [19], [11] and Bat Algorithm (BA) [18].

The paper is organized as follows. In Section II, an analysis
is performed of the stochastic nature-inspired population-based
algorithms. Section III describes the development of the uni-
versal framework for developing the stochastic nature-inspired
population-based algorithms. The preliminary experiments and
results are the subjects of Section IV. In Section V, the paper
summarizes the performed work and outlines directions for the
future work.

II. ANALYSIS OF NATURE-INSPIRED POPULATION-BASED
ALGORITHMS

In this section the characteristics of the EAs, like DE, and
SI-based algorithms, like PSO, FA, CS and BA, are analyzed in
order to show that these algorithms actually have very similar
internal structures. Identifying these common characteristics
can serve as a basis for development of the universal frame-
work for generating the stochastic nature-inspired population-
based algorithms in the future. The section is divided into two
subsections. The former is devoted to description of the DE

algorithm, and the latter for identifying the common SI-based
framework.

A. Differential evolution

Differential Evolution (DE) [4] is an evolutionary algorithm
appropriate for continuous and combinatorial optimization that
was introduced by Storn and Price [16] in 1995. This is
a population-based algorithm that consists of Np real-coded
vectors representing the candidate solutions, as follows:

x
(t)
i = (x

(t)
i,1, . . . , x

(t)
i,D), for i = 1, . . . ,Np. (1)

The variation operator in DE supports a differential mutation
and a differential crossover. In particular, the differential
mutation selects two solutions randomly and adds a scaled
difference between these to the third solution. This mutation
can be expressed as follows:

u
(t)
i = x

(t)
r1 + F · (x(t)

r2 − x
(t)
r3), for i = 1, . . . ,Np, (2)

where F denotes the scaling factor as a positive real number
that scales the rate of modification while r1, r2, r3 are
randomly selected values in the interval 1 . . .Np. Note that
typically the interval F ∈ [0.1, 1.0] is used in the DE
community.

As a differential crossover, uniform crossover is employed
by the DE, where the trial vector is built from parameter
values copied from two different solutions. Mathematically,
this crossover can be expressed as follows:

w
(t)
i,j =

{
u
(t)
i,j randj(0, 1) ≤ CR ∨ j = jrand ,

x
(t)
i,j otherwise,

(3)

where CR ∈ [0.0, 1.0] controls the fraction of parameters that
are copied to the trial solution. Note, the relation j = jrand
ensures that the trial vector is different from the original
solution x

(t)
i .

A differential selection is, in fact, a generalized one-to-one
selection that can be expressed mathematically as follows:

x
(t+1)
i =

{
w

(t)
i if f(w(t)

i) ≤ f(x(t)
i),

x
(t)
i otherwise .

(4)

In a technical sense, crossover and mutation can be per-
formed in several ways in differential evolution. Therefore, a
specific notation is used to describe the varieties of these meth-
ods (also strategies) generally. For example, ’DE/rand/1/bin’
denotes that the base vector is selected randomly, one vector
difference is added to it, and the number of modified param-
eters in the mutant vector follows binomial distribution. A
detailed description of the other DE mutation strategies, as
well as exponential crossover, can be seen in [4], [12].

The pseudo-code of a DE algorithm is presented in Algo-
rithm 1, from which it can be seen that DE consists of the
following components:

• initialization (line 1),
• fitness function evaluation (lines 2 and 5),

Algorithm 1 The original DE algorithm
1: INITIALIZE population randomly;
2: EVALUATE each candidate solution;
3: while TERMINATION CONDITION not met do
4: MODIFY candidate solutions using DE mutation strategy;
5: EVALUATE each trial solution;
6: REPLACE candidate solutions;
7: FIND global best solution;
8: end while

• termination condition (line 3),
• variation operators (line 4),
• replacement operator (line 6),
• finding the best solution (line 7).
However, the representation of solution is a prerequisite for

the algorithm to work correctly.

