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Abstract—In this paper, we study the influence of using
variable grouping inside mutation operators for large-scale
multi-objective optimization. We introduce three new mutation
operators based on the well-known Polynomial Mutation. The
variable grouping in these operators is performed using two
different grouping mechanisms, including Differential Grouping
from the literature. In our experiments, two popular algorithms
(SMPSO and NSGA-II) are used with the proposed operators
on the WFG1-9 test problems. We examine the performance of
the proposed mutation operators and take a look at the impact
of the different grouping mechanisms on the performance. Using
the Hypervolume and IGD indicators, we show that mutation
using variable grouping can significantly improve the results on
all tested problems in terms of both convergence and diversity of
solutions. Furthermore, the performance of SMPSO and NSGA-
II with the proposed operators is compared with a large-scale
multi-objective algorithm (CCGDE3). The results show that the
proposed operators can significantly outperform CCGDE3.

I. INTRODUCTION

In evolutionary computation, the creation of new solutions
in the search space is usually achieved by genetic operators,
such as crossover and mutation. Mutation operators are de-
signed to replicate the mutation processes in nature, usually
by applying small changes to a given individual. Operators like
the Polynomial Mutation [1] are widely used in the literature
and work well on small-scale multi-objective optimization
problems. However, when the dimensionality of the search
space is increased, the performance of classical evolutionary
computation approaches often deteriorates. Finding optimal
solutions in problems with a large number of variables is
an ongoing challenge both in single- and multi-objective
optimization. Concepts like Cooperative Coevolution [2] and
other approaches [3] have been proposed in the literature,
which usually involve a special mechanism for the division
of the variables into multiple groups.

This work examines the effects of variable grouping when
used inside mutation operators. By using grouping mecha-
nisms similar to those used in problem decomposition meth-
ods, we aim to make a more intelligent choice on which vari-
ables are changed by the mutation step during optimization.

In addition to the well-known Polynomial Mutation [1], we
propose three new mutation operators in this work. First, we
extend the Polynomial Mutation to the Grouped Polynomial
Mutation by making the selection on which variables are
mutated based on a predefined grouping scheme. Second,
we propose another version called the Linked Polynomial
Mutation, which binds together the amount of change of the
mutated variables per individual. The third operator proposed
in this work utilizes both of these two concepts. The proposed
operators are tested using two different grouping methods:
One is a simple grouping strategy named Ordered Grouping
that is based on absolute variable values, and the other is
Differential Grouping [4], a single-objective method developed
to detect variable interaction. All of the operators are used
within two well-known algorithms (NSGA-II [5] and SMPSO
[6]) and furthermore compared with a large-scale optimizer
called CCGDE3 [7] on the WFG1-9 problems [8]. The goal
of this work is to show that using grouping mechanisms in mu-
tation operators can significantly improve the performance of
existing algorithms in large-scale multi-objective optimization,
and therefore be beneficial for the design of future large-scale
algorithms.

This article is structured as follows. In Section II, we briefly
explain the concept of multi-objective optimization, followed
by a review of related studies on multi-objective large-scale
approaches, grouping mechanisms and mutation operators. In
Section III, we explain how grouping methods can be utilized
in mutation, and propose three new mutation operators using
this concept. Section IV briefly explains the two different
grouping mechanisms that are used in this work. After a
performance evaluation of the proposed mutation operators in
Section V, we conclude the paper in Section VI.

II. BACKGROUND AND RELATED WORK

Problems in nature and science often contain multiple con-
flicting objectives. These problems are called multi-objective
problems (MOPs) and can mathematically be formulated as:



Z : min ~f(~x) = (f1(~x), f2(~x), ..., fm(~x))T

s.t. ~x ∈ Ω ⊆ Rn
(1)

This kind of MOP maps the decision Space Ω = {~x ∈
Rn|~g(~x) ≤ 0} of dimension n to the objective space of
dimension m. For such problems, a single optimal solution
can no longer be determined, and modern problem solving
methods often concentrate on finding an approximation of a
Pareto-optimal solution set. A variety of metaheuristic algo-
rithms have been developed to find a non-dominated solution
set for approximating the true Pareto-front.

Large-scale optimization usually deals with optimizing
MOPs that contain a large number of variables (also called
many-variable problems). The scope of this work is to enable
optimization methods to optimize problems that contain a large
number of decision variables, as these kinds of large-scale
problems are often difficult to solve for traditional optimization
techniques.

Even though a variety of large-scale optimizers have been
developed in recent years, most of them concentrate on single-
objective optimization. An overview of existing large-scale
global optimizers for single-objective problems can be found
in [9]. One of the most popular concepts is Cooperative
Coevolution (CC), which was first introduced by Potter and De
Jong [2]. CC aims to optimize several independent populations
of subsets of the n decision variables. New solution candidates
have to be formed by combining the variable values from
different subcomponents. However, genetic operators are only
applied within each subcomponent. The concept of CC has
since been used in a variety of large-scale single-objective
algorithms [10]–[14].

