
Shrinking Counterexamples in Property-Based
Testing with Genetic Algorithms

Fang-Yi Lo
National Chiao Tung University

HsinChu City, TAIWAN
fylo@nclab.tw

Chao-Hong Chen
Indiana University

Bloomington, IN, USA
chen464@indiana.edu

Ying-ping Chen∗
National Chiao Tung University

HsinChu City, TAIWAN
ypchen@cs.nctu.edu.tw

Abstract—In this paper, genetic algorithms are proposed to
shrink counterexamples found by QuickChick, a property-based
testing framework for Coq. In order to make the outcome of
property-based testing humanly understandable and inspectable,
genetic algorithms are brought into the realm of rigorous
software development as shrinkers capable of handling a broad
range of data structures. In the present study, two showcases,
merge sort and insertion of red-black trees, are investigated for
illustrative purposes. Due to the lack of relevant results existing in
the literature, two baseline methods, random sample and random
walk are included in the experiments for comparison with the
proposed genetic algorithm. The obtained results indicate that the
proposal is effective since the program mistake can be identified
with ease by examining the shrunk counterexamples and also that
the adopted genetic algorithm statistically significantly outper-
forms random sample and random walk in both counterexample
sizes and running time.

I. INTRODUCTION

As the scale, capability, and performance of computing
hardware and facilities have been greatly and rapidly enhanced
for the past few decades, the complexity of software and com-
puter programs starts to outgrow the boundary within which
things are comprehensible for most programmers and software
developers. Guaranteeing computer software to strictly follow
its specification and ensuring it to be errors or mistakes free
are highly unlikely achievable goals under such circumstances.
Software testing, one of the possible countermeasures, has
been investigated to address this issue for a long time. Within
the field of software testing, certain techniques have been pro-
posed and developed to respond to the urgent need in practice.
Among these techniques is property-based testing, nowadays
widely used for finding program errors and mistakes, which
are so-called bugs, in software development [1], [2], [3].

The idea of property-based testing is specifying certain
property of a program and using random testing to discover
counterexamples, if exist. As an example, consider writing a
program for a recursive function remove of which the inputs
consist of a natural number x and a list of natural numbers.
The designed functionality is to remove all the elements in the
given list that is equal to x:

Fixpoint remove (x : nat) (l : list nat) : list nat :=
match l with
| [] ⇒ []
| y:: ys ⇒ if x =? y then ys

else y :: remove x ys
end.

A list is inductively defined in Coq with two constructors,
an empty list and an element attach with a list. This fixpoint
matches the input list with two constructors: (a) the input list
is empty, return an empty list; (b) the input list is a natural
number y concatenated with a list ys. If x is equal to y, the
list ys is returned. If x is not equal to y, return y concatenated
with a list formed with removing x from ys. In this case, the
following property P must be satisfied:

Conjecture P : forall x l, ¬ (In x (remove x l)).

In is a function which checks whether element x is inside a
list. By way of explanation, function remove should return a
list containing no element equal to its first argument. How-
ever, function remove apparently does not satisfy property
P because it removes only the first element of the given list
equal to the first argument. With the help of random testing,
a counterexample may be found as

[3 ; 4 ; 7 ; 10 ; 4 ; 16 ; 5 ; 9].

The existence of counterexamples indicates that function
remove is incorrect, while it may be obscure why the code
is incorrect and also where in the code the mistake resides
from the counterexample. In order to remedy such a situation,
another important aspect of property-based testing – shrinking
– is brought into play.

Shrinking is a process that tries to make counterexamples
as small as possible such that the root cause of an error is
easy to be recognized by human. The found counterexample
may be shrunk as

[4 ; 4].

By examining the shrunk counterexample, it is clear why the
program errs and how it can be corrected:

Fixpoint remove (x : nat) (l : list nat) : list nat :=
match l with
| [] ⇒ []
| y:: ys ⇒ if x =? y then remove x ys

else y :: remove x ys
end.

As this example demonstrates, shrinking is crucial and in-
dispensable for property-based testing in practice. In the
present work, QuickChick [4], ported from QuickCheck [5]
for Haskell, is adopted. QuickChick is a property-based testing

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

framework for Coq [6], a proof assistant based on Calculus
of Inductive Constructions [7] currently used to prove theo-
rems [8] and to develop verified software [9], [10], [11].

The essential benefit of using a testing framework based
on Coq is that after random testing, the computer program
in question may actually be proven to satisfy the specified
property in logic. For instance, if counterexamples are found
via a quick checking process, there is no need to make
attempts to formally prove the property, usually taking a
significant amount of time and effort. In the aforementioned
example, we can in fact formally prove in Coq that the revised
function remove does satisfy property P. After completing the
proof, it can be known that no counterexample for property
P exists. Hence, we adopt QuickChick in the hope that the
outcome of this study may have a positive influence and make
contributions also to the field of formal software verification,
by enhancing the check mechanism for avoiding formal proof
attempts on properties that cannot be satisfied.

In particular, QuickChick is utilized as the testing frame-
work, and genetic algorithms are employed as general
shrinkers, capable of handling a broad range of data types
and structures, for shrinking counterexamples found by
QuickChick. The obtained results demonstrate that shrunk
counterexamples enable programmers to pinpoint program
mistakes with ease and the adopted genetic algorithm sta-
tistically significantly outperforms the two baseline shrinkers
in both resultant counterexample sizes and running time. In
summary, the proposed method delivers superior performance
on shrinking counterexamples in property-based testing, and
this study may be considered presenting a step forward helping
to build practical verified software.

For further reference, our rudimentary attempt on only
integer lists was reported in [12]. The source code, counterex-
amples, and obtained results with statistical tests have been
released on GitHub [13] for the present work.

II. THE PROBLEM

The idea of property-based testing is, for a given computer
program and a specified property, to find counterexamples
as evidence to disprove the property. For the lack of prior
knowledge, the counterexamples are generated in a random
manner. If counterexamples are found, the property is dis-
proved. However, randomly generated counterexamples are
usually too large for human to pinpoint the mistake and
accordingly fix the program. Thus, counterexamples which are
sufficiently small are in need. This study aims at the post-
processing – shrinking – in property-based testing. That is,
after the testing framework finds a counterexample, genetic
algorithms are employed to shrink the counterexample.