B. SI-based framework

Pseudo-codes of the following algorithms were analyzed
in order to identify which characteristics are common to the
majority of the SI-based algorithms: PSO, FA, CS and BA. The
results of the analysis are presented in Table I from which it
can be seen that the typical SI-based algorithm consists of five
mandatory components and one or more optional.

The mandatory components in Table I are as follows:
• initialization of an initial population randomly (INITIAL-

IZE),
• fitness function evaluation (EVALUATE),
• modification operator (MODIFY),
• replacement operator (REPLACE),
• finding the global solution (FIND) and
• optional restart operator (RESTART).
All the considered algorithms are population-based, where

the population consists of Np population members represent-
ing solution instances of the problem, i.e., vectors xi =
(xi,0, . . . , xi,D) with real-valued elements of dimension D.
The population members are called particles, in this paper.

Mostly, the population of particles is initialized randomly
according to the equation:

x
(0)
i,j = (Ubj − Lbj) ·U(0, 1) + Lbj , (5)

where U(0, 1) denotes a randomly generated number drawn
from uniform distribution in an interval [0, 1], while Ubj and
Lbj are the upper and lower bounds of the generated element,
respectively.

Although all these algorithms are very similar, they differ
between each other in the way they modify a candidate
solution from the current position to a new, possibly better
position. The modify operation in SI-based algorithms is
usually inspired by the behavior of the various natural systems
and it prescribes the way in which the particles are moved in
the search space.

The PSO algorithm mimics the behavior of a shoal of fish, a
swarm of insects or a herd of animals, where the new particle
position x

(t+1)
i depends on the velocity v

(t+1)
i . This velocity

is obtained by its current velocity v
(t)
i affected by its best

TABLE I
CHARACTERISTICS OF THE OBSERVED SI-BASED ALGORITHMS

Component PSO FA CS BA
INITIALIZE random random random random
EVALUATE problem dependent problem dependent problem dependent problem dependent
MODIFY PSO mutation strategy FA mutation strategy CS mutation strategy BA mutation strategy
REPLACE extra-memory extra-memory one-to-rand one-to-one-cond
FIND deterministic deterministic deterministic deterministic
RESTART n/a n/a optional n/a

position p
(t)
i (i.e., the personal best) as well as the position of

the best particle g
(t)
i (i.e., the global best) in the swarm. As a

result, the new particle position is expressed, as follows:

v
(t+1)
i = v

(t)
i + F (p

(t)
i − x

(t)
i) +K(g

(t)
i − x

(t)
i),

x
(t+1)
i = x

(t)
i + v

(t+1)
i ,

(6)

where F = C1U(0, 1) and K = C2U(0, 1) are scale factors.
Thus C1 and C2 denote the learning factors.

The FA algorithm mimics the flashing behavior of fireflies
that can be expressed mathematically as:

x
(t+1)
i =

{
x
(t)
i + β(x

(t)
j − x

(t)
i) + α(t)ε(t), if f(xj) ≤ f(xi)

x
(t)
i , otherwise,

(7)
where β = β0 exp−γr2i,j is a scaling factor and α(t) the
randomization parameter.

The CS algorithm is inspired by the brood parasitism of
some cuckoo species that is expressed mathematically as

y(t+1) = x
(t)
i + αL(s, λ), (8)

where α is a scale factor and L(s, λ) represents a random num-
ber drawn from the Lévy flights distribution that is explained
in next section.

The BA algorithm incorporates an explicit regulation be-
tween exploration and exploitation in the search process. Thus,
the exploitation component of the search process is expressed
as

y(t+1) = x
(t)
best + α · u(t), (9)

where α denotes a scale factor (step length) and u(t) is a ran-
dom vector of elements drawn from the uniform distribution
in the interval [0, 1]. In fact, this equation represents a random
walk-based direct exploitation method [13] and tries to find a
better solution in the vicinity of the current best. The global
search (exploration) exploits a phenomenon of echolocation
that is expressed in the form of a move operator as follows

y(t+1) = x
(t)
i + F

(t)
i · (x(t)

i − x
(t)
best), (10)

where F
(t)
i denotes a scaling factor and x

(t)
best is the best

solution found until now.
In general, a pseudo-code of the common SI-based frame-

work is obtained as illustrated in Algorithm 2. At a glance,
this pseudocode resembles the pseudocode illustrated in Al-
gorithm 1. Actually, the only difference between both pseudo-
codes lies in a presence of component RESTART (line 8 in
Algorithm 2). Indeed, this component is even optional.