For multi-objective optimization, the CCGDE3 algorithm
was proposed [7], combining CC with the GDE3 optimizer
[15]. The CCGDE3 algorithm was tested for the ZDT1-3 and
ZDT6 [16] problems with up to 5000 decision variables, and
performed well especially for the high-dimensional instances.
An earlier approach by Iorio and Li [17] combined the concept
of CC with the NSGA-II algorithm, and focused on the ZDT
problems for their analysis. However, only small-dimensional
instances of 10 and 30 variables were tested.

In [3], variable grouping was used in the so-called Weighted
Optimization Framework to tackle large-scale multi-objective
problems without using CC. A set of weights was applied
to the groups of decision variables. The original decision
variables and the weight-variables were optimized in turns
using an arbitrary metaheuristic. The authors reported a su-
perior performance compared to the SMPSO and NSGA-II
algorithms for the 1000-variable WFG1-9 test problems.

In [18], an optimization problem based on a real world
application was introduced within a competition at the IEEE
Congress on Evolutionary Computation (CEC) 2015. This
problem involved up to 4864 decision variables, and its multi-
objective version has been used in [19] and [20]. However, the
first approach did not treat the problem in a black-box manner
and used derivative information from the objective functions.

Both approaches performed superior to the baseline provided
by the authors of [18], but were not tested any further on
established benchmark problems.

Concepts like CC usually require a scheme for variable
grouping, to divide the n decision variables into different
subcomponents. A simple random grouping mechanism was
for instance used in [10]. Consideration for non-separable
problems was done in [11], where the interaction of variables
is taken into account by a learning mechanism for finding
the optimal division of variables. The Differential Grouping
that is used in the present work was developed in [4] to find
improved divisions of the variables in single-objective CC
algorithms. Other concepts and extensions to this approach for
variable grouping have also been proposed [21], [22]. Section
IV later in this work will go into further detail on Differential
Grouping.

The basic mutation operator used in this work is the
Polynomial Mutation. It was proposed in [1] and is designed
to alter a variable value based on a polynomial distribution
with the original value in its center. Polynomial Mutation has
been used in a variety of optimization algorithms, e.g. [5],
[6], [17]. In the literature there are two common versions of
Polynomial Mutation that differ from each other in the distri-
bution of the possible changes. These are sometimes referred
to as highly disruptive and non-highly disruptive Polynomial
Mutation. The original non-highly disruptive mutation has the
disadvantage to become useless when the variable value gets
closer to its domain border [23]. A new highly disruptive
version was therefore introduced in [24], where the complete
domain of each variable was included in the distribution of the
operator. In [23], a hybrid of both versions was introduced. A
detailed description of the operator is given in Section III-A
later in this work.

In [25], Polynomial Mutation was used in a comparison
study of five different mutation schemes. Instead of making
the selection of which variables to mutate independently for
each variable based on a probability, certain rules were used
to decide which variables would be changed at a given time
and in which order. Their results on some single-objective
problems showed an improved performance when the new
mutation schemes were used.

III. VARIABLE GROUPING IN MUTATION OPERATORS

This section describes four different mutation operators
based on the widely used Polynomial Mutation. After describ-
ing the original version, we propose three new versions called
Linked Polynomial, Grouped Polynomial and Grouped Linked
Polynomial mutation. We explain how the mutation can be
equipped with different variable grouping mechanisms, and
how the amount of change for each variable can be linked
within these groups.

A. Polynomial Mutation

Polynomial Mutation is designed to alter a variable’s value
based on a certain distribution around the current value. As
mentioned before, there are two versions in the literature,



and the highly disruptive version is used in this work. The
pseudocode of this operator is shown in Figure 1.

Polynomial Mutation has two parameters: the mutation
probability p and the distribution index η. The probability p is
used to determine whether a variable is mutated or not. This
is decided for each variable xi (i = 1, ..., n) of a solution ~x
independently. Thus, the expected number of mutated variables
in a solution is n · p. Often a value of p = 1

n is used in the
literature [5], [6], [17], which results in the mutation of only
a single variable on average in each solution. The distribution
index η of the Polynomial Mutation is used to determine the
distribution from which the new value is chosen. The larger
η becomes, the higher the probability that a value very close
to xi is drawn from the distribution. A typical value for η
according to the literature is 20.0 [5], [17].

After determining if a mutation occurs to a variable (Line 3
in Figure 1), another random value u is drawn from a uniform
distribution. This value is crucial, as it determines the amount
of change that will be made to xi. In Polynomial Mutation, a
distinction is made between the left side and the right side of
the distribution centered at xi, depending on the value of u.
The updated value for xi is chosen according to the equations
in Lines 5-12 in Figure 1. If a value should exceed one of the
domain borders, it will be set to the respective border value
by the repair mechanism in Line 13.