In this section, as an illustration, two common problems
in programming, merge sort and red-black tree insertion,
are chosen as showcases to demonstrate the feasibility of
utilizing genetic algorithms as shrinkers. The programs are
firstly implemented with certain deliberate errors and then
tested by a corresponding axiomatic property. Please note that
the properties used in the showcases are merely for illustrative

purposes. More criteria are needed in practice, such as that the
resultant list is sorted for merge sort and that the resultant tree
contains the inserted node as well as all the nodes from the
original tree for red-black tree insertion.

A. Merge Sort

The first showcase is merge sort, a divide-and-conquer
algorithm. The common implementation separates into two
parts: (a) an unsorted list is bisected into sublists recursively;
(b) sublists are merged by comparing their elements in order.

Fixpoint merge l1 l2 :=
let fix merge_aux l2 :=
match l1, l2 with
| [], _ ⇒ l2
| _, [] ⇒ l1
| a1::l1’, a2::l2’ ⇒
if a1 <? a2 then a1 :: merge l1’ l2
else if a2 <? a1 then a2 :: merge_aux l2’

else a1 :: merge l1’ l2’
end

in merge_aux l2.

The source code shown above is the second part for merging.
In line 3, two sublists are matched for three conditions. In lines
4 and 5, If either l1 or l2 is an empty list, the other sublist
is returned. If both sublists are non-empty, the first elements
of two sublists are compared, and the smaller is extracted and
merged recursively. The property to test in this showcase is
specified as

Conjecture LengthPreserved :
forall l, length l = length (sort l).

The list length should remain unchanged after sorting. Here,
as aforementioned, an implementation error is introduced on
purpose. By using the generator and checker of QuickChick, a
counterexample as a list of 748 integers [13] can be obtained
as the first initial counterexample given in the supplemental
material. It is obvious that although the counterexample proves
the program wrong, programmers are unlikely able to extract
useful information to make the program right.

B. Red-Black Tree Insertion

The other showcase is red-black tree insertion. A red-black
tree is inductively defined as (a) an empty black leaf node E;
(b) some tree T c a k b. c and k are the color and key value of
the root, a and b are the left and right subtrees. The insertion
consists of three parts:

1) ins: The first step for insertion is to find where to insert
the new key. Since a red-black tree is also a binary
search tree, three conditions may be encountered: (a)
insertkey < currentkey – insert into the left subtree;
(b) insertkey > currentkey – insert into the right
subtree; (c) insertkey = currentkey – do nothing.

Fixpoint ins x s :=
match s with
| E ⇒ T Red E x E
| T c a y b ⇒
if x <? y then balance (T c (ins x a) y b)
else if y <? x then balance (T c a y (ins x b))

else T c a x b
end.

2) balance: A red-black tree is a self-balancing binary
search tree. Function ins calls function balance to
balance a tree from a newly inserted node up to the
root. While it may seem laborious and inefficient to
balance the tree by enumerating all possibilities, the
implementation is done in this fashion to facilitate
debugging.

Definition balance t :=
match t with
(*case 0*)
| T Black (T Red (T Red E a E) b E) c E
⇒ T Black (T Red E a E) b (T Red E c E)
| T Black (T Red E a (T Red E b E)) c E
⇒ T Black (T Red E a E) b (T Red E c E)
| T Black E a (T Red (T Red E b E) c E)
⇒ T Black (T Red E a E) b (T Red E c E)
| T Black E a (T Red E b (T Red E c E))
⇒ T Black (T Red E a E) b (T Red E c E)
(*case 1*)
| T Black (T Red (T Red t1 a t2) b t3) c (T Red t4 d t5)
⇒ T Red (T Black (T Red t1 a t2) b t3) c (T Black t4 d t5)
| T Black (T Red t1 a (T Red t2 b t3)) c (T Red t4 d t5)
⇒ T Red (T Black t1 a (T Red t2 b t3)) c (T Black t4 d t5)
| T Black (T Red t1 a t2) b (T Red (T Red t3 c t4) d t5)
⇒ T Red (T Black t1 a t2) b (T Black (T Red t3 c t4) d t5)
| T Black (T Red t1 a t2) b (T Red t3 c (T Red t4 d t5))
⇒ T Red (T Black t1 a t2) b (T Black t3 c (T Red t4 d t5))
(*case 2*)
| T Black (T Red t1 a (T Red t2 b t3)) c (T Black t4 d t5)
⇒ T Black (T Red t1 a t2) b (T Red t3 c (T Black t4 d t5))
| T Black (T Black t1 a t2) b (T Red (T Red t3 c t4) d t5)
⇒ T Black (T Red (T Red t1 a t2) b t3) c (T Red t4 d t5)
(*case 3*)
| T Black (T Red (T Red t1 a t2) b t3) c (T Black t4 d t5)
⇒ T Black (T Red t1 a t2) b (T Red t3 c (T Black t4 d t5))
| T Black (T Black t1 a t2) b (T Red t3 c (T Red t4 d t5))
⇒ T Black (T Red (T Black t1 a t2) b t3) c (T Red t4 d t5)
(*case 4*)
| _ ⇒ t

end.

3) makeBlack: Function makeBlack is defined to re-color
the root if it becomes red after balancing.

Definition makeBlack t :=
match t with
| E ⇒ E
| T _ a x b ⇒ T Black a x b

end.

Then, function insert can be defined as

Definition insert x t := makeBlack (ins x t).

An intuitive property to test against insert may be speci-
fied as

Conjecture InsertIsBalance : forall x t,
IsRBTree (insert x t) = true.

The property represents one fundamental indicator of the
correctness for insertion: a red-black tree is still a red-black
tree after inserting a node with key value x. IsRBTree is a
checker that examines whether or not an instance satisfies the
four red-black tree constraints as

Definition IsRBTree (t : tree) : bool :=
(RootIsBlack t) && (NoConsecutiveRed t) &&
(AllPathSameBlack t) && (IsBST t).

1) The root node is black.

Definition RootIsBlack (t : tree) : bool :=
match t with
| E ⇒ true
| T Black l k r ⇒ true
| _ ⇒ false

end.

2) There are no consecutive red nodes, i.e., a red node can-
not have red child nodes. Function NoConsecutiveRed

recursively checks if a red node has red child nodes.
Fixpoint NoConsecutiveRed (t : tree) : bool :=
match t with
| E ⇒ true
| T Red (T Red _ _ _) _ _
| T Red _ _ (T Red _ _ _) ⇒ false
| T _ l _ r
⇒ andb (NoConsecutiveRed l) (NoConsecutiveRed r)

end.