Algorithm 2 A pseudo-code of the SI-based algorithm
1: INITIALIZE population with random generated particles;
2: EVALUATE each particle;
3: while TERMINATION CONDITION not met do
4: MODIFY particles using specific mutation strategy;
5: EVALUATE trial particles;
6: REPLACE particles;
7: FIND best particle for the next generation;
8: RESTART the worst particle;
9: end while

III. DESIGN OF THE UNIVERSAL FRAMEWORK

Development of the proposed framework starts with a
domain analysis, where a feature model is obtained. Based
on the feature model, the semantics of the Domain-Specific
Embedded Language (DSEL) for the Ruby host language is
defined that have the ”look and feel” of the syntax. Then,
this DSEL specification is translated to the source code of the
desired stochastic nature-inspired population-based algorithm.

In a nutshell, the proposed approach consists of the follow-
ing three steps:

• domain analysis,
• domain specific semantics,
• source code interpretation.
In the remainder of the paper, all steps are described in

detail.

A. Domain analysis
The purpose of domain analysis is to identify the charac-

teristics of the observed EA and SI-based algorithms. These
characteristics are usually presented in the form of Feature
Diagrams (FD) [7], [14], [17] by designing the domain-specific
languages. Thus, the characteristics of the typical stochastic
nature-inspired population-based algorithms are identified and
represented as a FD that serves as a basis for generating
the source code of the desired stochastic nature-inspired
population-based algorithm by the DSEL specifications.

The FD illustrated in Fig. 1 represents a concept algorithm
that consists of nodes denoting the features and arcs defining
the relationships between nodes. The features can be manda-
tory or optional as denoted by closed or opened dots ending
the arcs, respectively.

In our case, the concept algorithm consists of six mandatory
features, like initialization (Init), representation (Repr), fitness
function evaluation (Eval), variation operators (Oper), replace-
ment (Repl) and termination condition (Term), and one op-
tional feature (Rest). These features correspond to components

Fig. 1. Feature diagram

of the evolutionary and SI-based algorithms [5]. In our FD,
the feature Repr consists of defining the variables needed for
the proper algorithm execution. The initialization Init can be
performed either randomly as denoted by sub-feature Rand or
heuristically as denoted by the sub-features Heur 1-Heur m.
The feature Eval corresponds to the fitness function evaluation
that is problem dependent as denoted by the sub-feature
Prob 1-Prob n. The feature Oper, corresponding to variation
operators, consists of two sub-features, i.e., mutation Mut and
crossover Xover. The former is mandatory, while the latter
optional. The feature Repl corresponds to the replacement
operator and it is specified by various types as determined by
the sub-feature Repl-type. The feature Term corresponding to
termination condition consists of one sub-feature Term-type.
Finally, the optional feature Rest corresponds to the restart
feature that can also have various types as determined by its
sub-feature Rest-type.

B. Domain specific semantics

In our study, the DSEL for generating the source code of
the specific nature-inspired population-based algorithms was
developed in the Ruby host language. This host language is
flexible and expressive enough for developing the DSELs. As
a result, the DSEL developers are free of reflection about
syntax and, therefore, can be focused on the semantic issues
of the language that is captured into the interpreter of the
DSEL language. In fact, the DSEL can be seen as a high-
order algebraic structure that has the ”look and feel” of the
syntax [9].

An example of the proposed DESL specifications of the
DE algorithm using a ’DE/rand/1/bin’ mutation strategy is
presented in Algorithm 3.