B. Linked Polynomial Mutation

In this subsection we introduce the Linked Polynomial
Mutation operator. It follows a similar idea as the Polynomial
Mutation, but keeps the amount of change connected among
all mutated variables. In problem decomposition strategies, it
can be desirable to consider the separability of a problem. In
non-separable problems, some or all of the decision variables
interact with each other, and a change in one of them without
or with the wrong change in the other variable might reduce
solution quality. We therefore design the linked version of the
Polynomial Mutation operator, that establishes a link between
the variables that are subject to change.

This is done by keeping the relative amount of change in
each mutated variable fixed and equal per solution. Given the
pseudocode in Figure 1, we simply move the choice of u (the
amount of change) in Line 4 further up, so that only one fixed
value for u is drawn prior to Line 1. The value is drawn only
one time and used for computing all changes of each mutated
variable of a given solution. By doing so, all variables that
actually undergo mutation according to the probability p are
mutated by the same amount (relative to their domain).

The motivation behind this operator is the following: If by
coincidence mutation is performed on variables that interact
with each other, this mechanism will keep the amount of
change the same, and this might lead to less disturbance in
solution quality. Of course, this might not always be true
and highly depends on the kind of interaction between the
variables. The effectiveness of this will be examined later in
the experiments in Section V.

Input: Solution ~x, Probability p, Distribution Index η
Output: Mutated Solution ~y

1: for i = 1 to the number of variables in ~x do
2: r ← random(0,1)
3: if r < p then
4: u ← random(0,1)
5: if u ≤ 0.5 then
6: δ1 =

xi−xi,min
xi,max−xi,min

7: δq = (2u+ (1− 2u)(1− δ1)η+1)
1
η+1 − 1

8: else
9: δ2 =

xi,max−xi
xi,max−xi,min

10: δq = 1− (2(1− u) + 2(u− 0.5)(1− δ2)η+1)
1
η+1

11: end if
12: yi = xi + δq(xi,max − xi,min)
13: repair(yi)
14: else
15: yi = xi
16: end if
17: end for
18: return ~y

Fig. 1. Pseudocode of the Polynomial Mutation operator.

C. Grouped Polynomial Mutation

In this part we propose a version of Polynomial Muta-
tion that incorporates variable grouping. The variables are
separated into distinct groups and mutation is only applied
to a group as a whole entity, i.e. to each variable in a
group at the same time. Similar decomposition strategies as in
coevolutionary methods might be used, and Section IV later
in this work will present two different grouping mechanisms.

In the Grouped Polynomial Mutation, the decision of which
variables will be changed is transferred from a random mech-
anism to an “intelligent mechanism” that makes this choice
beforehand. This is based on the assumption that a grouping
mechanism makes a suitable choice of which variables interact
and should be changed at the same time. Especially in non-
separable problems, this is supposed to contribute to the search
process.

In contrast to Polynomial Mutation, the mutation probability
parameter p is no longer needed. Which and how many of the
n variables are subject to change is defined by the number
of groups. Thus, the Grouped Polynomial Mutation needs the
additional parameter k, which defines the number of groups.
The operator works as follows:

First, the variables of the given solution ~x are split into
k distinct (but not necessarily evenly sized) groups by using
an arbitrary grouping mechanism. In the next step, one of
these k produced groups is chosen uniformly at random.
All variables in this chosen group are then subject to the
Polynomial Mutation procedure as in Lines 4-13 in Figure
1. That is, for each variable in the group, a separate value
for u is chosen and the mutation is carried out according to
this value. No additional probability value is used. The choice



Input: Solution ~x, Grouping Mechanism G,
Distribution Index η

Output: Mutated Solution ~y
1: {g1, ..., gk} ← Apply G to ~x, producing k groups
2: j ← Pick a group index at random from {1, ..., k}
3: u ← random(0,1)
4: for all variables xi ∈ group gj do
5: if u ≤ 0.5 then
6: δ1 =

xi−xi,min
xi,max−xi,min

7: δq = (2u+ (1− 2u)(1− δ1)η+1)
1
η+1 − 1

8: else
9: δ2 =

xi,max−xi
xi,max−xi,min

10: δq = 1− (2(1− u) + 2(u− 0.5)(1− δ2)η+1)
1
η+1

11: end if
12: yi = xi + δq(xi,max − xi,min)
13: repair(yi)
14: end for
15: for all variables xi /∈ group gj do
16: yi = xi
17: end for
18: return ~y

Fig. 2. Pseudocode of the Grouped and Linked Polynomial Mutation operator.

of which variables are changed is solely made by the random
choice of the mutated group. All variables in the other groups
remain unchanged. Assuming evenly sized groups, the amount
of variables that are changed is n

k .

D. Grouped and Linked Polynomial Mutation

Finally we propose the Grouped and Linked Polynomial
Mutation, which combines the concepts used in the previous
two subsections. The pseudocode for this combined mutation
operator is shown in Figure 2.

A grouping mechanism G and a distribution index η are
used as inputs for the operator. As in the Grouped Polynomial
Mutation, the variables that are to be mutated are chosen based
on variable grouping (Line 1 in Figure 2) and picking one
group at random (Line 2). Additionally, the value for u is
now drawn beforehand (Line 3) like in the Linked Polynomial
Mutation, so that the amount of change is fixed and equal for
all variables in the changed group. Then, all variables in the
chosen group are subject to change using the usual Polynomial
Mutation procedure and given u.