3) Each path from the root to leaves contains the same
number of black nodes. Function HeightB recursively
calculates the height of the left and right subtrees
considering only black nodes. When the left and right
subtrees have different heights, HeightB returns None.
Consequently, we can verify the constraint by testing
whether HeightB returns Some nat or not, as function
AllPathSameBlack does.

Fixpoint HeightB (t : tree) : option nat :=
match t with
| E ⇒ Some 1
| T c l k r ⇒
let lh := HeightB l in
let rh := HeightB r in
match optioneq lh rh with
| false ⇒ None
| true ⇒
match c with
| Black ⇒ optionplus lh (Some 1)
| Red ⇒ lh

end
end

end.
Definition AllPathSameBlack (t : tree) : bool :=
match HeightB t with
| Some n ⇒ true
| None ⇒ false

end.

4) A red-black tree is a binary search tree. Function IsBST

examines if the current key is greater than all keys in the
left subtree and less than all keys in the right subtree.

Fixpoint IsBST (t : tree) : bool :=
match t with
| E ⇒ true
| T _ l k r ⇒
match l,r with
| T _ ll kl lr, T _ rl kr rr
⇒ (kl<?k)&&(k<?kr)&&(IsBST l)&&(IsBST r)
| T _ ll kl lr, E
⇒ (kl<?k)&&(IsBST l)
| E, T _ rl kr rr
⇒ (k<?kr)&&(IsBST r)
| _, _ ⇒ true

end
end.

Testing this implementation against the specified property, a
counterexample, composed of a red-black tree and a key value
to insert, can be found by using QuickChick. For the first
counterexample given in [13], after inserting 1024 into the tree
consisting of 878 nodes, the resultant tree is not a valid red-
black tree.

As in the case for merge sort, the counterexample found
by QuickChick indicates that program mistakes exist. Never-
theless, the counterexample size prevents the program mistake
from being easily identified or located by human inspection.
Hence, a shrinker able to make counterexamples human read-
able is imperatively in need.

III. SHRINKERS

As preliminaries, the applicable scope of this study is firstly
defined. The proposed framework works for each data struc-
ture supporting implementation of SIZE, DELETE, SEARCH,
and RANDOMDELETE satisfying the following conditions:

1) SIZE: I → N, where I is the set of all instances of the
data structure. This function provides a way to measure
the size of a given instance.

2) DELETE: I ×K → I such that

∀i ∈ I, ∀k ∈ K, SIZE(DELETE(i, k)) ≤ SIZE(i) ,

where K is any suitable set. This function provides a
way to create a smaller instance from the given one.

3) SEARCH: I → (K → Bool) such that ∀i ∈ I, ∀k ∈ K,

SEARCH(i)(k) = True iff
SIZE(DELETE(i, k)) < SIZE(i) .

And ∀i ∈ I , the inverse can be efficiently enumerated:

SEARCH(i)−1(True) =

{k ∈ K | SEARCH(i)(k) = True}

4) RANDOMDELETE: I × N → I is a random function
such that ∀i, i′ ∈ I, ∀n ∈ N, ∃0 ≤ m ≤ n (i 7→m i′) iff
Pr[RANDOMDELETE(i, n) = i′] > 0, where 7→n: I × I
is a relation defined inductively as

i 7→0 i′ iff i = i′

i 7→n+1 i′ iff ∃i′′∈ I, ∃k ∈ K,(
(i 7→n i′′)

∧(SEARCH(i′′)(k)=True)
∧(DELETE(i′′,k)=i′)

)
RANDOMDELETE provides a way to randomly sample a
smaller instance from the given one with the guarantee
that each instance obtainable from successive DELETE
operations may be an output.

For the two showcases used in this study:
1) Merge Sort: The data structure in this case is a

list of natural numbers. Function SIZE simply reports
the list length. Function DELETE: list nat × nat

→ list nat deletes the k-th element from list l
when DELETE(l, k) is called. SEARCH checks whether
a given number is less than the list length, i.e.,
SEARCH(l)(k) := k <? SIZE(l), and the inverse image
of True can be efficiently enumerated because it is just
{0, . . . , SIZE(l) − 1}. Given these three functions, one
possible implementation of RANDOMDELETE is shown
in Algorithm 1.

Algorithm 1 RANDOMDELETE for integer lists
1: procedure RANDOMDELETE(l, n)
2: d← RANDOM(0, n)
3: for i = 0 to d-1 do
4: r ← RANDOM(0, SIZE(l)− 1)
5: l← DELETE(l, r)

6: return l

Algorithm 2 RANDOMDELETE for red-black trees
1: procedure RANDOMDELETE(t, n)
2: elements← TRAVERSE(t)
3: dindex← PERMUTATION(0, SIZE(elements)− 1)
4: d← RANDOM(0, n)
5: for i = 0 to d-1 do
6: t← DELETE(t, elements[dindex[i]])

7: return t

2) Red-Black Tree: Function SIZE simply counts the num-
ber of tree nodes. Function DELETE in this case is the
deletion for red-black tree as DELETE: tree × nat

→ tree which deletes the key k from tree t when
DELETE(t, k) is called. SEARCH checks the presence of
a given key, i.e., SEARCH(t)(k) := LOOKUP(t, k), and
the inverse image of True can be efficiently enumerated
by TRAVERSE: tree → list nat returning a list con-
tains all the keys in the tree. A possible implementation
of RANDOMDELETE is shown in Algorithm 2.

As described, the constraints are actually quite general and in-
clude a wide variety of data structures. Based on the definition
of the applicable scope, the three shrinking methods involved
in this study are introduced in what follows.

A. Shrinker based on Random Sample

The pseudocode for the shrinker based on random sample
is shown in Algorithm 3. The idea for using random sample
as a shrinker is to sample a random instance smaller than the
original given counterexample. As per the aforementioned def-
inition, the sampling is simply done by using the functionality
of RANDOMDELETE of the corresponding data structure. In
every iteration of the while loop (from line 3 to line 9), a
smaller instance is sampled directly from the original coun-
terexample. Function ISCE at line 6 checks whether instance t
is a counterexample. The if-else statement from line 8 to line 9
stores the current minimal counterexample size. EvalMax is
the allowed total number of instances, counterexamples or not,
sampled and examined. In the present work, EvalMax is set
to 500 for merge sort and 50,000 for red-black tree insertion
for all the three shrinkers.