In fact, the DSEL specification for DE generation deter-
mines the parameters for the features from the FD represented
in Fig. 1, for instance, the specification code ”repr(”Data”)”
(lines 2-5 in Algorithm 3) defines values of two parameters

Algorithm 3 DSEL specification for DE generation in Ruby.
1: DifferentialEvolution = NatureInspiredAlgorithms.build :DE do
2: repr(”Data”) {
3: D:”20”
4: NP:”100”
5: }
6: init(”Rand”)
7: evaluate(”Prob 1”)
8: term(”gen”) {
9: val:”1000”

10: }
11: oper(”Xover”) {
12: CR:”0.9”
13: }
14: oper(”Mut”) {
15: strategy:”DE/rand/1/bin”
16: F:”0.5”
17: }
18: repl(”one-to-one”)
19: end

D and NP for the DE algorithm defining the dimension of
the problem and the number of individuals in the population,
respectively. The specification code ”init(”Rand”)” (line 6)
defines the random initialization of the DE algorithm. It is
necessary to solve the ”Prob 1” as specified in the line 7. The
specifications ”term(”gen”)” in lines 8-10 determine that The
generated algorithm will be terminated after 1000 generations.
However, the variation operator is defined by two parts of the
specification code illustrated in lines 11-13 and lines 14-17.
The first part defines the value probability of crossover CR,
and the type and the scale parameter F of the corresponding
DE mutation strategy. Finally, the replacement one-to-one is
specified by the clause in line 18.

The purpose of this study was also to generate some of the
SI-based algorithms. The example of DSEL specification of
the BA algorithm is illustrated in Algorithm 4, from which
it can be seen that the crossover could be omitted from the

DSEL specification.

Algorithm 4 DSEL syntax specification for BA generation in
Ruby.

1: BatAlgorithm = NatureInspiredAlgorithms.build :BA do
2: repr(”Data”) {
3: D:”20”
4: NP:”100”
5: }
6: init(”Rand”)
7: evaluate(”Prob 5”)
8: term(”gen”) {
9: val:”1000”

10: }
11: oper(”Mut”) {
12: strategy:”BA”
13: R:”0.5”
14: Qmin:”0.0”
15: Qmax:”1.0”
16: CR:”1.0”
17: }
18: repl(”one-to-one-cond”) {
19: A:”0.5”
20: }
21: end

When comparing the DSEL specifications of both algo-
rithms, an emphasize needs to be considered on a different
setting of the parameter CR. That means, if the traditional
SI-based algorithm is generated, the crossover parameter is
set as CR = 1.0, where each element of the population
member is modified, while the same parameter is normally
set as CR < 1.0 in the case of a DE algorithm. On the other
hand, using this parameter also shows the big power of the
proposed framework because, by modifying this parameter,
influence of the crossover operator can also be tested on the
SI-based algorithms that typically work without this feature.

C. Source code interpretation

Domain Specific Embedded Language (DSEL) is defined
as a library for the generic host programing language. This
language is an extension of the host language that is devoted
to programers for developing their programs on a much higher
level of abstraction. The DSEL inherits the generic language
constructs of the host language and adds domain-specific
primitives implemented typically as library functions [9].
However, the semantics of DSEL specifications are captured
by an interpreter.

In this step, the specification of the stochastic nature-
inspired population-based algorithms in DSEL are translated
into corresponding Ruby host language source code by the
interpreter. The purpose of this subsection is to describe how
the DSEL specifications are translated into Ruby source code
that implements the corresponding stochastic nature-inspired
population-based algorithm. The translation consists of two
steps:

• generation of the core of stochastic nature-inspired
population-based algorithm,

• implementation of the corresponding library functions.

In the first step, the source code of the stochastic nature-
inspired population-based algorithm determined by DSEL
specifications is generated by an interpreter. The interpreter
generates part of the code corresponding to components of
the nature-inspired algorithm in a sequence determined by
DSEL specification. This means that the generated program
starts with the representation part followed by initialization
and evaluation. In evolution cycle terminated by termination
condition, the sequence of parts are generated as follows. The
replacement part of code is generated after modification and
evaluation.