As explained, variables that strongly interact with each other
should usually be altered together, and we presume that it
might also be beneficial to alter them by the same amount.
Compared to the purely linked version, we can now assume
that interacting variables might be altered at the same time
(as they are gathered in the same group) and are furthermore
altered by the same amount.

IV. GROUPING MECHANISMS

This section introduces two grouping mechanisms used in
this work. As mentioned earlier, it might be desirable to gather

variables in the same group that strongly interact with each
other in non-separable optimization problems. Similar methods
to those in cooperative coevolutionary approaches might be
used. We chose to examine two grouping methods in this work.
The first one called Ordered Grouping is rather simple and
does not use any information about the objective functions.
The second method is the Differential Grouping algorithm
developed by Omidvar et al. [4] in 2014. It is used in this work
as a representative of more intelligent grouping mechanisms
that are based on problem analysis.

A. Ordered Grouping

The Ordered Grouping mechanism gathers the decision
variables of the selected solution by their absolute values. All
variables are sorted based on their absolute values and the
n
k variables with the smallest values are assigned to the first
group, the next n

k to the second group and so forth.

B. Differential Grouping

Differential Grouping (DG) is a single-objective grouping
mechanism that was developed in 2014 [4] and aims to detect
variable interaction prior to the optimization of the problem.
In short, DG compares the amount of change in the (single)
objective function in reaction to a change in a variable xi
when another variable xj is changed. Interacting variables are
gathered into the same group, and one additional group is
created that contains all non-separable variables. The amount
of interaction is determined using a threshold value ε, which
is the only parameter in DG. The number of groups as well as
their sizes are set automatically by the DG algorithm. A major
drawback of the DG algorithm is its computational costs.
Assuming the problem contains k = n

l evenly sized groups
with l variables each, the number of function evaluations
consumed is in O(n

2

l ). This means for a fully separable
problem using n = 1000 decision variables, DG needs about
n2 = 1, 000, 000 function evaluation to perform the grouping.
Given that our experiments in Section V only use 100, 000
function evaluation for the whole optimization process, this
is little practicable. In this work, we use DG for comparison,
although it has been developed for single-objective optimiza-
tion. To make it applicable to MOP, we use the original
version and regard only one objective (the first one) of the
MOP in the grouping algorithm. We point out that this choice
might not be optimal, and the question how to apply DG to
MOP in the best way might be a topic for future research.
A multi-objective grouping mechanism that takes into account
all objective functions might also be used in the future.

V. EVALUATION

In this section we evaluate the performance of the proposed
mutation operators on large-scale instances of the well-known
WFG1-9 test problems [8]. All experiments use two objectives
and n = 1000 decision variables, which are split into 250
position-related and 750 distance-related variables. Based on
the proposed mutation operators and grouping mechanisms,
the experiments include seven different configurations of



mutation, each of which is tested in the two well-known
algorithms NSGA-II [5] and SMPSO [6]. In addition, we
compare the performance with the CCGDE3 algorithm1, which
was designed for large-scale optimization in [7]. The used
mutation operators are:

1) Classical: Polynomial Mutation is used with a probabil-
ity of 1

n .
2) High Probability: For comparison, Polynomial Muta-

tion is used with a high mutation probability of 1
k , where

k is the number of groups used in the other operators.
3) Ordered Grouped Polynomial: Grouped Polynomial

Mutation as in Section III-C. All variables are divided
into k groups using the Ordered Grouping in Section
IV-A.

4) Differential Grouped Polynomial: Grouped Polyno-
mial Mutation with Differential Grouping.

5) Linked Polynomial: Linked Polynomial Mutation as in
Section III-B with a mutation probability of 1

k .
6) Ordered Grouped + Linked: Grouped and Linked

Polynomial Mutation as in Section III-D using the Or-
dered Grouping mechanism.

7) Differential Grouped + Linked: Grouped and Linked
Polynomial Mutation with Differential Grouping.

Each of these operators is used in two different algorithms,
which results in a total of seven SMPSO variants, seven
NSGA-II variants, plus the CCGDE3 algorithm. For each
experiment we perform 51 independent runs and report the
median and IQR values of the relative hypervolume [26]
and IGD [27] indicators. The relative hypervolume is the
hypervolume obtained by a solution set in relation to the
hypervolume obtained by a sample of the Pareto-front of
the problem. The used reference point for the hypervolume
indicator is obtained by using the nadir point of our Pareto-
front sample and multiply it by 2.0 in each dimension. This
is done to make sure most of the obtained solutions can
contribute to the HV, even when the sets are not close to the
optimal front. Statistical significance is tested using a Mann-
Whitney U Test and significance is assumed for a value of
p < 0.01.