B. Shrinker based on Random Walk

The shrinker based on random walk shown in Algorithm 4
is a straightforwd extension to the random sample shrinker.
Instead of generating each new instance directly from the
original counterexample, the random walk shrinker continues
to sample next smaller instance from the current instance until
a non-counterexample is sampled. Then, the shrinker restarts
the procedure to sample from the original counterexample.

Algorithm 3 Random Sample Shrinker
1: ce← {OriginalCounterexample}
2: mince← SIZE(ce); eval← 0; cecount← 0
3: while (eval < EvalMax) do {
4: t← RANDOMDELETE(ce, SIZE(ce))
5: eval← eval + 1
6: if ISCE(t) then
7: cecount← cecount + 1
8: if SIZE(t) < mince then
9: mince← SIZE(t) }

Algorithm 4 Random Walk Shrinker
1: ce← {OriginalCounterexample}
2: mince← SIZE(ce); eval← 0; cecount← 0
3: while (eval < EvalMax) do {
4: ceflag ← False; c← ce
5: do {
6: t← RANDOMDELETE(c, SIZE(c))
7: eval← eval + 1
8: if ISCE(t) then
9: cecount← cecount + 1

10: ceflag ← True; c← t
11: if SIZE(t) < mince then
12: mince← SIZE(t) }
13: while (ceflag & (eval < EvalMax)) } }

C. Shrinker based on Genetic Algorithms

Algorithm 5 presents the pseudo code for the shrinker based
on genetic algorithms proposed in this study. The overall
algorithmic flow is shown, followed by the description on each
major component. Please note that this study is a proof-of-
principle study, and we are making an attempt to demonstrate
the viability of using genetic algorithms as general shrinkers.
Hence, we simply choose a reasonable, working parameter
setting, instead of focusing on parameter tuning, which is
surely an item of our future work.

1) Initialization: In INITIALIZATION, psize instances are
initially sampled from the original counterexample by using
the same method previously described except for the maximum
number of elements to delete is bounded by idmax. The
other half space of P [] is kept as the working space for
CROSSOVER. For merge sort, psize is set to 10, and idmax
is set to the half size of the original counterexample. For red-
black tree insertion, psize is set to 100, and idmax is set the
1/10 size of the original counterexample.

2) Crossover: Parent candidates PA and PB are selected
at random from the population for CROSSOVER. child is
firstly generated by making a copy of PA and then by deleting
all the elements that do not exist in PB. When the elements
of PA are listed and being searched in PB, a permutation
is applied such that these elements may be deleted in various
orders. Functions DELETE and SEARCH are defined as the
operations supported by the data structure.

3) Mutation: Mutation rates are set separately depending
on whether the input instance is a counterexample. One
of the reasons is that if a non-counterexample selected as
PB in CROSSOVER is too small in size, it might never

Algorithm 5 Genetic Algorithm Shrinker
1: ce← {OriginalCounterexample}
2: psize← {PopulationSize}
3: idmax← {MaxElementsToDeleteInInit}
4: mdmax← {MaxElementsToDeleteInMutation}
5: cemr ← {CounterexampleMutationRate}
6: ncemr ← {NonCounterexampleMutationRate}
7: survive← {IndividualsGuaranteeToSurvive}
8: penalty ← SIZE(ce); eval← 0
9: P [psize ∗ 2]← INITIALIZATION(ce, idmax)

10: while (eval < EvalMax) do {
11: for i = psize to psize * 2 - 1 do {
12: PA← RANDOMSELECT(P [0], P [psize− 1])
13: PB ← RANDOMSELECT(P [0], P [psize− 1])
14: P [i]← CROSSOVER(PA,PB) }
15: for i = 0 to psize * 2 - 1 do
16: P [i]← MUTATION(P [i],mdmax, cemr, ncemr)

17: P ← SELECTSURVIVOR(P, survive) }

produce a counterexample. Consequently, in order to ensure
that non-counterexample instances in the population do not
shrink rapidly, different mutation rates are necessary. The
mutation operator employed in the present work is simply
RANDOMDELETE with a bound of mdmax, which is set to
20 for merge sort and 5 for red-black tree insertion.

4) Survivor Selection: The objective value is defined as

obj(t) = SIZE(t) + penalty ∗ b (1)

for instance t, where penalty is set to the size of the original
counterexample, i.e., mostly ce in the pseudo code. b is set to
0 if t is a counterexample and otherwise 1. When the objective
value is computed for an individual, if the individual needs to
determine whether it is a counterexample by calling ISCE,
the eval count will be increased by one for bookkeeping.
According to the definition of objective values, an instance
with a smaller objective value is considered superior. Survivor
selection is then carried out by sorting the population with
respect to the objective values in the increasing order and
keeping the first survive instances unchanged, 8 for merge
sort and 40 for red-black tree insertion. The empty slots are
filled by the remaining individuals selected at random.

IV. RESULTS

In this section, the performance comparison and results
indicating effectiveness will be presented. In the experiments,
for both merge sort and red-black tree insertion, 50 different
counterexamples found by QuickChick were shrunk with
random sample, random walk, and the proposed method,
respectively. The experiment on each combination of shrinkers
and counterexamples was conducted for 30 independent trials
for observing the performance in a statistical manner.

A. Performance Comparison on Shrinkers

Tables I and III show the average size and standard de-
viation of the minimal counterexamples generated by the
three shrinkers over 30 independent runs on 50 different
counterexamples for merge sort and red-black tree insertion,

Algorithm 6 INITIALIZATION(ce, idmax)
1: for i = 0 to psize - 1 do {
2: P [i]← RANDOMDELETE(ce, idmax)
3: P [i+ psize]← ∅ }

Algorithm 7 CROSSOVER(PA, PB)
1: child← PA
2: for element ∈ SEARCH(PA)−1(True) do
3: if SEARCH(PB, element) = False then
4: DELETE(child, element)

5: return child

respectively. The second column characterizes the initial coun-
terexamples. The last three columns give the results of the
Mann-Whitney U test. ‘+’ indicates that the p-value < 0.005;
’-’ indicates otherwise. T1, T2, and T3 represents tests for (RS,
RW), (RS, GA), and (RW, GA), respectively. Tables II and IV
show the results for running time (in milliseconds), organized
similarly to that of Tables I and III.