Actually, all parts of the source code representing the com-
ponents of the generated stochastic nature-inspired population-
based algorithm are generated as generic function calls con-
trolled by specific parameters. The different library functions
are selected according to the values of these parameters. While
the core of the generated nature-inspired algorithm is more
or less statical for the observed nature-inspired algorithms,
activation of different features is achieved by the passing pa-
rameters phase. In fact, the interpreter captures the semantics
of DSEL in the passing parameters. The semantics domains
of parameters passed to generic functions are illustrated in
Table II.

As can be seen in Table II, domain DData determines a
set of variables needed for definition of the generated DSEL
program. Domain DInit defines types of initialization by the
generated DSEL. These types can be either random (Rand) or
heuristic (Heur). If the heuristic initialization is used, the pos-
sible ways of initialization are specified by domain DInit Heur

that enables a lot of heuristic initialization programs denoted
by Heur Prob1 to Heur Probm. The other semantic domains
can be interpreted in a similar way.

The translation of the constructs in DSEL specifications
to generic function calls by the interpreter are presented in
Table III.

The results of the first step of the translation is
a stochastic nature-inspired population-based algorithm in
Ruby source code implemented by generic functions
calls. These generic functions are implemented as wrap-
pers for calling the appropriate library functions accord-
ing to the passed parameters. Note that library func-
tions are based on [2] and author’s Github repository
https://github.com/jbrownlee/CleverAlgorithms.

The second step of the DSEL translation is the implemen-
tation of the library functions. The generic parts of the source
code obtained by translation of DSEL constructs are presented
in the remainder of the paper. Then, the implementation of
library functions are discussed as generated by translation of
DSEL specifications of DE algorithm (Algorithm 3). Note that
the wrapper code is straightforward and therefore its detailed
description is omitted in the paper.

1) Data part generation: Data part is generated by trans-
lation of the ”repr(”Data”)” DESL specification and it is
dedicated for initialization of two variables, d and np, that
determine the dimension of the problem and the population
size, respectively (Algorithm 5). Let us notice that the vari-

TABLE II
SEMANTIC DOMAINS.

Data = {D,Np, pop,fit , trial , trialFit , best , bestFit , lbest}
DInit = {Rand ,Heur} Heur ∈ DInit−Heur

DInit−Heur = {Heur 1, . . . ,Heur m}
DProblem = {Prob 1,Prob 2, . . . ,Prob n}
DStrategy = {DE strat ,PSO strat ,FA strat ,CS strat ,BA strat} DE strat ∈ DDE strat , . . . , BA strat ∈ DBA strat

DDE strat = {DE strat type, F,CR, r1, . . .} DE strat type ∈ DDE strat type

DDE strat type = {rand1bin, . . .}
.
DBA strat = {BA strat type, r,Qmin , Qmax ,CR} BA strat type ∈ DBA strat type

DBA strat type = {Normal, Levy}
Drepl = {one-to-one,one-to-one-cond,one-to-rand,extra-memory}

TABLE III
TRANSLATION OF DSEL CONSTRUCTS.

repr d = a, np = b D ∈ Int, np ∈ Int
init init(init type) init type ∈ DInit

evaluate evaluate(problem) problem ∈ DProblem

term term(gen) gen ∈ DTerm

oper oper(mut strat ,CR) mut strat ∈ DStrategy ,CR ∈ R
repl repl(repl type) repl type ∈ DRepl

ables are written in lower case according to the declaration of
the Ruby programing language.

Algorithm 5 DSEL data segment specification in Ruby.
1: d = 20
2: np = 100

Although the DData semantic domain demands more vari-
ables to be allocated dynamically in the generated program,
the main characteristic of the Ruby programing language is
that the variables can be allocated dynamically the first time
that they are needed. Therefore, there is no need to preallocate
the variables at this stage.