The size of the populations is set to 100 and we use 100, 000
function evaluations as a stopping criterion in all experiments.
The number of groups is set to k = 4, since preliminary
experiments showed that this value can provide a reasonable
performance. A detailed analysis of different values for k can
not be included here due to page limitations. The distribution
index used in all operators is set to 20.0. For the operators
that use Differential Grouping, the grouping algorithm was run
prior to the optimization (ε = 10−5). The function evaluations
used to obtain the groups are shown in Table III.

A. Results

The results of the SMPSO and NSGA-II experiments are
shown in Tables I and II respectively. Best results for the

1https://www.cs.cinvestav.mx/∼EVOCINV/software/CCLSMO/CCLSMO.
html

TABLE I
SMPSO RESULTS (1000 VARIABLES). L = LINKED, G = GROUPED.

Relative HV IGD

W
FG

1

CCGDE3 0.367846 (0.008945) * 0.030674 (0.000507) *
Classical 0.591757 (0.010107) * 0.016116 (0.000261) *
High Probability 0.589273 (0.008977) * 0.016170 (0.000256) *
Grouped (Ordered) 0.593749 (0.007699) * 0.016081 (0.000135) *
Grouped (Differential) 0.589468 (0.010483) * 0.016186 (0.000297) *
Linked 0.604692 (0.009476) * 0.015964 (0.000086) *
L + G (Ordered) 0.625262 (0.006802) 0.015505 (0.000128)

L + G (Differential) 0.592295 (0.007372) * 0.016115 (0.000213) *

W
FG

2

CCGDE3 0.619216 (0.004488) * 0.035341 (0.000453) *
Classical 0.737396 (0.026523) * 0.029851 (0.003092) *
High Probability 0.747556 (0.025985) * 0.027509 (0.003128) *
Grouped (Ordered) 0.761513 (0.009156) * 0.022420 (0.000901) *
Grouped (Differential) 0.770842 (0.005847) * 0.021737 (0.000494) *
Linked 0.821493 (0.039492) * 0.014936 (0.001235) *
L + G (Ordered) 0.970062 (0.008452) * 0.003065 (0.000804) *
L + G (Differential) 0.997120 (0.001199) 0.000539 (0.000162)

W
FG

3

CCGDE3 0.543488 (0.006390) * 0.010261 (0.000178) *
Classical 0.593086 (0.030444) * 0.009166 (0.002193) *
High Probability 0.588649 (0.044221) * 0.009354 (0.002886) *
Grouped (Ordered) 0.662223 (0.015546) * 0.006601 (0.000562) *
Grouped (Differential) 0.584304 (0.019029) * 0.009713 (0.001991) *
Linked 0.727292 (0.001564) * 0.004838 (0.000081) *
L + G (Ordered) 0.839046 (0.004231) 0.003110 (0.000084)

L + G (Differential) 0.728010 (0.000669) * 0.004805 (0.000035) *

W
FG

4

CCGDE3 0.508533 (0.006340) * 0.011513 (0.000823) *
Classical 0.844238 (0.004784) * 0.003153 (0.000228) *
High Probability 0.844314 (0.004439) * 0.003101 (0.000207) *
Grouped (Ordered) 0.876147 (0.007694) * 0.002117 (0.000315) *
Grouped (Differential) 0.843023 (0.002552) * 0.003172 (0.000140) *
Linked 0.844032 (0.004020) * 0.003121 (0.000139) *
L + G (Ordered) 0.954334 (0.009066) 0.000794 (0.000055)

L + G (Differential) 0.849472 (0.008305) * 0.003191 (0.000209) *

W
FG

5

CCGDE3 0.540655 (0.008380) * 0.011037 (0.000504) *
Classical 0.804578 (0.004674) * 0.006546 (0.000239) *
High Probability 0.806261 (0.005083) * 0.006439 (0.000403) *
Grouped (Ordered) 0.815496 (0.009366) * 0.005553 (0.000660) *
Grouped (Differential) 0.804038 (0.005120) * 0.006569 (0.000271) *
Linked 0.818252 (0.005702) * 0.006424 (0.000336) *
L + G (Ordered) 0.903456 (0.009612) 0.001757 (0.000308)

L + G (Differential) 0.833800 (0.006405) * 0.006644 (0.000358) *

W
FG

6

CCGDE3 0.401075 (0.006442) * 0.029259 (0.000705) *
Classical 0.968987 (0.003734) * 0.005422 (0.000553) *
High Probability 0.968228 (0.003379) * 0.005483 (0.000467) *
Grouped (Ordered) 0.996617 (0.000853) * 0.000249 (0.000081) *
Grouped (Differential) 0.996977 (0.000313) 0.000223 (0.000003)

Linked 0.994513 (0.002721) * 0.000503 (0.000403) *
L + G (Ordered) 0.996790 (0.000122) * 0.000228 (0.000005) *
L + G (Differential) 0.996829 (0.000258) 0.000226 (0.000008)