According to Table I, random walk performs better than
random sample does. Random walk is able to shrink a coun-
terexample to nearly half of the size compared with what
random sample can do, while the performance of random
walk seems to deteriorate when the data structure gets more
sophisticated. Table III shows that only on 15 counterex-
amples, random walk statistically significantly outperforms
random sample. The proposed GA-based shrinker apparently
outperforms random sample and random walk, used as a
baseline for the lack of existing relevant results, on all items
for both merge sort and red-black-tree insertion. Moreover,
although the two baseline methods are able to shrink given
counterexamples to a certain extent, only the proposed method
can stably deliver shrunk counterexamples equal to or very
close to the minimum counterexample.

B. Merge Sort

While the shrinking performance presented in Tables I, II,
III, and IV indicates the effectiveness and efficiency of the GA-
based shrinker, the significance has also to be demonstrated on
how the shrunk counterexample can assist to identify and to
correct the program mistake, which is actually the main goal
of this study.

Starting from the counterexample as a list consisting of
748 integers, the minimum counterexample discovered by the
proposed shrinker is an integer list of length 2:

[64184177 ; 64184177].

By examining the counterexample, it is reasonable to speculate
that the program mistake is the inability to handle duplicate
elements. Thus, the fix can be done with ease as

Fixpoint merge l1 l2 :=
......

else if a2 <? a1 then a2 :: merge_aux l2’
else a1 :: a2 :: merge l1’ l2’

end
in merge_aux l2.

Algorithm 8 MUTATION(P[i], mdmax, cemr, ncemr)
1: m← RANDOM(0, 100)
2: ceflag ← ISCE(P [i])
3: eval← eval + 1
4: if ceflag = True & m < cemr then
5: return RANDOMDELETE(P [i],mdmax)

6: if ceflag = False & m < ncemr then
7: return RANDOMDELETE(P [i],mdmax)

8: return P [i]

382 1052

1014 1215

1013 1045

1012

(a) Before insertion.

1012

382 1013

1052

1045 1215

1024

1014

(b) After. Not an RBT.

Fig. 1: Minimum counterexample for red-black tree insertion
generated by the proposed GA-based shrinker.

C. Red-Black Tree

For the showcase of red-black tree insertion, the proposed
shrinker also successfully accomplishes the task. The mini-
mum generated counterexample consists of a red-black tree
with 7 nodes as shown in Fig. 1(a) and key value 1024 to
insert. It is slightly more complicated than the case for merge
sort, but manually tracing the code of function balance is
still practical. Only case 1-3 and case 2-2 are executed during
the process of insertion. As a consequence, the code can then
be corrected as

Definition balance t :=
match t with

......
| T Black (T Black t1 a t2) b (T Red (T Red t3 c t4) d t5)
⇒ T Black (T Red (T Black t1 a t2) b t3) c (T Red t4 d t5)
(*case 3*)
......

end.

V. CONCLUSIONS

This paper proposed the use of genetic algorithms as general
shrinkers capable of being easily adapted to shrink counterex-
amples in property-based testing for a broad range of data
types and structures of which the scope was precisely defined.
Merge sort and red-black tree insertion were used as showcases
to demonstrate the effectiveness and efficiency of GA-based
shrinkers. Two other shrinkers, random sample and random
walk, were included in the study as baselines for comparison
due to the lack of existing relevant results. The obtained results
indicated that the performance of random walk was slightly
better than that of random sample while deteriorated for more
complicated data structures and also that the genetic algorithm
outperformed both random sample and random walk without
performance deterioration.

The successful attempt presented in this paper utilizing
genetic algorithms as general shrinkers may be considered
an important step forward helping to build practical verified

TABLE I: The mean and standard deviation of the minimal
sizes over 30 trials of merge sort for random sample (RS),
random walk (RW), and genetic algorithm (GA).

Length RS RW GA T1 T2 T3

1 748 130.73± 44.51 57.77± 27.06 2.13± 0.72 + + +
2 944 124.43± 47.08 54.27± 29.47 2.20± 1.08 + + +
3 855 104.40± 36.25 48.60± 27.71 2.00± 0.00 + + +
4 721 96.50± 31.58 45.90± 26.67 2.00± 0.00 + + +
5 855 108.70± 36.18 60.10± 32.19 2.03± 0.18 + + +
6 880 115.13± 40.26 55.13± 34.65 2.00± 0.00 + + +
7 665 88.93± 34.28 40.90± 17.30 2.00± 0.00 + + +
8 859 121.07± 42.50 63.70± 27.86 2.00± 0.00 + + +
9 838 111.67± 40.89 53.53± 28.14 2.00± 0.00 + + +
10 719 91.67± 40.50 41.50± 20.57 16.93± 80.42 + + +
11 599 75.83± 22.98 40.73± 16.40 2.00± 0.00 + + +
12 629 110.97± 41.14 55.93± 24.48 2.03± 0.18 + + +
13 508 58.20± 23.07 35.27± 16.62 2.00± 0.00 + + +
14 858 123.70± 39.25 49.17± 29.21 28.90± 142.83 + + +
15 442 55.23± 19.17 27.07± 13.04 2.00± 0.00 + + +
16 432 69.30± 26.58 38.60± 21.54 2.00± 0.00 + + +
17 666 83.87± 27.37 35.57± 19.71 2.00± 0.00 + + +
18 966 125.77± 51.37 59.67± 26.05 2.00± 0.00 + + +
19 784 96.43± 31.71 54.70± 26.48 2.00± 0.00 + + +
20 494 76.17± 17.63 39.87± 17.89 2.23± 1.26 + + +
21 673 108.53± 33.61 52.87± 34.91 2.03± 0.18 + + +
22 794 116.83± 37.66 50.70± 22.66 2.00± 0.00 + + +
23 931 113.17± 40.92 62.50± 29.99 2.00± 0.00 + + +
24 924 121.40± 42.45 58.67± 31.96 2.03± 0.18 + + +
25 984 131.27± 43.97 61.23± 31.23 27.20± 135.71 + + +
26 833 143.20± 48.21 80.97± 38.57 2.17± 0.90 + + +
27 793 102.27± 32.80 47.83± 16.71 2.00± 0.00 + + +
28 519 78.53± 30.54 37.33± 17.84 2.07± 0.36 + + +
29 259 43.07± 15.34 18.07± 9.45 2.00± 0.00 + + +
30 858 116.00± 42.24 56.37± 25.07 2.03± 0.18 + + +
31 762 133.97± 50.42 66.20± 36.33 2.23± 0.88 + + +
32 805 104.93± 35.96 52.50± 23.50 2.00± 0.00 + + +
33 980 171.87± 52.00 88.43± 39.32 2.00± 0.00 + + +
34 705 111.90± 39.02 62.00± 31.26 2.03± 0.18 + + +
35 600 77.53± 28.92 39.90± 21.87 2.00± 0.00 + + +
36 450 64.97± 16.66 29.47± 16.66 2.00± 0.00 + + +
37 848 114.47± 35.14 48.63± 24.05 2.00± 0.00 + + +
38 685 119.23± 39.66 60.30± 23.28 2.00± 0.00 + + +
39 478 80.53± 30.09 41.00± 20.42 2.03± 0.18 + + +
40 588 72.70± 23.84 35.93± 17.86 2.07± 0.36 + + +
41 383 67.13± 23.33 32.73± 18.02 2.00± 0.00 + + +
42 945 128.07± 46.71 64.83± 36.01 2.03± 0.18 + + +
43 767 126.53± 49.13 57.53± 23.85 2.00± 0.00 + + +
44 355 48.20± 16.83 21.63± 11.44 2.07± 0.36 + + +
45 424 75.10± 27.00 31.30± 17.57 2.00± 0.00 + + +
46 874 159.77± 48.26 72.30± 31.90 2.00± 0.00 + + +
47 545 83.73± 28.75 49.07± 22.07 2.03± 0.18 + + +
48 732 122.57± 36.33 61.07± 38.30 2.07± 0.36 + + +
49 900 118.00± 34.24 62.27± 25.57 2.00± 0.00 + + +
50 881 154.17± 49.09 68.63± 40.11 2.03± 0.18 + + +