2) Initialization generation: Translation of the
”init(”Rand”)” DSEL specification is translated into Ruby
source code as presented in Algorithm 6.

Algorithm 6 Generation of DE initialization in Ruby.
1: search space = Array.new(d) |i| [-5, +5]
2: pop = Array.new(np) |i| :vector=>init(”Rand”, search space)

As can be seen from the code in Algorithm 6, the initial-
ization consists of an allocation of a 2-dimensional array that
is initialized randomly. The implementation of the random
initialization library function is presented in Algorithm 7.

Algorithm 7 Implementation of DE initialization in Ruby.
1: def init rand(search space)
2: return Array.new(search space.size) do |i|
3: search space[i][0] + ((search space[i][1] - search space[i][0])

* rand())
4: end

3) Evaluation generation: Fitness function evaluation is
generated by translating the ”evaluate(”Prob 1”)” DSEL spec-

ification. Translation of this DSEL construct is performed by
the interpreter as illustrated in Algorithm 8.

Algorithm 8 Generation of DE evaluation in Ruby.
1: pop.each|c| c[:fit] = problem(”Prob 1”, c[:vector])

As can be seen from the algorithm, the fitness function is
problem dependent. For instance, the implementation of the
fitness function f(x) =

∑d
i=1 xi referred to as ”Prob 1” in

DSEL specification is presented in Algorithm 9.

Algorithm 9 Implementation of DE evaluation in Ruby.
1: def prob 1(vector)
2: return vector.inject(0.0) |sum, x| sum + (x ** 2.0)
3: end

4) Termination condition generation: The ”term(”gen”)”
DSEL specification is translated to Ruby source code by the
interpreter as presented in Algorithm 10, where the first state-
ment initializes the variable gen, while the second statement
demands a start of the evolution cycle. However, the program
needs to be finished after running 200 generations.

Algorithm 10 Generation of termination condition in Ruby.
1: gen = 1000
2: gen.times do |gen|

5) Variation operators generation for DE: Translation of
the variation operators is more complex, because it consists
of translating two DSEL specification: ”term(”Xover”)” and
”term(”Mut”)”. The former specification determines the prob-
ability of the crossover operator, while the latter defines the
characteristics of the mutation strategy. The corresponding
generation code with appropriate parameters is presented in
Algorithm 11.

Algorithm 11 Generation of operators in Ruby.
1: trial = oper(pop, search space, ”rand1bin”, 0.5, 0.9)

The translated code demands a calling the mutation DE
strategy ’rand/1/bin’. The implementation code of this strategy
is presented in Algorithm 12.

Algorithm 12 Translation of the feature Oper into Ruby.
1: def de rand 1 bin(pop, search space, f, cr)
2: trial = []
3: pop.each with index do |p0, i|
4: p1, p2, p3 = rand(pop.size), rand(pop.size), rand(pop.size)
5: p1 = rand(pop.size) until p1 != i
6: p2 = rand(pop.size) until p2 != i and p2 != p1
7: p3 = rand(pop.size) until p3 != i and p3 != p1 and p3 != p2
8: sample = :vector=>Array.new(p0[:vector].size)
9: p1a = pop[p1]

10: p2a = pop[p2]
11: p3a = pop[p3]
12: cut = rand(sample[:vector].size-1) + 1
13: sample[:vector].each index do |ii|
14: sample[:vector][ii] = p0[:vector][ii]
15: if (ii==cut or rand() < cr)
16: v = p3a[:vector][ii] + f * (p1a[:vector][ii] - p2a[:vector][ii])
17: v = search space[ii][0] if v < search space[ii][0]
18: v = search space[ii][1] if v > search space[ii][1]
19: sample[:vector][ii] = v
20: end
21: trial.push(sample)
22: end
23: return trial
24: end

6) Replacement generation for DE: The replacement opera-
tor is specified by the ”repl(”one-to-one”)” DSEL specification
that is translated into Ruby source code as presented in
Algorithm 13.