W
FG

7

CCGDE3 0.524629 (0.007656) * 0.005185 (0.000180) *
Classical 0.698961 (0.016047) * 0.003365 (0.000197) *
High Probability 0.717487 (0.018648) * 0.003189 (0.000146) *
Grouped (Ordered) 0.726447 (0.018814) * 0.002997 (0.000204) *
Grouped (Differential) 0.709394 (0.020161) * 0.003258 (0.000178) *
Linked 0.758392 (0.009962) * 0.003428 (0.000190) *
L + G (Ordered) 0.947363 (0.014633) 0.000480 (0.000147)

L + G (Differential) 0.774369 (0.006558) * 0.004091 (0.000682) *

W
FG

8

CCGDE3 0.464333 (0.005882) * 0.017667 (0.000780) *
Classical 0.515900 (0.000816) * 0.015897 (0.000083) *
High Probability 0.515196 (0.000601) * 0.015960 (0.000062) *
Grouped (Ordered) 0.515288 (0.001891) * 0.015934 (0.000196) *
Grouped (Differential) 0.515049 (0.000507) * 0.015964 (0.000040) *
Linked 0.783168 (0.028670) * 0.004620 (0.000590) *
L + G (Ordered) 0.859717 (0.020352) * 0.003040 (0.000349)

L + G (Differential) 0.893367 (0.010179) 0.004071 (0.000718) *

W
FG

9

CCGDE3 0.475881 (0.008748) * 0.009960 (0.000320) *
Classical 0.897946 (0.007659) * 0.001871 (0.000199) *
High Probability 0.896914 (0.007444) * 0.001875 (0.000210) *
Grouped (Ordered) 0.955709 (0.014401) * 0.000320 (0.000178) *
Grouped (Differential) 0.894752 (0.009126) * 0.001938 (0.000178) *
Linked 0.897048 (0.005813) * 0.001936 (0.000168) *
L + G (Ordered) 0.961435 (0.011490) 0.000241 (0.000098)

L + G (Differential) 0.896248 (0.007373) * 0.001981 (0.000221) *



TABLE II
NSGA-II RESULTS (1000 VARIABLES). L = LINKED, G = GROUPED.

Relative HV IGD

W
FG

1

CCGDE3 0.367846 (0.008945) * 0.030674 (0.000507) *
Classical 0.315101 (0.002685) * 0.035935 (0.000161) *
High Probability 0.299124 (0.002227) * 0.036327 (0.000173) *
Grouped (Ordered) 0.306141 (0.003979) * 0.035924 (0.000318) *
Grouped (Differential) 0.311402 (0.002919) * 0.035793 (0.000208) *
Linked 0.582779 (0.011338) 0.016350 (0.000514)

L + G (Ordered) 0.522169 (0.034854) * 0.020015 (0.002242) *
L + G (Differential) 0.367080 (0.008066) * 0.031288 (0.000607) *

W
FG

2

CCGDE3 0.619216 (0.004488) * 0.035341 (0.000453) *
Classical 0.667958 (0.048709) * 0.032840 (0.007741) *
High Probability 0.663945 (0.059934) * 0.032449 (0.007978) *
Grouped (Ordered) 0.680277 (0.067914) * 0.032052 (0.009224) *
Grouped (Differential) 0.658211 (0.060273) * 0.032529 (0.007460) *
Linked 0.732674 (0.004360) * 0.023569 (0.000360) *
L + G (Ordered) 0.873795 (0.006747) 0.010968 (0.000461)

L + G (Differential) 0.828344 (0.004611) * 0.015758 (0.000492) *

W
FG

3

CCGDE3 0.543488 (0.006390) * 0.010261 (0.000178) *
Classical 0.611701 (0.007014) * 0.008346 (0.000286) *
High Probability 0.632486 (0.006078) * 0.007351 (0.000197) *
Grouped (Ordered) 0.656521 (0.006352) * 0.006749 (0.000219) *
Grouped (Differential) 0.608953 (0.006612) * 0.007983 (0.000187) *
Linked 0.713287 (0.002506) * 0.005204 (0.000104) *
L + G (Ordered) 0.796826 (0.004235) 0.003569 (0.000080)

L + G (Differential) 0.727341 (0.000042) * 0.004829 (0.000001) *

W
FG

4

CCGDE3 0.508533 (0.006340) * 0.011513 (0.000823) *
Classical 0.622804 (0.013154) * 0.004845 (0.000293) *
High Probability 0.654599 (0.008638) * 0.004319 (0.000200) *
Grouped (Ordered) 0.672081 (0.009119) * 0.003965 (0.000214) *
Grouped (Differential) 0.598239 (0.005898) * 0.005773 (0.000183) *
Linked 0.666287 (0.050934) * 0.004399 (0.000234) *
L + G (Ordered) 0.847588 (0.007393) 0.003086 (0.000259)