software and toward broadly incorporating methodologies in
the field of evolutionary computation into the realm of rig-
orous software development. Along this line of research are
promising directions for future work, including immediately
integrating the present work into QuickChick as a general
shrinker, demonstrating the feasibility and flexibility of using
GA-based shrinkers on data structures of greater complexity
in the short term, substituting genetic algorithms for the
current counterexample searcher in QuickChick in the medium
term, and finally, completing or generating formal proofs of
specified properties for a given computer program by using
methodologies in evolutionary computation in the long term.

ACKNOWLEDGMENTS

The work was supported in part by the Ministry of Science
and Technology of Taiwan under Grant MOST 108-2221-E-
009-077. The authors are grateful to the National Center for
High-performance Computing for computer time and facilities.

TABLE II: The mean and standard deviation of the running
time in milliseconds over 30 trials of merge sort for random
sample (RS), random walk (RW), and genetic algorithm (GA).

Length RS RW GA T1 T2 T3

1 748 22.47± 1.09 21.07± 1.65 13.13± 0.76 + + +
2 944 29.63± 2.29 24.80± 1.30 17.30± 1.37 + + +
3 855 27.70± 2.04 23.17± 1.13 15.30± 0.97 + + +
4 721 23.33± 6.05 18.37± 0.66 12.90± 0.94 + + +
5 855 26.97± 1.40 22.83± 1.13 15.37± 1.20 + + +
6 880 27.40± 1.87 22.73± 0.93 15.83± 1.13 + + +
7 665 21.70± 7.08 16.90± 0.75 12.03± 0.95 + + +
8 859 26.43± 1.12 22.17± 0.73 16.20± 3.53 + + +
9 838 26.47± 1.65 22.13± 1.41 15.27± 1.09 + + +
10 719 22.87± 2.72 19.50± 1.20 12.90± 0.91 + + +
11 599 18.40± 0.61 15.87± 1.28 10.53± 0.72 + + +
12 629 20.47± 5.61 17.57± 1.12 11.10± 1.11 + + +
13 508 16.93± 5.07 13.23± 0.67 9.00± 0.82 + + +
14 858 26.90± 1.60 23.33± 1.96 15.23± 1.15 + + +
15 442 13.33± 1.51 11.53± 0.72 8.27± 1.15 + + +
16 432 13.63± 5.72 11.47± 0.96 7.77± 0.92 + + +
17 666 21.23± 5.86 17.60± 1.72 13.17± 3.10 + + +
18 966 31.80± 6.82 26.30± 1.04 17.47± 1.63 + + +
19 784 25.97± 7.97 20.77± 1.02 14.10± 1.19 + + +
20 494 15.10± 3.78 13.63± 1.08 8.47± 0.56 + + +
21 673 20.70± 2.13 18.87± 1.28 12.50± 1.06 + + +
22 794 24.40± 0.99 20.73± 0.85 13.90± 0.91 + + +
23 931 29.03± 1.47 25.30± 1.29 17.67± 3.31 + + +
24 924 31.60± 5.39 24.33± 1.27 16.67± 1.40 + + +
25 984 31.37± 3.56 26.23± 1.12 17.93± 1.65 + + +
26 833 26.23± 2.54 22.63± 1.05 14.90± 1.85 + + +
27 793 25.07± 6.26 20.20± 0.83 13.93± 1.00 + + +
28 519 16.87± 3.16 13.10± 0.75 9.17± 0.86 + + +
29 259 7.67± 2.05 6.97± 0.80 4.70± 0.64 - + +
30 858 29.33± 10.52 23.17± 3.40 15.13± 1.12 + + +
31 762 24.47± 1.41 21.03± 1.05 13.77± 1.41 + + +
32 805 25.80± 3.76 20.73± 0.96 14.23± 1.20 + + +
33 980 32.13± 4.08 27.70± 1.07 17.97± 1.70 + + +
34 705 21.63± 4.07 19.07± 1.03 12.80± 2.21 + + +
35 600 17.97± 0.98 16.10± 1.47 11.03± 0.80 + + +
36 450 14.23± 4.84 11.37± 0.66 8.13± 0.67 + + +
37 848 28.43± 7.52 22.37± 1.33 15.67± 1.40 + + +
38 685 22.70± 4.81 19.07± 1.46 12.30± 1.00 + + +
39 478 14.37± 0.91 13.10± 0.94 8.80± 0.79 + + +
40 588 18.60± 1.82 14.80± 0.87 10.70± 0.78 + + +
41 383 12.83± 4.78 9.83± 0.78 6.67± 0.60 + + +
42 945 29.50± 1.36 26.57± 6.12 17.23± 1.02 + + +
43 767 24.23± 2.06 21.20± 1.08 13.47± 0.81 + + +
44 355 10.50± 0.85 9.00± 0.68 6.70± 0.64 + + +
45 424 12.90± 0.94 11.33± 0.75 7.50± 0.56 + + +
46 874 27.67± 1.40 25.13± 1.33 15.90± 1.35 + + +
47 545 17.77± 2.12 16.37± 1.43 10.30± 1.10 - + +
48 732 23.67± 1.85 20.13± 1.09 13.37± 0.98 + + +
49 900 28.73± 1.53 24.17± 1.88 16.47± 1.28 + + +
50 881 29.03± 1.70 26.23± 2.63 16.67± 1.45 + + +