Algorithm 13 Generation of DE replacement in Ruby.
1: pop = repl(pop, trial, ”one-to-one”)
2: pop.sort!|x,y| x[:fit] <=> y[:fit]
3: best = pop.first if pop.first[:fit] < best[:fit]
4: puts ” > gen #gen+1, fitness=#best[:fit]”

The implementation of the one-to-one replacement is
straightforward as can be seen in Algorithm 14.

Algorithm 14 Implementation of DE replacement in Ruby.
1: def onetoone(pop, trial)
2: return Array.new(pop.size) do |i|
3: (trial[i][:fit]<=pop[i][:fit]) ? trial[i] : pop[i]
4: end
5: end

IV. PRELIMINARY RESULTS

This section represents the preliminary results of generating
stochastic nature-inspired population-based algorithms using
the DSEL interpreter in Ruby. In line with this, two experi-
ments were conducted as follows. In the former, the source
code of the DE algorithm was simply assembled from the
translated source code parts discussed in Section III, while
in the latter presents the source code of the BA algorithm
translated from the DSEL specifications in Algorithm 4.

The source code of DE generated from DSEL specifications
in Algorithm 3 is depicted in Algorithm 15, while the DSEL
specifications in Algorithm 4 produced by the source code for
the BA algorithm is presented in Algorithm 16.

Algorithm 15 Main program for running simple DE
1: d = 20
2: np = 100
3: search space = Array.new(d) |i| [-5, +5]
4: pop = Array.new(np) |i| :vector=>init(”Rand”, search space)
5: pop.each|c| c[:fit] = problem(”Prob 1”, c[:vector])
6: gen = 1000
7: gen.times do |gen|
8: trial = oper(pop, search space, ”DE rand1bin”, 0.5, 0.9)
9: trial.each|c| c[:fit] = problem(”Prob 1”, c[:vector])

10: pop = repl(pop, trial, ”one-to-one”)
11: pop.sort!|x,y| x[:fit] <=> y[:fit]
12: best = pop.first if pop.first[:fit] < best[:fit]
13: puts ” > gen #gen+1, fitness=#best[:fit]”
14: end
15: puts ”Best: #best[:fit]”

Algorithm 16 Main program for running simple BA
1: d = 20
2: np = 100
3: search space = Array.new(d) |i| [-5, +5]
4: pop = Array.new(np) |i| :vector=>init(”Rand”, search space)
5: pop.each|c| c[:fit] = problem(”Prob 1”, c[:vector])
6: gen = 1000
7: gen.times do |gen|
8: trial = oper(pop, search space, ”BA Levy”, 0.5, 0.0, 1.0, 1.0)
9: trial.each|c| c[:fit] = problem(”Prob 1”, c[:vector])

10: pop = repl(pop, trial, ”one-to-one-cond”, 0.5)
11: pop.sort!|x,y| x[:fit] <=> y[:fit]
12: best = pop.first if pop.first[:fit] < best[:fit]
13: puts ” > gen #gen+1, fitness=#best[:fit]”
14: end
15: puts ”Best: #best[:fit]”

As can be seen in Algorithms 15-16, when comparison
between each other is made both source codes are very similar.
Actually, both source codes differ in calling the variation (line
8) and replacement (line 10) operators. This finding agrees
with our assumption that the gap between some real-coded
EAs and SI-based algorithms is not so big and that the main
difference pertains mostly to the variation operator.

V. CONCLUSION

The main message of this preliminary study is that the inter-
nal structure of some real-coded EAs and SI-based algorithms
is in fact not too different. However, more real-coded SI-based
algorithms as well as evolution strategies [1] (i.e., a kind of
real-coded EA) need to be analyzed in order to prove this fact
in general. On the other hand, this framework also does not
capture any adaptation and hybridization features.