L + G (Differential) 0.797889 (0.054696) * 0.003299 (0.001210) *

W
FG

5

CCGDE3 0.540655 (0.008380) * 0.011037 (0.000504) *
Classical 0.590757 (0.010342) * 0.008853 (0.000463) *
High Probability 0.657639 (0.007488) * 0.006783 (0.000240) *
Grouped (Ordered) 0.687127 (0.009560) * 0.005702 (0.000202) *
Grouped (Differential) 0.583821 (0.006670) * 0.009511 (0.000207) *
Linked 0.833456 (0.006655) * 0.003552 (0.000145) *
L + G (Ordered) 0.870639 (0.005913) 0.002239 (0.000155)

L + G (Differential) 0.814990 (0.004686) * 0.004536 (0.000174) *

W
FG

6

CCGDE3 0.401075 (0.006442) * 0.029259 (0.000705) *
Classical 0.575982 (0.013639) * 0.015226 (0.001135) *
High Probability 0.557367 (0.010745) * 0.016532 (0.000704) *
Grouped (Ordered) 0.581868 (0.011794) * 0.015111 (0.000663) *
Grouped (Differential) 0.575970 (0.009301) * 0.015239 (0.000502) *
Linked 0.566894 (0.015396) * 0.015281 (0.001262) *
L + G (Ordered) 0.807439 (0.013516) 0.006365 (0.000257)

L + G (Differential) 0.794394 (0.014941) * 0.008135 (0.000499) *

W
FG

7

CCGDE3 0.524629 (0.007656) * 0.005185 (0.000180) *
Classical 0.647512 (0.008260) * 0.003732 (0.000157) *
High Probability 0.696697 (0.009147) * 0.003328 (0.000065) *
Grouped (Ordered) 0.702850 (0.007463) * 0.003070 (0.000075) *
Grouped (Differential) 0.670489 (0.009197) * 0.004065 (0.000079) *
Linked 0.668523 (0.009633) * 0.003611 (0.000226) *
L + G (Ordered) 0.859782 (0.005282) 0.002158 (0.000305)

L + G (Differential) 0.647380 (0.007890) * 0.003985 (0.000264) *

W
FG

8

CCGDE3 0.464333 (0.005882) * 0.017667 (0.000780) *
Classical 0.550664 (0.007526) * 0.012517 (0.000550) *
High Probability 0.593013 (0.008607) * 0.010872 (0.000402) *
Grouped (Ordered) 0.605128 (0.008846) * 0.010129 (0.000407) *
Grouped (Differential) 0.559252 (0.009561) * 0.012270 (0.000602) *
Linked 0.704746 (0.018509) * 0.007971 (0.000465) *
L + G (Ordered) 0.829897 (0.015840) * 0.004912 (0.000264)

L + G (Differential) 0.859430 (0.011909) 0.004795 (0.000284)

W
FG

9

CCGDE3 0.475881 (0.008748) * 0.009960 (0.000320) *
Classical 0.620250 (0.022098) * 0.005063 (0.000478) *
High Probability 0.625662 (0.012819) * 0.004958 (0.000206) *
Grouped (Ordered) 0.634514 (0.013140) * 0.004792 (0.000261) *
Grouped (Differential) 0.505976 (0.006625) * 0.008087 (0.000170) *
Linked 0.729095 (0.093076) * 0.003221 (0.000941) *
L + G (Ordered) 0.883259 (0.062866) 0.001409 (0.000933)

L + G (Differential) 0.819419 (0.058882) * 0.002754 (0.000289) *

TABLE III
OBTAINED GROUPS AND USED FUNCTION EVALUATIONS BY THE

DIFFERENTIAL GROUPING ALGORITHM (ε = 10−5).

# Groups # Eval. Comment

WFG1 37 639,894 —
WFG2 2 565,250 Exactly split distance and position variables
WFG3 1 1,001,000 One group of “separable” variables
WFG4 1 1,001,000 One group of “separable” variables
WFG5 1 1,001,000 One group of “separable” variables
WFG6 2 565,250 Exactly split distance and position variables
WFG7 1 1,001,000 One group of “separable” variables
WFG8 2 949,702 —
WFG9 1 1,001,000 One group of “separable” variables
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Fig. 4. Selected algorithms’ solution sets for the WFG3 problem (Runs with
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respective problem and indicator are shown in bold. The
statistical significance (shown by an asterisk) of each entry
is calculated against the respective best performance for each
problem. The worst performance is shown in italic font. In
addition to these tables, we show the runs that obtained the
median hypervolume values of the SMPSO for the WFG2, 3,
6 and 7 problems in Figures 3-6.

For each of the nine problems, the best performance in terms
of hypervolume is obtained by one of the algorithms with the
linked and grouped operators. The only exceptions are NSGA-
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Fig. 6. Selected algorithms’ solution sets for the WFG7 problem (Runs with
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II for the WFG1 problem, where the linked mutation obtains
a higher value than the respective grouped operators, and
SMPSO for the WFG6, where the grouped operator performs
best. The results of the SMPSO experiments in Table I are
in general superior to those of the NSGA-II algorithm in
Table II. For both algorithms, we see a statistically significant
improvement in performance when the linked and grouped
mutation operators are used compared to the classical versions.
This holds in terms of hypervolume as well as spread of the
solutions (indicated by the IGD values). The classical mutation
operator and its high probability version are outperformed
significantly for all problems and both algorithms.