REFERENCES

[1] J. Hughes, U. Norell, N. Smallbone, and T. Arts, “Find more bugs
with QuickCheck!” in Proc. of the 11th International Workshop
on Automation of Software Test, ser. AST ’16. New York,
NY, USA: ACM, 2016, pp. 71–77. [Online]. Available: http:
//doi.acm.org/10.1145/2896921.2896928

[2] B. K. Aichernig and R. Schumi, “Property-based testing with FsCheck
by deriving properties from business rule models,” in Proc. of the 2016
IEEE Ninth International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), April 2016, pp. 219–228.

[3] C. Benac Earle, L.-Å. Fredlund, and J. Hughes, “Automatic grading
of programming exercises using property-based testing,” in Proc.
of the 2016 ACM Conference on Innovation and Technology
in Computer Science Education, ser. ITiCSE ’16. New York,
NY, USA: ACM, 2016, pp. 47–52. [Online]. Available: http:
//doi.acm.org/10.1145/2899415.2899443

[4] M. Dénès, C. Hriţcu, L. Lampropoulos, Z. Paraskevopoulou, and B. C.
Pierce, “QuickChick: Property-based testing for Coq,” in Coq Workshop,
2014.

[5] K. Claessen and J. Hughes, “QuickCheck: A lightweight tool for
random testing of Haskell programs,” in Proc. of the Fifth ACM
SIGPLAN International Conference on Functional Programming, ser.
ICFP ’00. New York, NY, USA: ACM, 2000, pp. 268–279.

TABLE III: The mean and standard deviation of the minimal
sizes over 30 trials of RBT insertion for random sample (RS),
random walk (RW), and genetic algorithm (GA).

(Size,Key) RS RW GA T1 T2 T3

1 (878,1024) 255.5± 65.6 217.1± 52.8 15.5± 13.4 - + +
2 (810,1443) 257.8± 33.7 209.3± 45.0 9.6± 2.3 + + +
3 (844,1056) 243.5± 41.7 223.7± 29.7 10.8± 3.6 - + +
4 (864,1355) 239.0± 32.9 219.0± 37.1 10.3± 5.0 - + +
5 (605,1171) 191.5± 38.9 196.0± 25.8 12.8± 10.0 - + +
6 (793,1088) 279.9± 27.9 264.2± 24.8 14.3± 9.1 - + +
7 (725,683) 199.7± 38.1 178.9± 26.5 10.0± 2.9 - + +
8 (587,514) 162.2± 29.3 145.5± 19.9 9.8± 1.8 + + +
9 (372,1259) 116.1± 13.1 101.9± 14.7 8.1± 2.4 + + +
10 (562,897) 166.7± 25.8 160.2± 20.4 12.9± 6.1 - + +
11 (697,736) 205.6± 45.2 187.8± 30.6 11.0± 1.5 - + +
12 (526,593) 210.5± 26.5 197.1± 22.9 11.1± 1.9 - + +
13 (851,641) 254.5± 37.9 229.0± 40.0 10.3± 1.8 - + +
14 (840,670) 274.1± 36.3 260.9± 38.2 18.9± 21.2 - + +
15 (1132,1444) 421.8± 50.2 393.6± 49.7 22.6± 36.0 - + +
16 (680,924) 216.4± 46.6 188.0± 38.1 9.5± 2.3 - + +
17 (588,998) 201.7± 25.7 174.6± 25.5 9.9± 2.6 + + +
18 (539,1155) 155.0± 18.3 138.8± 31.7 12.1± 11.9 - + +
19 (772,707) 241.5± 42.7 215.9± 39.0 13.8± 8.8 - + +
20 (753,1381) 235.3± 29.6 218.4± 29.7 9.1± 4.1 - + +
21 (894,1368) 240.7± 39.2 221.8± 45.1 17.6± 23.2 - + +
22 (762,1333) 282.7± 38.8 247.3± 44.0 8.4± 2.6 + + +
23 (712,1294) 204.8± 35.1 175.5± 32.1 10.7± 5.7 + + +
24 (949,1277) 285.5± 43.4 242.9± 46.4 23.0± 35.6 + + +
25 (794,861) 254.1± 37.5 232.7± 41.1 9.4± 2.4 - + +
26 (997,1235) 331.4± 54.3 303.6± 49.4 10.1± 4.1 - + +
27 (712,815) 213.9± 25.1 200.3± 24.5 9.9± 3.0 - + +
28 (869,958) 211.0± 50.6 217.9± 59.0 12.5± 4.6 - + +
29 (1028,912) 294.2± 39.0 271.4± 46.9 10.4± 3.7 - + +
30 (673,779) 233.2± 36.9 211.7± 23.4 9.8± 2.4 - + +
31 (782,655) 274.1± 53.7 269.5± 40.1 8.7± 2.1 - + +
32 (772,1129) 238.8± 32.1 211.8± 25.3 9.9± 3.5 + + +
33 (422,860) 163.7± 16.2 150.0± 19.2 7.7± 1.2 + + +
34 (606,589) 167.6± 21.5 134.8± 29.6 10.2± 1.6 + + +
35 (580,1021) 191.2± 21.5 161.7± 30.0 9.8± 2.5 + + +
36 (483,927) 147.5± 21.3 152.0± 16.0 8.3± 1.9 - + +
37 (1231,940) 435.8± 70.8 416.8± 47.8 13.4± 13.9 - + +
38 (642,1356) 216.8± 29.0 205.8± 27.2 10.1± 3.4 - + +
39 (791,1514) 239.1± 32.0 219.1± 22.5 10.8± 3.8 + + +
40 (485,694) 158.1± 24.9 147.8± 23.0 8.3± 2.1 - + +
41 (380,603) 120.8± 19.8 114.0± 19.0 10.2± 2.4 - + +
42 (400,1366) 119.3± 17.0 103.0± 17.2 9.6± 3.3 + + +
43 (561,978) 184.0± 13.5 159.8± 22.1 9.7± 3.6 + + +
44 (872,1484) 247.3± 48.5 231.4± 36.7 9.9± 3.9 - + +
45 (962,831) 440.4± 34.1 431.1± 42.7 50.6± 55.4 - + +
46 (906,1026) 266.6± 45.0 260.0± 32.7 12.1± 6.6 - + +
47 (986,957) 289.2± 44.9 281.7± 46.4 41.1± 61.4 - + +
48 (574,1111) 171.5± 24.4 149.8± 27.1 8.9± 2.0 + + +
49 (716,886) 218.1± 46.8 228.8± 24.4 8.7± 2.0 - + +
50 (892,1234) 261.1± 38.2 240.4± 45.3 12.5± 8.4 - + +

[6] T. Coq Development Team, The Coq Reference Manual, version 8.10.1,
2019, https://coq.inria.fr/documentation.