However, at the moment, the proposed framework enables
automatic generation of stochastic real-coded nature-inspired
population-based algorithms and, thus, opens a new view
on the development of the so-called ”new nature-inspired
algorithms” that, in fact, differs between each other in the
implementation of variation operators. On the other hand, this
framework enables developers to mix the proposed features
of the analyzed nature-inspired algorithms and thus develop
new hybrid algorithms easily. The framework is also problem-

independent, because solving the new problem means only an
implementation of the new fitness library function.

In the future work, more stochastic nature-inspired
population-based algorithms should be analyzed and incorpo-
rated into the framework. Features should also be considered
like adaptation and hybridization.

REFERENCES

[1] Thomas Bäck. Evolutionary Algorithms in Theory and Practice:
Evolution Strategies, Evolutionary Programming, Genetic Algorithms.
Oxford University Press, Oxford, UK, 1996.

[2] Jason Brownlee. Clever algorithms: nature-inspired programming
recipes. Jason Brownlee, 2011.

[3] Charles Darwin. The origin of species. John Murray, London, UK,
1859.

[4] Swagatam Das and Ponnuthurai Nagaratnam Suganthan. Differential
evolution: a survey of the state-of-the-art. Evolutionary Computation,
IEEE Transactions on, 15(1):4–31, 2011.

[5] Agoston E. Eiben and James E. Smith. Introduction to Evolutionary
Computing. Springer Verlag, London, 2th edition, 2015.

[6] Iztok Fister, Iztok Fister Jr., Xin-She Yang, and Janez Brest. A
comprehensive review of firefly algorithms. Swarm and Evolutionary
Computation, 13:34–46, 2013.

[7] Iztok Fister Jr., Marjan Mernik, Janez Brest, and Iztok Fister. Design
and implementation of domain-specific language easytime. Computer
Languages, Systems & Structures, 37(4):151–167, 2011.

[8] Iztok Fister Jr, Xin-She Yang, Iztok Fister, Janez Brest, and Dušan
Fister. A brief review of nature-inspired algorithms for optimization.
Elektrotehniški vestnik, 80(3):116–122, 2013.

[9] Paul Hudak. Building domain-specific embedded languages. ACM
Computing Surveys (CSUR), 28(4), December 1996.

[10] James Kennedy and Russell Eberhart. Particle swarm optimization. In
Neural Networks, 1995. Proceedings., IEEE International Conference
on, volume 4, pages 1942–1948. IEEE, 1995.

[11] Uros Mlakar, Iztok Fister Jr., and Iztok Fister. Hybrid self-adaptive
cuckoo search for global optimization. Swarm and Evolutionary Com-
putation, 2016. doi:10.1016/j.swevo.2016.03.001.

[12] Ferrante Neri and Ville Tirronen. Recent advances in differential
evolution: A survey and experimental analysis. Artif. Intell. Rev., 33(1-
2):61–106, February 2010.

[13] Singiresu S. Rao. Engineering Optimization: Theory and Practice. John
Willey & Sons, 4th edition, 2009.

[14] Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and
Yves Bontemps. Generic semantics of feature diagrams. Computer
Networks, 51(2):456–479, 2007.

[15] Kenneth Sörensen. Metaheuristics–the metaphor exposed. International
Transactions in Operational Research, 22(1):3–18, 2015.

[16] Rainer Storn and Kenneth Price. Differential evolution–a simple and ef-
ficient heuristic for global optimization over continuous spaces. Journal
of global optimization, 11(4):341–359, 1997.

[17] Arie Van Deursen and Paul Klint. Domain-specific language design
requires feature descriptions. CIT. Journal of computing and information
technology, 10(1):1–17, 2002.

[18] Xin-She Yang. A new metaheuristic bat-inspired algorithm. In Nature
inspired cooperative strategies for optimization (NICSO 2010), pages
65–74. Springer, 2010.

[19] Xin-She Yang and Suash Deb. Cuckoo search via lévy flights. In Nature
& Biologically Inspired Computing, 2009. NaBIC 2009. World Congress
on, pages 210–214. IEEE, 2009.