1) Linked Operator: We now take a closer look and com-
pare the performance of the Linked Polynomial Mutation with
the high probability version. Both operators use the same
probability of 1

k which results in an equal expected amount
of change. In Table I for the SMPSO, we observe a superior
performance of the linked operator for all problems except
WFG4, where both version perform equally well. The same
is true for the NSGA-II results in Table II, where the linked
operator is superior for the WFG1-6, 8 and 9 problems. By
this, we can see that even when mutating random variables
without using variable grouping, there is chance that interact-
ing variables are changed at the same time by the operator,

and that a link between these changes leads to a better result
of the optimization.

2) Grouped Operators: Next we take a look at the operators
that involve variable grouping. Overall, the best hypervolume
values for all of the problems in Table I are obtained by
the linked and grouped operators. The linked operator using
the ordered grouping performs best and obtains the best
hypervolume and IGD values for the WFG1, 3, 4, 5, 7 and 9
problems. For the WFG2, 6 and 8 problems, the Differential
Grouping performs better in terms of hypervolume and IGD
values, and for WFG6, the non-linked version performs best
with just an insignificant difference to the linked version.
Moreover, the grouped versions of the linked operator perform
significantly better than the linked operator without variable
grouping. With the exception of WFG1, this is also true for
the NSGA-II results.

3) Differential Grouping: Next we take a closer look on
the performance of Differential Grouping (DG). Out of all
nine problems, the WFG2, 6 and 8 were the only ones, where
the DG-enhanced operators were able to outperform all other
methods. The hypervolume (and most IGD) values of the
linked DG operator were significantly better than the linked
Ordered Grouping ones for WFG2, 6 and 8 when SMPSO was
used (Table I) and WFG8 when NSGA-II was used (Table II).

To analyze this behaviour, Table III lists the number of
obtained groups of the DG algorithm for each problem. The
WFG2 and 6 are the only ones that are split into two groups,
where the first one contains the first 250 decision variables
while the second group contains the last 750 variables. As
mentioned in Section V, the 1000 decision variables in
our experiments are split into 250 position-related and 750
distance-related variables. Thus the DG mechanism recognizes
the different properties of the variable types for the WFG2
and WFG6 problems and split these variables apart. The
obtained groups for the WFG8 problem look different. Here,
the DG algorithm creates two groups as well, with group one
containing the variables number 1 and 251 - 276 and group two
the rest of the variables. Hence, the DG put 1 position variable
into the same group with 26 distance-related variables. The
performance for the WFG8 however is supporting this choice.

The performance of the DG algorithm compared to the sim-
ple Ordered Grouping mechanism, especially for the WFG2,
6 and 8 problems, emphasizes that the usage of a suitable
grouping mechanism is beneficial for the search. We also
observe (Table III) that the DG algorithm considers all 1000
variables of the WFG3-5, 7 and 8 problems as separable. By
default DG gathers separable variables in the same group,
which results in just one single group for WFG3-5, 7 and 8. In
contrast, the variables of the WFG1 were split into 37 groups.
Some of these observations are in conflict with the statements
about separability in [8]. We need to emphasize here, that DG
is sensitive to its parameter ε and was developed for single-
objective problems. The obtained groups in this work are only
based on the first objective function, and a perfect performance
can therefore not be expected. Seeing the good performance
for the WFG2, 6 and 8, however, the need for suitable multi-



objective grouping mechanisms in future algorithms is evident.
4) CCGDE3: At last, we take a look at the CCGDE3’s

performance. The CCGDE3 was designed specifically to opti-
mize large-scale multi-objective problems. However, the good
results that were reported for the ZDT problems in [7],
which were also obtained in our preliminary computational
experiments, cannot be obtained for the WFG benchmarks
in this work. In Table I, we observe that the worst values
for hypervolume are obtained by the CCGDE3 algorithm
for all test problems. The same is true when the CCGDE3
is compared to NSGA-II in Table II. The only problem
where it can achieve a higher hypervolume value than the
original NSGA-II algorithm is the WFG1. In conclusion, the
CCGDE3 optimizer cannot match the high performance in
both hypervolume and IGD values of any of the grouped
and/or linked operator versions of the NSGA-II or SMPSO
algorithms, and is in most instances even outperformed by
their respective classical operator versions.

VI. CONCLUSION

We examined the effect of variable grouping in mutation
operators for large-scale multi-objective optimization. Three
new mutation operators based on the well-known Polynomial
Mutation were proposed. These operators make use of variable
grouping mechanisms as well as linking the amount of change
of the variables together. The results of our experiments with
the WFG1-9 test problems using n = 1000 variables indicate
that using linked and grouped mutation operators can sig-
nificantly improve the performance of existing metaheuristics
for large-scale optimization. Future experiments might involve
the examination of the proposed operators for small-scale
problems as well as instances larger than the ones tested
here. The use of more sophisticated multi-objective grouping
schemes might also be a subject for future work.
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