[7] T. Coquand and G. Huet, “The calculus of constructions,” Information
and Computation, vol. 76, no. 2, pp. 95–120, 1988. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0890540188900053

[8] G. Gonthier, “Formal proof–the four-color theorem,” Notices of The
American Mathematical Society, vol. 55, no. 11, pp. 1382–1393, 2008.

[9] X. Leroy, “Formal certification of a compiler back-end, or: programming
a compiler with a proof assistant,” in Proc. of the 33rd ACM symposium
on Principles of Programming Languages. ACM Press, 2006, pp. 42–
54. [Online]. Available: http://xavierleroy.org/publi/compiler-certif.pdf

[10] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “seL4: Formal verification of an OS kernel,”

TABLE IV: The mean and standard deviation of the running
time in milliseconds over 30 trials of RBT insertion for random
sample (RS), random walk (RW), and genetic algorithm (GA).

(Size,Key) RS RW GA T1 T2 T3

1 (878,1024) 10377± 63 12003± 67 1102± 125 + + +
2 (810,1443) 9535± 70 10913± 110 818± 75 + + +
3 (844,1056) 10040± 83 11233± 50 879± 83 + + +
4 (864,1355) 10235± 59 11495± 76 920± 87 + + +
5 (605,1171) 7075± 58 8174± 40 787± 97 + + +
6 (793,1088) 9458± 166 10690± 68 1005± 157 + + +
7 (725,683) 8578± 76 9652± 63 736± 75 + + +
8 (587,514) 6942± 50 7827± 54 617± 53 + + +
9 (372,1259) 4266± 38 4890± 64 417± 38 + + +

10 (562,897) 6549± 41 7392± 36 633± 87 + + +
11 (697,736) 8249± 122 9337± 60 694± 62 + + +
12 (526,593) 6120± 46 7070± 41 594± 74 + + +
13 (851,641) 10098± 107 11447± 63 859± 72 + + +
14 (840,670) 9969± 75 11228± 86 1036± 137 + + +
15 (1132,1444) 13604± 64 15367± 33 1418± 190 + + +
16 (680,924) 8021± 48 9184± 36 692± 82 + + +
17 (588,998) 6901± 29 7878± 31 630± 58 + + +
18 (539,1155) 6262± 60 7203± 41 630± 93 + + +
19 (772,707) 9029± 61 10204± 27 834± 428 + + +
20 (753,1381) 8953± 139 10162± 155 822± 72 + + +
21 (894,1368) 10660± 110 11903± 46 1007± 145 + + +
22 (762,1333) 9043± 60 10496± 82 769± 54 + + +
23 (712,1294) 8346± 60 9430± 56 785± 79 + + +
24 (949,1277) 11257± 116 12897± 209 1192± 175 + + +
25 (794,861) 9512± 217 10784± 35 848± 71 + + +
26 (997,1235) 12351± 409 13535± 78 1066± 103 + + +
27 (712,815) 8354± 42 9390± 69 744± 66 + + +
28 (869,958) 10466± 135 12021± 120 1116± 105 + + +
29 (1028,912) 12673± 53 14243± 81 1108± 88 + + +
30 (673,779) 7929± 121 8942± 36 696± 57 + + +
31 (782,655) 9416± 312 10828± 146 825± 84 + + +
32 (772,1129) 9127± 38 10384± 56 820± 84 + + +
33 (422,860) 4869± 37 5617± 15 493± 54 + + +
34 (606,589) 6994± 28 7908± 87 603± 54 + + +
35 (580,1021) 6723± 32 7674± 45 564± 26 + + +
36 (483,927) 5553± 38 6378± 42 488± 36 + + +
37 (1231,940) 14893± 81 16904± 41 1323± 134 + + +
38 (642,1356) 7528± 32 8628± 58 674± 66 + + +
39 (791,1514) 9225± 125 10431± 80 833± 89 + + +
40 (485,694) 5651± 58 6473± 65 481± 39 + + +
41 (380,603) 4337± 30 4895± 21 429± 57 + + +
42 (400,1366) 4607± 41 5314± 27 422± 48 + + +
43 (561,978) 6573± 104 7418± 111 655± 72 + + +
44 (872,1484) 10617± 63 11985± 43 912± 69 + + +
45 (962,831) 11897± 76 13748± 48 1342± 186 + + +
46 (906,1026) 11073± 136 12339± 240 994± 141 + + +
47 (986,957) 12364± 257 13835± 88 1366± 198 + + +
48 (574,1111) 7038± 231 8283± 133 703± 83 + + +
49 (716,886) 9235± 64 10663± 154 832± 61 + + +
50 (892,1234) 11496± 249 13099± 112 1115± 141 + + +

in Proc. of the ACM SIGOPS Symposium on Operating Systems
Principles, ser. SOSP ’09. New York, NY, USA: ACM, 2009, pp. 207–
220. [Online]. Available: http://doi.acm.org/10.1145/1629575.1629596

[11] R. Gu, Z. Shao, H. Chen, X. Wu, J. Kim, V. Sjöberg, and D. Costanzo,
“CertiKOS: An extensible architecture for building certified concurrent
os kernels,” in Proc. of the 12th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’16. Berkeley, CA,
USA: USENIX Association, 2016, pp. 653–669. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3026877.3026928

[12] F.-Y. Lo, C.-H. Chen, and Y.-p. Chen, “Genetic algorithms as shrinkers
in property-based testing,” in Proc. of 2019 ACM SIGEVO Genetic
and Evolutionary Computation Conference Companion (GECCO’19
Companion), 2019, pp. 291–292.

[13] ——, “GitHub repo: GA.Shrinker,” https://github.com/nclab/ga.shrinker.

